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is diretly related to the size of the network (or autonomous systems). Thatis, traditional routing algorithms do not sale well with inreasing networkdimensions. In fat, it is the lak of salability of these mehanisms thatfores hierarhial struturing of a large network into autonomous domains.It has been observed, that the message overhead due to routing table up-dates inreases drastially as the size of the autonomous system inreases(Malkin and Streenstrup 1995). This inrease in message ativity is intrinsito the implementation of most routing algorithms that are in use today, and isneessary to ensure that hanges in routing ost are propagated throughout thenetwork. Both, Distane Vetor and Link State routing algorithms manifest adistributed version of shortest path algorithms (Bertsekas and Gallager 1987)designed for graphs (i.e., Bellman-Ford and Dijkstra).In existing networks, the importane of fast route disovery and low routingdelays surpasses the requirement of low resoure overhead. Hene, aggressivemessaging is deemed essential to quikly propagate loal information fromindividual routers, thereby enabling other routers to utilize this informationin routing deisions. It is the resoure overhead inurred by this massivelyonurrent messaging that limits the salability of these routing algorithms.Even though we witness an ever-inreasing availability of network resouresin onventional networks, the tremendous inrease in network traÆ makes itneessary to re-visit the fundamental design of urrent routing methodologiesto �nd ways to limit the need for exessive messaging. Partiularly in view ofreent developments in mobile ad-ho networks, whih are haraterized bylimited bandwidth, memory, and omputing power, it is imperative to �nd newways of reduing resoure overhead assoiated with routing algorithms. Thegoal is to devise a simple, resoure eÆient, salable routing algorithm thatdisovers optimal routes expediently yet does so with bounded message ativ-ity. Towards this goal, this paper proposes the formulation of a new routingstrategy that exploits the intelligent mobile agent paradigm. In omparisonto ongoing researh e�orts that pursue the design of new routing paradigms,whih exploit onepts suh as reinforement learning, this paper addressesthe issue of propagating routing information in the network. Spei�ally, thispaper fousses on the design and evaluation of an agent-based Distane-VetorRouting algorithm that failitates salability, resoure awareness, and fault tol-erane. The e�ort is motivated by two onjetures, whih have been validatedthrough a number of arefully rafted experiments.Conjeture 1 It is possible to bound the degree of message onurreny ofdistane-vetor routing without signi�antly a�eting the onvergene behaviorof the algorithm.Conjeture 2 It is possible to dynamially ontrol and e�etively regulate thedegree of message onurreny without entralized ontrol or global knowledgeof the state of the network. 2



Although DVR-lass algorithms like the distributed Bellman-Ford are sim-ple to implement, they an su�er from the routing loops and the ounting toin�nity problem (Rajagopalan and Faiman 1989). However, there are a widerange of Distane Vetor-based algorithms that eliminate temporary and per-manent routing loops and avoid the ounting to in�nity problem altogether(Rajagopalan and Faiman 1989; Cheng et al. 1989). This paper aims at re-duing the message omplexity of onventional DVR-lass algorithms. It doesnot aim at solving the looping problem and ounting to in�nity assoiated withthem. Ongoing researh fousses on implementing the agent based approahto ertain Loop-Free routing algorithms, thereby making ADVR loop-free, re-soure eÆient, and salable.The following setion summarizes some of the researh e�ort in agent-basedrouting during reent years and highlights priniple approahes. The designof Agent-Based Distane Vetor Routing (ADVR) is disussed in Setion 3.We will revisit Conjetures 1 and 2 in Setions 4 where we present the experi-mental analysis of ADVR. Setion 5 onludes the paper with a summary anddiretion for future work in the area of agent-based network-entri algorithms.2 Mobile Agents in RoutingIntelligent Mobile Agent is a term that desribes the onept of mobile omput-ing or mobile ode (Bradshaw; Fugetta et al. 1998). The appeal of the mobileagent paradigm is quite alluring - mobile agents roaming the network ouldsearh for or distribute information, meet and interat with other agents orremain bound to a single host or node. In general, an agent manifests fourdistint harateristis, namely, intelligene, ommuniation, autonomy, andmobility. Intelligene is the ability of agents to adapt their ations to irum-stanes brought upon by the dynamis of the system (or network). Commu-niation is the property whereby the agents ollaborate or oordinate theirations by the means of expliit or impliit exhange of information. Auton-omy allows agents to make deisions and at upon them without the expliitontrol of a user. Last but not least, mobility is the property that makes agentsonduive for distributed systems and network appliations, as it allows theagent to migrate among the onstituent nodes of the environment.Most of the work in agent-based network routing is biologially inspired andbased on inset olonies (Di Caro and Dorigo 1997; White 1997). It relies onthe priniples that individual insets exhibit a simple behavior while olle-tive ommunities of these insets exhibit omplex problem solving apabilities.Considerable researh has been onduted in mapping the foraging ativi-ties of ants to routing and network management ativities of mobile agents.Real ants are represented as arti�ial agents that traverse the network ollet-3



