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Abstract

In spite of the ever-increasing availability of computation and communication re-
sources in modern networks, the overhead associated with network management
protocols, such as traffic control and routing, continues to be an important aspect
in the design of new methodologies. Resource efficiency of such protocols has become
even more prominent with the recent developments of wireless and ad-hoc networks,
which are marked by much more severe resource constraints in terms of bandwidth,
memory, and computational capabilities. This paper presents an Agent-Based ap-
proach to Distance Vector Routing that addresses these resource constraints. Agent-
Based Distance Vector Routing (ADVR) is a resource efficient implementation of
Distance Vector Routing that is fault tolerant and scales well for large networks.
ADVR draws upon some basic biologically inspired principles to facilitate coordi-
nation among the mobile agents that implement the routing task. Specifically, sim-
ulated pheromones are used to control the movement of agents within the network
and to dynamically adjust the number of agents in the population. The behavior of
ADVR is analyzed and compared to that of traditional Distance Vector Routing.

Key words: Distance-Vector Routing, resource efficient, intelligent mobile agents,
ADVR.

1 Introduction

The unprecedented pervasivness of network access and the associated growth
of communication networks represents a challenge to traditional distributed
routing algorithms. The amount of network resources in the form of band-
width, memory, and processing power that are consumed by these algorithms
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is directly related to the size of the network (or autonomous systems). That
is, traditional routing algorithms do not scale well with increasing network
dimensions. In fact, it is the lack of scalability of these mechanisms that
forces hierarchical structuring of a large network into autonomous domains.
It has been observed, that the message overhead due to routing table up-
dates increases drastically as the size of the autonomous system increases
(Malkin and Streenstrup 1995). This increase in message activity is intrinsic
to the implementation of most routing algorithms that are in use today, and is
necessary to ensure that changes in routing cost are propagated throughout the
network. Both, Distance Vector and Link State routing algorithms manifest a
distributed version of shortest path algorithms (Bertsekas and Gallager 1987)
designed for graphs (i.e., Bellman-Ford and Dijkstra).

In existing networks, the importance of fast route discovery and low routing
delays surpasses the requirement of low resource overhead. Hence, aggressive
messaging is deemed essential to quickly propagate local information from
individual routers, thereby enabling other routers to utilize this information
in routing decisions. It is the resource overhead incurred by this massively
concurrent messaging that limits the scalability of these routing algorithms.
Even though we witness an ever-increasing availability of network resources
in conventional networks, the tremendous increase in network traffic makes it
necessary to re-visit the fundamental design of current routing methodologies
to find ways to limit the need for excessive messaging. Particularly in view of
recent developments in mobile ad-hoc networks, which are characterized by
limited bandwidth, memory, and computing power, it is imperative to find new
ways of reducing resource overhead associated with routing algorithms. The
goal is to devise a simple, resource efficient, scalable routing algorithm that
discovers optimal routes expediently yet does so with bounded message activ-
ity. Towards this goal, this paper proposes the formulation of a new routing
strategy that exploits the intelligent mobile agent paradigm. In comparison
to ongoing research efforts that pursue the design of new routing paradigms,
which exploit concepts such as reinforcement learning, this paper addresses
the issue of propagating routing information in the network. Specifically, this
paper focusses on the design and evaluation of an agent-based Distance-Vector
Routing algorithm that facilitates scalability, resource awareness, and fault tol-
erance. The effort is motivated by two conjectures, which have been validated
through a number of carefully crafted experiments.

Conjecture 1 [t is possible to bound the degree of message concurrency of
distance-vector routing without significantly affecting the convergence behavior
of the algorithm.

Conjecture 2 It is possible to dynamically control and effectively requlate the
degree of message concurrency without centralized control or global knowledge
of the state of the network.



Although DVR-class algorithms like the distributed Bellman-Ford are sim-
ple to implement, they can suffer from the routing loops and the counting to
infinity problem (Rajagopalan and Faiman 1989). However, there are a wide
range of Distance Vector-based algorithms that eliminate temporary and per-
manent routing loops and avoid the counting to infinity problem altogether
(Rajagopalan and Faiman 1989; Cheng et al. 1989). This paper aims at re-
ducing the message complexity of conventional DVR-class algorithms. It does
not aim at solving the looping problem and counting to infinity associated with
them. Ongoing research focusses on implementing the agent based approach
to certain Loop-Free routing algorithms, thereby making ADVR, loop-free, re-
source efficient, and scalable.