ing spei� information from their environment and oordinate their ationsthrough Pheromones. On the basis of this information the agents make sev-eral deisions to adapt their behavior (Reative Agents) and/or hange theexisting environment a�eting their future ations (Proative Agents). AntBased Control (ABC), is a reent network-entri algorithm, that utilizes anant-based approah for routing and network management in iruit swithednetworks (Shoonderwoerd et al. 1997). Other approahes that exploit agentsfor routing and network management shemes in iruit swithed networksexploit Swarm Intelligene (White 1997; White and Pagurek 1998). Suh anapproah exploits the onept of multiple olonies of agents oexisting and insome ases oordinating with eah other working towards independent goals.AntNet applies the idea of deploying agents for routing in paket swithednetworks (Di Caro and Dorigo 1997). The algorithm generates mobile agents(arti�ial ants) at regular intervals at di�erent nodes in the network. Theseagents selet a random destination in the network; traverse the network toreah the destination and on their way bak to the soure node ollet routinginformation. Although AntNet is an interesting approah for stati networkswith a good adaptive property, its appliation in dynami networks is yet tobe explored.The performane of any agent-based system will depend on its agent popu-lation. Although signi�ant researh has been onduted on agent-based sys-tems, little onsideration has been given to the importane of agent popula-tion in dynami networks. Most of the agent-based implementations assumea �xed number of agents in the network. Certain systems reate agents atregular intervals and destroy them one the required task is aomplished(Di Caro and Dorigo 1997). Although the latter approah provides some de-gree of exibility it does not adapt to sudden hanges in the network topology.It is diÆult to know, a priori, the optimal degree of onurreny or the num-ber of agents required in the system sine it depends on the system dynam-is and availability of resoures. Therefore, autonomous multi-agent systemsshould be apable of adapting to their environment and hanging the agentpopulation to an appropriate number with respet to resoure availability.3 Agent-based Distane Vetor Routing (ADVR)All Distane Vetor Routing (DVR) algorithms exhange a metri that rep-resents the distane from a node ni to any destination nj (Hedrik 1988).Distane is a generalized onept and may inlude transmission delay on alink, monetary ost of traversing a link, seurity level of links/nodes, or reli-ability measures. In most implementations of DVR, this information (metri)is exhanged among adjaent nodes in the form of triggered updates, whihare initiated whenever a hange in the routing table ours in one of the4