The following section summarizes some of the research effort in agent-based
routing during recent years and highlights principle approaches. The design
of Agent-Based Distance Vector Routing (ADVR) is discussed in Section 3.
We will revisit Conjectures 1 and 2 in Sections 4 where we present the experi-
mental analysis of ADVR. Section 5 concludes the paper with a summary and
direction for future work in the area of agent-based network-centric algorithms.

2 Mobile Agents in Routing

Intelligent Mobile Agent is a term that describes the concept of mobile comput-
ing or mobile code (Bradshaw; Fugetta et al. 1998). The appeal of the mobile
agent paradigm is quite alluring - mobile agents roaming the network could
search for or distribute information, meet and interact with other agents or
remain bound to a single host or node. In general, an agent manifests four
distinct characteristics, namely, intelligence, communication, autonomy, and
mobility. Intelligence is the ability of agents to adapt their actions to circum-
stances brought upon by the dynamics of the system (or network). Commu-
nication is the property whereby the agents collaborate or coordinate their
actions by the means of explicit or implicit exchange of information. Auton-
omy allows agents to make decisions and act upon them without the explicit
control of a user. Last but not least, mobility is the property that makes agents
conducive for distributed systems and network applications, as it allows the
agent to migrate among the constituent nodes of the environment.

Most of the work in agent-based network routing is biologically inspired and
based on insect colonies (Di Caro and Dorigo 1997; White 1997). It relies on
the principles that individual insects exhibit a simple behavior while collec-
tive communities of these insects exhibit complex problem solving capabilities.
Considerable research has been conducted in mapping the foraging activi-
ties of ants to routing and network management activities of mobile agents.
Real ants are represented as artificial agents that traverse the network collect-



ing specific information from their environment and coordinate their actions
through Pheromones. On the basis of this information the agents make sev-
eral decisions to adapt their behavior (Reactive Agents) and/or change the
existing environment affecting their future actions (Proactive Agents). Ant
Based Control (ABC), is a recent network-centric algorithm, that utilizes an
ant-based approach for routing and network management in circuit switched
networks (Schoonderwoerd et al. 1997). Other approaches that exploit agents
for routing and network management schemes in circuit switched networks
exploit Swarm Intelligence (White 1997; White and Pagurek 1998). Such an
approach exploits the concept of multiple colonies of agents coexisting and in
some cases coordinating with each other working towards independent goals.
AntNet applies the idea of deploying agents for routing in packet switched
networks (Di Caro and Dorigo 1997). The algorithm generates mobile agents
(artificial ants) at regular intervals at different nodes in the network. These
agents select a random destination in the network; traverse the network to
reach the destination and on their way back to the source node collect routing
information. Although AntNet is an interesting approach for static networks
with a good adaptive property, its application in dynamic networks is yet to
be explored.

The performance of any agent-based system will depend on its agent popu-
lation. Although significant research has been conducted on agent-based sys-
tems, little consideration has been given to the importance of agent popula-
tion in dynamic networks. Most of the agent-based implementations assume
a fixed number of agents in the network. Certain systems create agents at
regular intervals and destroy them once the required task is accomplished
(Di Caro and Dorigo 1997). Although the latter approach provides some de-
gree of flexibility it does not adapt to sudden changes in the network topology.
It is difficult to know, a priori, the optimal degree of concurrency or the num-
ber of agents required in the system since it depends on the system dynam-
ics and availability of resources. Therefore, autonomous multi-agent systems
should be capable of adapting to their environment and changing the agent
population to an appropriate number with respect to resource availability.

3 Agent-based Distance Vector Routing (ADVR)

All Distance Vector Routing (DVR) algorithms exchange a metric that rep-
resents the distance from a node n; to any destination n; (Hedrick 1988).
Distance is a generalized concept and may include transmission delay on a
link, monetary cost of traversing a link, security level of links/nodes, or reli-
ability measures. In most implementations of DVR, this information (metric)
is exchanged among adjacent nodes in the form of triggered updates, which
are initiated whenever a change in the routing table occurs in one of the



nodes in the network. After receiving the update information from a neigh-
boring node, a node n; updates its own routing table in the following manner
(Hedrick 1988; Malkin and Streenstrup 1995):

0 Voi=j
D(i, j) = (1)
min|d(i, k) + D(k,j)] V ny adjacent to n;

where D(i, j) represents the metric of the best route from node n; to node n;
currently known to n;. d(i, k) represents the cost of traversing the link from
node n; to node ng. Any node n; that receives D(k,j) from a neighbor ny,
computes D(i, j) based on equation(1) and integrates this value in its routing
table. When the routing table of n; is updated, the changes are propagated
to all neighbors, which in turn perform the same algorithm. Therefore, an
update in one routing table can cause a sequence of update messages in nodes
throughout the entire network.

In ADVR, the exchange of the metrics and the process of route discovery
moves from the nodes to the agents. Hence in this approach, route discovery
and updates are manifested in the movement of agents carrying routing infor-
mation from one node to another rather than the propagation of individual up-
date messages. Agents in ADVR can be formally described as: A(i, z, y, Ry, ),
where A is an Agent with ID ¢ migrating from node n, to node n,, carrying the
routing table R, and using the migration strategy v to move among adjacent
nodes. R, is a subset of r,, the routing table of n, (See Figure 1).

In ADVR, agents start at arbitrary nodes and migrate to adjacent nodes using
7. Upon arriving at a node n,, an agent A(7,z,y, R;,7) updates the routing
table R, based on the following equation:

D(y.j) = min(D(y, j), [d(y, z) + D(w,j)]) ¥V n;in R, (2)

where D(x, j) is an entry in R,. After performing the update, the agent selects
R, and migrates to an adjacent node using migration strategy .

At every node the agent has to make a decision regarding the routing data
it would carry to the next node. This decision plays an important role in
providing a resource efficient solution with ADVR. If the agent carries the en-
tire routing table available at each node, it would incur excessive overhead in
transferring redundant data. On the other hand, if the agent selected a subset
of total routing data available at the node, it would unnecessarily delay the
propagation of important routing information. The flexibility adopted by the
agents in selecting the routing data reflects the inherent degree of intelligence
acquired by it. It is important for the agents to execute certain book keep-
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Fig. 1. Selection of Routing Table Entries by the Agent

ing functions at every node whereby it would limit the routing data carried
by it to a minimum without affecting the propagation of important routing
information.

To reduce the amount of information propagated in ADVR, agents refrain
from transferring complete routing tables whenever possible. Agents identify
routing table entries that have been modified, yet have not been transferred
to a particular neighbor. Associated with every entry e,; in routing table
r, is a vector V,; of boolean flags for each of the neighbors nodes of n,.
| Vii |=| Hy | Vey, i.e., the size of each of the V,; is equivalent to the size
of the neighborhood of a node n,, H,. Upon selecting a neighbor n, of the
current node n,, an agent A(i, z,y, R,,y) will carry only those entries e,; in R,
for which V,,;[y] == 1. The agent copies each entry e,; that is to be transferred
to neighbor node n, to its data segment, and sets the corresponding boolean
flag V;[y] == 0. At startup, all the flags are set, i.e., V,; := 1 Ve,;. Further,
any routing table entry e,; that is modified by an agent will have all its flags
Vii reset. To facilitate robustness and fault tolerance, all flags V,; Ve,; will
expire after some time AT and reset (i.e., V,; := 1). Resetting flags after AT
enables nodes to re-transmit routing updates that may have been lost during
previous transmission attempts.

3.1 Agent Migration Strategy

The mere replacement of messages with agents and the design of mechanisms
that facilitate an optimized selection of information to be transferred between
network nodes are insufficient to guarantee adequate performance of route
discovery and maintenance. Agents must collaborate and coordinate their ac-
tions in order to strike a balance between resource efficiency and performance
of route discovery and maintenance. In ADVR, a population of individual



agents migrates among the nodes in the network to obtain and distribute
routing costs. The size of this agent population is much smaller than the
number of messages that concurrently traverse the network in conventional
distance vector routing. Even though each agent can be viewed as an individ-
ual, the movement of all agents must be coordinated in order to avoid agents
to form clusters in some parts of the network while neglecting to migrate to
other parts. This coordination manifests itself in what we refer to as migration

strategy (7).

An agent follows the migration strategy to determine the next node to visit
(i.e., a neighbor of the current node). It is imperative that an agent-based
system should carefully choose its migration strategy as there is no consen-
sus on a single global optimal strategy. A method suitable for one system
can produce unwanted side effects for other systems. The simplest migration
strategy is a random selection among all neighbors with uniform probability
(Amin et al. 2001; Minar et al. 1998; Minar et al. 1999; Kramer et al. 1999).
Although simple, the random nature of this strategy could severely degrade
the performance of ADVR, as certain areas of the network may remain unvis-
ited for long periods.