nodes in the network. After reeiving the update information from a neigh-boring node, a node ni updates its own routing table in the following manner(Hedrik 1988; Malkin and Streenstrup 1995):D(i; j) = 8><>: 0 8 i = jmin[d(i; k) +D(k; j)℄ 8 nk adjaent to ni (1)where D(i; j) represents the metri of the best route from node ni to node njurrently known to ni. d(i; k) represents the ost of traversing the link fromnode ni to node nk. Any node ni that reeives D(k; j) from a neighbor nk,omputes D(i; j) based on equation(1) and integrates this value in its routingtable. When the routing table of ni is updated, the hanges are propagatedto all neighbors, whih in turn perform the same algorithm. Therefore, anupdate in one routing table an ause a sequene of update messages in nodesthroughout the entire network.In ADVR, the exhange of the metris and the proess of route disoverymoves from the nodes to the agents. Hene in this approah, route disoveryand updates are manifested in the movement of agents arrying routing infor-mation from one node to another rather than the propagation of individual up-date messages. Agents in ADVR an be formally desribed as: �(i; x; y; Rx; ),where � is an Agent with ID i migrating from node nx to node ny, arrying therouting table Rx and using the migration strategy  to move among adjaentnodes. Rx is a subset of rx, the routing table of nx (See Figure 1).In ADVR, agents start at arbitrary nodes and migrate to adjaent nodes using. Upon arriving at a node ny, an agent �(i; x; y; Rx; ) updates the routingtable Ry based on the following equation:D(y; j) = min(D(y; j); [d(y; x) +D(x; j)℄) 8 nj in Rx (2)where D(x; j) is an entry in Rx. After performing the update, the agent seletsRy and migrates to an adjaent node using migration strategy .At every node the agent has to make a deision regarding the routing datait would arry to the next node. This deision plays an important role inproviding a resoure eÆient solution with ADVR. If the agent arries the en-tire routing table available at eah node, it would inur exessive overhead intransferring redundant data. On the other hand, if the agent seleted a subsetof total routing data available at the node, it would unneessarily delay thepropagation of important routing information. The exibility adopted by theagents in seleting the routing data reets the inherent degree of intelligeneaquired by it. It is important for the agents to exeute ertain book keep-5
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Fig. 1. Seletion of Routing Table Entries by the Agenting funtions at every node whereby it would limit the routing data arriedby it to a minimum without a�eting the propagation of important routinginformation.To redue the amount of information propagated in ADVR, agents refrainfrom transferring omplete routing tables whenever possible. Agents identifyrouting table entries that have been modi�ed, yet have not been transferredto a partiular neighbor. Assoiated with every entry exi in routing tablerx is a vetor Vxi of boolean ags for eah of the neighbors nodes of nx.j Vxi j=j Hx j 8exi, i.e., the size of eah of the Vxi is equivalent to the sizeof the neighborhood of a node nx, Hx. Upon seleting a neighbor ny of theurrent node nx, an agent �(i; x; y; Rx; ) will arry only those entries exi in Rxfor whih Vxi[y℄ == 1. The agent opies eah entry exi that is to be transferredto neighbor node ny to its data segment, and sets the orresponding booleanag Vxi[y℄ == 0. At startup, all the ags are set, i.e., Vxi := 1 8exi. Further,any routing table entry exi that is modi�ed by an agent will have all its agsVxi reset. To failitate robustness and fault tolerane, all ags Vxi 8exi willexpire after some time �T and reset (i.e., Vxi := 1). Resetting ags after �Tenables nodes to re-transmit routing updates that may have been lost duringprevious transmission attempts.3.1 Agent Migration StrategyThe mere replaement of messages with agents and the design of mehanismsthat failitate an optimized seletion of information to be transferred betweennetwork nodes are insuÆient to guarantee adequate performane of routedisovery and maintenane. Agents must ollaborate and oordinate their a-tions in order to strike a balane between resoure eÆieny and performaneof route disovery and maintenane. In ADVR, a population of individual6