Another candidate for agent migration strategy is the depth-first search of the
network based on network information carried by the agents (Minar et al. 1998).
This scheme requires that agents maintain a migration history carrying records
of their previous node visitations. Systems implementing such a scheme could
benefit from population of agents exchanging their migration history, thereby
informing other agents of recently visited nodes. Multiple agents on the same
node exchange their migration history and make migration decisions based on
the combined migration history to visit an unvisited node. However, it was
observed that by exchanging their migration history, all the agents on a given
node contain the same global history thereby making similar decisions result-
ing in clustering of agents in specific parts of the network while leaving other
parts unvisited (Minar et al. 1998). Further, carrying the migration history as
a part of agent payload increases the agent size imposing an overhead on the
system resources.

A biologically inspired migration strategy uses a population of naive, au-
tonomous agents (simulating biological insects) performing complex tasks us-
ing Stigmergy (Schoonderwoerd et al. 1997; Di Caro and Dorigo 1997). Stig-
mergy is the mechanism for naive individuals to communicate with each other
via local changes in the environment. Most of the migration strategies based
on this scheme simulate foraging activities of ants. Although this strategy has
shown impressive results in certain applications, it tends to favor migration
patterns, preventing uniform distribution of agents throughout the network.
Hence, it may not be a feasible solution for systems such as ADVR that require
agents to explore the entire network with equal probabilities.
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Fig. 2. Migration Strategy using Edge Pheromones

The migration strategy employed in ADVR combines the strengths of both of
the above mentioned schemes. Our approach exploits the stigmergetic feature
of the insect colonies and the exploratory feature of the depth-first-search.
That is, with very little knowledge of the network, the agents communi-
cate with each other via the environment and perform the depth-first-search
on the network as a community. The agents do not carry any network in-
formation as a part of their payload. They simply indicate their presence
leaving pheromone trails. Pheromone is a volatile chemical, decaying expo-
nentially, released by insects in the environment indicating their presence.
Ants use pheromone trails to follow the path of the successor ant. While
the ant pheromones are used to attract other members of the community
(Schoonderwoerd et al. 1997; Di Caro and Dorigo 1997; White 1997), in our
approach, pheromones repel other agents. An agent traversing a link zy from
node n, to n, deposits a pheromone on zy. Another agent migrating from
n, will chose a link with the weakest pheromone value thereby migrating to
a least recently visited region of the network. For example, Figure 2 shows
that the agent arriving at node A (time = t;) selects the edge with least
pheromone value. It also shows that the while traversing the edge, the agent
deposits pheromone trails on it preventing other agents to immediately follow
itself. This paper refers to this class of pheromones, that assist in agent migra-
tion strategy as Edge Pheromones. It can be observed that such an approach
exploits the stigmergetic behavior of insect colonies and avoids the clustering
of agents in specific regions of the network. By changing and retrieving infor-
mation from the environment as opposed to carrying the network information
(Minar et al. 1998; Minar et al. 1999), agents in ADVR impose minimal re-
source requirements.

3.2 Controlling the Agent Population

While an appropriate migration strategy may facilitate the performance of
route discovery and maintenance, it contributes little towards solving the prob-
lem of resource efficiency, which is the central theme of this paper. There is
no strict definition for resource efficiency. In fact, resource efficiency is rather
relative to the amount of resources that are available, the complexity of the
task to be performed, and the level of performance (i.e., in terms of conver-



# Agents Convergence Time Awverage Routing Ouerhead

Measured (ms) | Normalized | Measured (KB/ms) | Normalized
10 150 1.0 4.73 0.30
15 85 0.57 7.91 0.51
20 78 0.52 9.70 0.63
25 59 0.39 12.27 0.80
30 47 0.31 15.44 1.0

Table 1

Convergence Time and Routing Overhead for Different Agent Population

gence, quality of routes, routing cost etc) expected from the algorithm. For
agent-based routing, all routing traffic for route discovery and maintenance,
is carried by the constituent agents in the system. Hence, it is the size of the
agent population, which manifests the resource overhead. In fact, if the size of
the population is static, it represents an upper bound on the degree of mes-
sage concurrency, and hence the resource overhead. The message activity in
conventional routing algorithms (DVR) is in principle unbounded, however, in
ADVR it is limited by the number of agents that constitute the current agent
population.

T T
Path-Cost Convergence
Average Protocol Overhead -------

Normalized Values

0
10 Agents 15 Agents 20 Agents 25 Agents 30 Agents

Fig. 3. Comparison of Routing Overhead with Path-Cost Convergence

A large population of agents would increase the parallelism of ADVR result-
ing in an improved convergence (Amin et al. 2001). However, it is extremely
important to analyze the agent overhead in terms of bandwidth consumption
and computational cycles. Increasing the agent population will improve the
path-cost convergence of the algorithm at the expense of increased resource
demands. Table 1 displays the convergence time and average routing over-
head for different agent population. Figure 3 plots the normalized convergence
time and average routing overhead for multiple agent population. The average
routing overhead was calculated by dividing the cumulative routing overhead
encountered in ADVR till convergence by the convergence time. It can be seen
from Figure 3 that the convergence time and routing overhead are inversely
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Fig. 4. Population Control using Node Pheromones

related to each other. It was observed that a large agent population has a
significantly lower convergence time owing to its parallelism. Although low
convergence time is desirable, it has other side effects. A larger agent popula-
tion has a significantly larger average message overhead because a substantial
number of agents traverse the network concurrently imposing resource require-
ments on the network. For scalable systems, the average overhead should be
as low as possible. Therefore it is apparent that significantly large agent pop-
ulations, resulting in high average overhead hamper the scalability of ADVR.
On the other hand, a very small agent population will hinder the performance
of ADVR, in terms of convergence times and reactivity to the dynamic be-
havior of networks. Hence, we shall strive for an optimal agents population
for a given network that results in acceptable path-cost convergence without
producing excessive average overhead. It can be observed from Figure 3 that
for such an optimal agent population the difference in the normalized con-
vergence time and normalized average overhead would be minimum. Hence
in the given example 15 agents would result in an optimal trade-off between
convergence time and resource overhead. However, the unpredictable behavior
of dynamic networks makes it very difficult to estimate a priori, the value of
this optimal population. Thus, it is necessary that an adaptive multi-agent
system dynamically alters the agent population in response to its resource
availability.

Changing the agent population dynamically in response to its environment (re-
sources) is a non-trivial issue in the absence of a central controller. Individual
agents lacking a bird’s eye view of the system are unable to make global assess-
ments regarding the environment in terms of resource availability. Therefore,
it requires a high degree of coordination among agents to analyze the global
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environment from local information available at nodes. To facilitate such a
coordination, our approach exploits the stigmergetic properties of agents. Mo-
bile agents with minimum cognitive capabilities communicate with each other
using pheromones, establishing an infrastructure that assists them in assessing
their environment. Pheromones that aid the agents in population control are
referred to as Node Pheromones to distinguish them from Edge Pheromones
(see Section 3).

Whenever an agent visits a node it deposits a pheromone which is simulated
by timed tokens. The potency of the Node Pheromones is represented as de-
cay functions expressed by the equation e ") where ) represents the degree
of volatility of the pheromone and At is the time since the deposition of the
pheromone. Using this equation the agents can extract the value of the Node
Pheromone at a given time and calculate the inter-agent arrival time at that
node. An agent visiting a node n, at time 5 calculates the value of the Node
Pheromone that was deposited at time ¢, using the equation e *(2—*) (see
Figure 4). If this value is above a certain Termination Threshold (V) and
the agent did not produce any routing update on n,, the agent terminates
itself. However if the Node Pheromone value has decayed below a Cloning
Threshold (Q2), the agent clones itself. Before leaving n,, the agent deposits
additional Node Pheromone at time ¢,. This approach controls the agent pop-
ulation based on the inter-agent arrival time expressed as a function of the
Node Pheromone. If the inter-agent arrival time is small (e Y > W) and
the agent produced no updates in the existing routing table entries, it implies
an excessive number of agents in the system leading to the self termination of
the agent. On the other hand, if the inter-agent arrival time is large (e~
< Q), it implies there are a sub-optimal number of agents in the system re-
sulting in agent cloning. However if 2 < e M) < W the agent neither clones
nor terminates. Terminating requires the agent to destroy its instance along
with its code and data segments. Cloning requires the agent to create an-
other instance of itself with same attributes and privileges. The volatility of
Edge Pheromones can be controlled by changing the Degree of Volatility, A
in e M2Y_ Pheromones with higher values of A (Degree of Volatility) have a
higher rate of decay.

ADVR implementing a dynamic agent population may start with a single
agent or an arbitrary number of agents. Nevertheless, the agents coordinate
themselves and converge to a particular range of population. This range rep-
resents an optimal population that results in an optimal performance of the
network based on the availability of resources. This range however depends
on the values of ¥, 2, and A. An adaptive system should adjust these values
dynamically based on its resource availability.

11
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4 Experimental Analysis of ADVR

This section discusses our simulation environment and experimental results.
A series of experiments have been conducted to support our conjectures men-
tioned in Section 1.