agents migrates among the nodes in the network to obtain and distributerouting osts. The size of this agent population is muh smaller than thenumber of messages that onurrently traverse the network in onventionaldistane vetor routing. Even though eah agent an be viewed as an individ-ual, the movement of all agents must be oordinated in order to avoid agentsto form lusters in some parts of the network while negleting to migrate toother parts. This oordination manifests itself in what we refer to as migrationstrategy ().An agent follows the migration strategy to determine the next node to visit(i.e., a neighbor of the urrent node). It is imperative that an agent-basedsystem should arefully hoose its migration strategy as there is no onsen-sus on a single global optimal strategy. A method suitable for one systeman produe unwanted side e�ets for other systems. The simplest migrationstrategy is a random seletion among all neighbors with uniform probability(Amin et al. 2001; Minar et al. 1998; Minar et al. 1999; Kramer et al. 1999).Although simple, the random nature of this strategy ould severely degradethe performane of ADVR, as ertain areas of the network may remain unvis-ited for long periods.Another andidate for agent migration strategy is the depth-�rst searh of thenetwork based on network information arried by the agents (Minar et al. 1998).This sheme requires that agents maintain a migration history arrying reordsof their previous node visitations. Systems implementing suh a sheme ouldbene�t from population of agents exhanging their migration history, therebyinforming other agents of reently visited nodes. Multiple agents on the samenode exhange their migration history and make migration deisions based onthe ombined migration history to visit an unvisited node. However, it wasobserved that by exhanging their migration history, all the agents on a givennode ontain the same global history thereby making similar deisions result-ing in lustering of agents in spei� parts of the network while leaving otherparts unvisited (Minar et al. 1998). Further, arrying the migration history asa part of agent payload inreases the agent size imposing an overhead on thesystem resoures.A biologially inspired migration strategy uses a population of naive, au-tonomous agents (simulating biologial insets) performing omplex tasks us-ing Stigmergy (Shoonderwoerd et al. 1997; Di Caro and Dorigo 1997). Stig-mergy is the mehanism for naive individuals to ommuniate with eah othervia loal hanges in the environment. Most of the migration strategies basedon this sheme simulate foraging ativities of ants. Although this strategy hasshown impressive results in ertain appliations, it tends to favor migrationpatterns, preventing uniform distribution of agents throughout the network.Hene, it may not be a feasible solution for systems suh as ADVR that requireagents to explore the entire network with equal probabilities.7
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# Agents Convergene Time Average Routing OverheadMeasured (ms) Normalized Measured (KB/ms) Normalized10 150 1.0 4.73 0.3015 85 0.57 7.91 0.5120 78 0.52 9.70 0.6325 59 0.39 12.27 0.8030 47 0.31 15.44 1.0Table 1Convergene Time and Routing Overhead for Di�erent Agent Populationgene, quality of routes, routing ost et) expeted from the algorithm. Foragent-based routing, all routing traÆ for route disovery and maintenane,is arried by the onstituent agents in the system. Hene, it is the size of theagent population, whih manifests the resoure overhead. In fat, if the size ofthe population is stati, it represents an upper bound on the degree of mes-sage onurreny, and hene the resoure overhead. The message ativity inonventional routing algorithms (DVR) is in priniple unbounded, however, inADVR it is limited by the number of agents that onstitute the urrent agentpopulation.
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Fig. 3. Comparison of Routing Overhead with Path-Cost ConvergeneA large population of agents would inrease the parallelism of ADVR result-ing in an improved onvergene (Amin et al. 2001). However, it is extremelyimportant to analyze the agent overhead in terms of bandwidth onsumptionand omputational yles. Inreasing the agent population will improve thepath-ost onvergene of the algorithm at the expense of inreased resouredemands. Table 1 displays the onvergene time and average routing over-head for di�erent agent population. Figure 3 plots the normalized onvergenetime and average routing overhead for multiple agent population. The averagerouting overhead was alulated by dividing the umulative routing overheadenountered in ADVR till onvergene by the onvergene time. It an be seenfrom Figure 3 that the onvergene time and routing overhead are inversely9