4.1 Simulation Environment

To analyze the properties of agents in DVR, an event driven simulator has
been constructed. The simulator is based on an object-oriented paradigm and
includes methods for DVR, single agent ADVR and multi-agent ADVR. A
network is represented as a graph G(V, E) that is generated by a graph gen-
erator. Every node in the graph represents a store-and-forward router, which
is further characterized by a limited buffer space and processing speed. A link
connecting two nodes is characterized with certain link capacity. Following the
example of a particular implementation of DVR, namely the Routing Informa-
tion Protocol (RIP) (Hedrick 1988), we assume a variable sized packet with a
maximum of 512 bytes. Each packet consists of a 4 byte header and variable
payload. Each entry in the routing table occupies 20 bytes in the payload. For
fairness, both, DVR and ADVR, use the same packet characteristics.

Figure 5 shows the simulation model for DVR. Every node has an input queue
whereby all incoming packets are queued. The average service rate for the in-
put queue depends on the processing rate of the router which can be in the
range of 300000 — 500000 packets per second (pps) (Cisco; Powerrail). Every
node has a routing process which inspects the input queue. The routing process
is responsible for routing data packets to the appropriate output interface as
well as maintaining the routing table. Each outgoing link (interface) is associ-
ated with an output queue whose service rate is controlled by the transmission

12
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rate of the link. The transmission rate of the link is given by 1/T;, where T} is
the transmission time for one packet. For our experiments we have assumed
the link capacity to be 10 Mbps, thereby giving us an average transmission
rate of approximately 2500 packets per second (pps). Hence it is clear that
a majority of the queuing would occur at the output queues due to its slow
service rate.

Figure 6 shows the simulation model for ADVR. It has an additional module
for agent management which provides a runtime environment for agents. The
agent management module provides the framework for agent transmission,
reception, population control, and route maintenance functions. All agent re-
lated packets (agent code and agent data) are forwarded to the agent manage-
ment module where they are queued in the agent queue. Agents (agent code)
are activated by the agent management module from the agent queue and
receive their respective data (agent data). Depending on the data received by
the agents, they update the routing table. On completion of its task, the agent
is transmitted by this module to the next node using the migration strategy
discussed in Section 3.1. The routing process is responsible for routing incom-
ing regular data packets to the appropriate interfaces using the routing table
maintained by the agents.

4.2 Results

Experiments were conducted on a medium sized 40 node network with an
average degree of 7. The results in this section represent the mean over mul-
tiple random experiments and different random graphs of the same type. The
analysis does not cover the performance of the network after convergence of
the routing tables, unless otherwise mentioned. The analysis of results in this
section have been conducted with reference to certain definitions.

13
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Fig. 7. Comparison of Overhead in DVR and ADVR

Definition 1 Instantaneous Routing Load (IRL) of the routing algorithm at
a given time is defined as the routing load or routing messages traversing the
network at that instant.

Definition 2 Path-Cost convergence of the network is defined as the condi-
tion when every node has an optimal (shortest path) route to every other node
in the network.

Definition 3 Route discovery is the process, whereby every node in the net-
work obtains a route for every other node in the network.

4.2.1  Analysis of Message/Agent Overhead

As mentioned earlier DVR attributes its sensitivity to the large number of
routing messages exchanged by the nodes. The number of concurrent routing
messages in a network implementing DVR is a function of time and network
size. However, the number of concurrent routing messages in ADVR is con-
stant and manifested in the number of constituent agents. Since the number
of agents in the network can be adjusted as per resource availability, ADVR
can provide a highly scalable solution to the routing problem. To validate
Conjecture 1, Figure 7 compares the routing overhead incurred in DVR and
ADVR. Figure 7(a) displays the cumulative routing data exchanged by the
nodes in the network until convergence of the routing algorithm. It is appar-
ent that DVR incurs a significant message overhead due to its overly-reactive
nature. As explained in the previous section, although the total routing data
exchanged among nodes until convergence is approximately the same for dif-
ferent agent populations, the average routing load is high for larger agent
populations. In order to evaluate the scalability of any routing algorithm, it
is essential to analyze the Instantaneous Routing Load (IRL) incurred in the
algorithm. For an algorithm to be scalable, the IRL should be as low as possi-
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ble and without large variation. Figure 7(b) shows the average IRL for DVR
and ADVR in a time window of 3 milliseconds for a simulated time of 200
milliseconds. In order to depict the behavior of DVR, we have simulated a
timed update every 100 milliseconds. A timed update in ADVR is manifested
by the resetting of the routing flags. It can be observed that IRL in DVR is
certainly higher than in ADVR. DVR is characterized with periods alternating
activity and inactivity. Although periods of inactivity produces an IRL of 0
KB/ms, it is the periods of activity in DVR that produce an excessive IRL. A
timed update or any change in network topology suddenly increases the IRL
in DVR due to the broadcast storming problem. With ADVR, agents contin-
uously traverse the network (with or without data segments), hence, there are
no periods of inactivity. Therefore, unlike DVR, the IRL never reduces to 0
KB/ms. Nevertheless, IRL in ADVR is low, fairly stable, and proportional to
the number of agents in the system.