Time = t
0

Agent

Node A

Pheromone = X
Node

Agent

Agent

Agent

Node A

Node A

 X < Cloning Threshold

X > Terminate Threshold

Node A

Cloning Threshold <= X <= Terminate Threshold

Time = t
1Fig. 4. Population Control using Node Pheromonesrelated to eah other. It was observed that a large agent population has asigni�antly lower onvergene time owing to its parallelism. Although lowonvergene time is desirable, it has other side e�ets. A larger agent popula-tion has a signi�antly larger average message overhead beause a substantialnumber of agents traverse the network onurrently imposing resoure require-ments on the network. For salable systems, the average overhead should beas low as possible. Therefore it is apparent that signi�antly large agent pop-ulations, resulting in high average overhead hamper the salability of ADVR.On the other hand, a very small agent population will hinder the performaneof ADVR, in terms of onvergene times and reativity to the dynami be-havior of networks. Hene, we shall strive for an optimal agents populationfor a given network that results in aeptable path-ost onvergene withoutproduing exessive average overhead. It an be observed from Figure 3 thatfor suh an optimal agent population the di�erene in the normalized on-vergene time and normalized average overhead would be minimum. Henein the given example 15 agents would result in an optimal trade-o� betweenonvergene time and resoure overhead. However, the unpreditable behaviorof dynami networks makes it very diÆult to estimate a priori, the value ofthis optimal population. Thus, it is neessary that an adaptive multi-agentsystem dynamially alters the agent population in response to its resoureavailability.Changing the agent population dynamially in response to its environment (re-soures) is a non-trivial issue in the absene of a entral ontroller. Individualagents laking a bird's eye view of the system are unable to make global assess-ments regarding the environment in terms of resoure availability. Therefore,it requires a high degree of oordination among agents to analyze the global10