Figure 8 compares the overhead involved in the two routing approaches over
multiple network sizes and analyzes their scalability. Figure 8(a) shows the
cumulative protocol overhead incurred in the network until convergence of
the routing algorithm. It is apparent that even though ADVR converges com-
parable to DVR over multiple networks by varying the agent population, its
cumulative overhead is always lower than that of DVR. Further, the non-
scalability of DVR is evident from Figure 8(b). An increase in network size
produces a excessive increase in the /R L. Such a sharp increase in routing traf-
fic can overflow transmission queues, thereby can contribute to jitter, packet
loss, or congestion in large networks implementing DVR. Among other things,
the non-scalable characteristics of DVR restricts its use in large networks.
Conversely, ADVR exhibits its scalability by incurring a marginal increase in
the IRL, proportional to the increase in number of agents.

Our simulation model assumes that the agent code segment consumes 100
bytes of the IP packet. In view of the main objective of this paper, to reduce the
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Fig. 9. Comparison of Convergence and Route Discovery

resource overhead, it is imperative to consider the structure of the agents. If the
agent code segment is excessive, the agent will consume significant amounts
of resources in terms of bandwidth, memory, and computing. Conversely, if
the code segment is severely restricted, it may be impossible to supply some
of the agents with sufficient intelligence to optimize their task performance.
In order to reduce the size of the code segment, it is possible to supply the
agents code as pre-loadable software modules at each node. The behavior
of these modules is controlled by a set of parameters that are provided by
the agent upon arrival at that node. These parameters will replace the code
segment that is otherwise carried by the agents, resulting in smaller light-
weight agents that may consume less bandwidth. Nevertheless, this approach
does not eliminate the problem, it does only shift the resource overhead from
the link (i.e., bandwidth) to the node (i.e., computation).

4.2.2 Analysis of Path-Cost Convergence and Route Discovery

It is the characteristics of DVR that every change in the routing table of an
individual node is broadcasted to its immediate neighbors. Additionally, the
entire routing table of every node is broadcasted periodically to each of its
neighbors. These events occur asynchronously making use of message concur-
rency, which in turn causes DVR to be highly reactive to small changes. Hence,
any change in a single routing table has a cascading effect initiating a sequence
of broadcasts throughout the network. Such an aggressive parallelism in DVR
results in bursts of update messages within the network. Conversely, ADVR
implements controlled parallelism characterized by the number of agents in
the network. Although ADVR can replicate the behavior of DVR, routing in-
formation, encapsulated in the agent payload, is generally propagated to only
one neighbor. Such an approach restricts the outburst of routing packets due
to small changes. Nevertheless, controlled parallelism reduces the sensitivity
of the algorithm, thereby exhibiting a relatively slow convergence. Figure 9(a)
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shows the aggressive nature of DVR inherent in its rapid path-cost conver-
gence when compared to the moderate yet comparable convergence behav-
ior of ADVR. It can be shown, that in a static network, a single agent can
achieve the correct convergence of routing tables at all nodes in the network,
provided that it uses an appropriate migration strategy, which allows for com-
plete traversal of the network. Nevertheless, a single agent is insufficient to
complete this task in a time that is comparable to that of concurrent messag-
ing i.e. DVR. Hence, a population of agents will have to be deployed. These
agents implicitly cooperate, thereby accelerating the process of route discovery
and path cost convergence.

Route discovery plays an important role in the performance of communication
networks. It is crucial to evaluate any routing algorithm with respect to the
speed at which every node in the network obtains a route for every other node
in the network. Even if these routes are sub-optimal, they provide a benchmark
to measure the availability of the network to be used by other applications.
Figure 9(b) depicts the number of nodes that acquire complete connectivity
to all other nodes in the network over time. It is observed that the aggressive
parallelism in DVR facilitates quick assimilation of network connectivity for
DVR. On the other hand, a small population of constituent agents, restrained
in their concurrency are insufficient to discover routes as rapidly as DVR.
Route discovery in ADVR can be improved to outperform DVR by escalat-
ing the agent population, thereby increasing the degree of concurrency. Even
though increasing the number of agents in the network increases the resource
consumption by agents, it is extremely low when compared to DVR. It is im-
perative to note that the performance of ADVR in terms of route discovery is
greatly affected by the migration strategy adopted by the agents. A detailed
comparison of the migration strategy is presented in (Amin et al. 2001).

4.2.83 Analysis of Agent Population in ADVR

As mentioned earlier, agents are the carriers of information in ADVR. Hence,
the agent population in the network determines the resource overhead. A static
agent population represents an upper bound on the degree of message concur-
rency, and the hence resource overhead. All the above experiments assume a
fixed agent population, however Figure 10(a) shows the the effects of dynamic
agent population control mechanisms using Node Pheromones. As explained
in Section 3, values of ¥, ), and A have to be manipulated manually in order
to exercise effective control on agent population. It was observed that irre-
spective of the initial population, the system converges to a stable number
of agents in the system. Networks initialized with a small number of agents
escalate the agent population to a certain value thereby improving the path-
cost convergence of the network. On the other hand, networks initialized with
a large number of agents realize the per-agent overhead and continuously re-
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duce the population until it reaches a stable number. Figure 10(b) displays
the variance in agent population with Node Pheromones having reduced de-
gree of volatility (\). Low values of \ significantly stabilizes the variation in
agent population. Although less volatile pheromones reduces the variance in
population, it also reduces the sensitivity of the system to react and rapidly
adapt to sudden changes in the environment.

The agent population control exhibits a flexible, fault tolerant mechanism
whereby loss of agents in the network do not impose any performance penalties
on ADVR. This is extremely important in an adaptive, self-controlling agent
based system in the absence of centralized controller. Such a control mecha-
nism gives agents the autonomy to escalate their population on detection of
link/node failures, thereby rapidly propagating the new information through-
out the network without suffering from the broadcast dilemma. Regular agents,
on detecting a link/node failure clone themselves to produce multiple Auzil-
tary agents that are entrusted with the task of propagating the information
regarding link/node failure throughout the network. Although the concept of
Auziliary agents is very interesting, its validity needs to be verified. Ongoing
research is investigating issues such as routing loops created/terminated by
these Auziliary agents.

5 Conclusion and Future Work

This paper describes a distance vector routing scheme based on the mobile
agent paradigm — Agent-based Distance Vector Routing. One of the major
disadvantages of conventional implementations of distance vector routing al-
gorithms is that their corresponding resource overhead is generally unbounded.
In the proposed ADVR, the messages are replaced by a population of agents.
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The corresponding message activity is thus bounded by the number of con-
stituent agents. However, by limiting the number of agents in order to control
resource overhead, the degree of concurrency which the algorithm can employ
is restricted as well. We have conducted a number of experiments to analyze
the performance of an agent-based distance vector routing scheme. In partic-
ular, we have focused on the Instantaneous Routing Load (IRL), scalability,
path-cost convergence, and route discovery of ADVR and have compared the
results with that of DVR. We have also looked at the distributed manipulation
of the agent population in the network.

It was observed that as per our conjecture, the IRL in ADVR is considerably
low and scalable when compared to DVR. It was also verified that the IRL
for ADVR has a very small variation as opposed to DVR which results in
sharp spikes of routing loads for periods of activity. Further, it was verified
that although DVR is aggressively reactive in path-cost convergence and route
discovery, ADVR with a substantial number of agents can compete with the
performance of DVR. To validate our conjecture, a dynamic and distributed
mechanism was set up using pheromones to manipulate the number of agents
in the network in order to reduce the overall protocol overhead.

The results of this paper are expected to provide alternative ways to design
and implement resource efficient routing algorithms. Particularly in view of
the recent developments in ad-hoc and mobile networks, agent-based solutions
to routing may be alluring as the such system are inherently fault tolerant.
While the main objective of this paper is on routing, agent-based solutions are
deemed suitable for many other network centric applications. Network mon-
itoring, for instance, could take advantage of the mechanisms developed as
part of this approach. The dynamic population control mechanisms facilitate
the design of adaptive solutions for monitoring processes or sensors that un-
dergo complex dynamics and cannot rely on statically designed schedules and
itineraries. The distributed control mechanisms described above may help to
coordinate the actions of otherwise autonomous agents to find a global moni-
toring strategy. The management of large networks and distributed computing
environments can take advantage of the mobile agent paradigm and the tools
designed for this research. By exploiting mobility and intelligence, agents fa-
cilitate system fault tolerance through the expedient discovery of redundant
communication paths and/or alternative computing platforms. Resource man-
agement and distributed cluster scheduling in support of scientific applications
in Grid computing may take advantage of such properties. In general, we ex-
pect that this paper and its corresponding results will motivate the design of
agent-based solutions for large scale system-level applications.
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