environment from loal information available at nodes. To failitate suh aoordination, our approah exploits the stigmergeti properties of agents. Mo-bile agents with minimum ognitive apabilities ommuniate with eah otherusing pheromones, establishing an infrastruture that assists them in assessingtheir environment. Pheromones that aid the agents in population ontrol arereferred to as Node Pheromones to distinguish them from Edge Pheromones(see Setion 3).Whenever an agent visits a node it deposits a pheromone whih is simulatedby timed tokens. The poteny of the Node Pheromones is represented as de-ay funtions expressed by the equation e��(�t), where � represents the degreeof volatility of the pheromone and �t is the time sine the deposition of thepheromone. Using this equation the agents an extrat the value of the NodePheromone at a given time and alulate the inter-agent arrival time at thatnode. An agent visiting a node nx at time t2 alulates the value of the NodePheromone that was deposited at time t1 using the equation e��(t2�t1) (seeFigure 4). If this value is above a ertain Termination Threshold (	) andthe agent did not produe any routing update on nx, the agent terminatesitself. However if the Node Pheromone value has deayed below a CloningThreshold (
), the agent lones itself. Before leaving nx, the agent depositsadditional Node Pheromone at time t2. This approah ontrols the agent pop-ulation based on the inter-agent arrival time expressed as a funtion of theNode Pheromone. If the inter-agent arrival time is small (e��(�t) > 	) andthe agent produed no updates in the existing routing table entries, it impliesan exessive number of agents in the system leading to the self termination ofthe agent. On the other hand, if the inter-agent arrival time is large (e��(�t)< 
), it implies there are a sub-optimal number of agents in the system re-sulting in agent loning. However if 
 � e��(�t) � 	, the agent neither lonesnor terminates. Terminating requires the agent to destroy its instane alongwith its ode and data segments. Cloning requires the agent to reate an-other instane of itself with same attributes and privileges. The volatility ofEdge Pheromones an be ontrolled by hanging the Degree of Volatility, �in e��(�t). Pheromones with higher values of � (Degree of Volatility) have ahigher rate of deay.ADVR implementing a dynami agent population may start with a singleagent or an arbitrary number of agents. Nevertheless, the agents oordinatethemselves and onverge to a partiular range of population. This range rep-resents an optimal population that results in an optimal performane of thenetwork based on the availability of resoures. This range however dependson the values of 	, 
, and �. An adaptive system should adjust these valuesdynamially based on its resoure availability.11
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Fig. 5. Simulation Model for DVR4 Experimental Analysis of ADVRThis setion disusses our simulation environment and experimental results.A series of experiments have been onduted to support our onjetures men-tioned in Setion 1.4.1 Simulation EnvironmentTo analyze the properties of agents in DVR, an event driven simulator hasbeen onstruted. The simulator is based on an objet-oriented paradigm andinludes methods for DVR, single agent ADVR and multi-agent ADVR. Anetwork is represented as a graph G(V;E) that is generated by a graph gen-erator. Every node in the graph represents a store-and-forward router, whihis further haraterized by a limited bu�er spae and proessing speed. A linkonneting two nodes is haraterized with ertain link apaity. Following theexample of a partiular implementation of DVR, namely the Routing Informa-tion Protool (RIP) (Hedrik 1988), we assume a variable sized paket with amaximum of 512 bytes. Eah paket onsists of a 4 byte header and variablepayload. Eah entry in the routing table oupies 20 bytes in the payload. Forfairness, both, DVR and ADVR, use the same paket harateristis.Figure 5 shows the simulation model for DVR. Every node has an input queuewhereby all inoming pakets are queued. The average servie rate for the in-put queue depends on the proessing rate of the router whih an be in therange of 300000� 500000 pakets per seond (pps) (Ciso; Powerrail). Everynode has a routing proess whih inspets the input queue. The routing proessis responsible for routing data pakets to the appropriate output interfae aswell as maintaining the routing table. Eah outgoing link (interfae) is assoi-ated with an output queue whose servie rate is ontrolled by the transmission12
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(b) Instantaneous Protool Over-headFig. 7. Comparison of Overhead in DVR and ADVRDe�nition 1 Instantaneous Routing Load (IRL) of the routing algorithm ata given time is de�ned as the routing load or routing messages traversing thenetwork at that instant.De�nition 2 Path-Cost onvergene of the network is de�ned as the ondi-tion when every node has an optimal (shortest path) route to every other nodein the network.De�nition 3 Route disovery is the proess, whereby every node in the net-work obtains a route for every other node in the network.4.2.1 Analysis of Message/Agent OverheadAs mentioned earlier DVR attributes its sensitivity to the large number ofrouting messages exhanged by the nodes. The number of onurrent routingmessages in a network implementing DVR is a funtion of time and networksize. However, the number of onurrent routing messages in ADVR is on-stant and manifested in the number of onstituent agents. Sine the numberof agents in the network an be adjusted as per resoure availability, ADVRan provide a highly salable solution to the routing problem. To validateConjeture 1, Figure 7 ompares the routing overhead inurred in DVR andADVR. Figure 7(a) displays the umulative routing data exhanged by thenodes in the network until onvergene of the routing algorithm. It is appar-ent that DVR inurs a signi�ant message overhead due to its overly-reativenature. As explained in the previous setion, although the total routing dataexhanged among nodes until onvergene is approximately the same for dif-ferent agent populations, the average routing load is high for larger agentpopulations. In order to evaluate the salability of any routing algorithm, itis essential to analyze the Instantaneous Routing Load (IRL) inurred in thealgorithm. For an algorithm to be salable, the IRL should be as low as possi-14
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(b) Instantaneous Protool Over-headFig. 8. Comparison of Overhead in DVR and ADVR for Di�erent Network Sizesble and without large variation. Figure 7(b) shows the average IRL for DVRand ADVR in a time window of 3 milliseonds for a simulated time of 200milliseonds. In order to depit the behavior of DVR, we have simulated atimed update every 100 milliseonds. A timed update in ADVR is manifestedby the resetting of the routing ags. It an be observed that IRL in DVR isertainly higher than in ADVR. DVR is haraterized with periods alternatingativity and inativity. Although periods of inativity produes an IRL of 0KB/ms, it is the periods of ativity in DVR that produe an exessive IRL. Atimed update or any hange in network topology suddenly inreases the IRLin DVR due to the broadast storming problem. With ADVR, agents ontin-uously traverse the network (with or without data segments), hene, there areno periods of inativity. Therefore, unlike DVR, the IRL never redues to 0KB/ms. Nevertheless, IRL in ADVR is low, fairly stable, and proportional tothe number of agents in the system.Figure 8 ompares the overhead involved in the two routing approahes overmultiple network sizes and analyzes their salability. Figure 8(a) shows theumulative protool overhead inurred in the network until onvergene ofthe routing algorithm. It is apparent that even though ADVR onverges om-parable to DVR over multiple networks by varying the agent population, itsumulative overhead is always lower than that of DVR. Further, the non-salability of DVR is evident from Figure 8(b). An inrease in network sizeprodues a exessive inrease in the IRL. Suh a sharp inrease in routing traf-� an overow transmission queues, thereby an ontribute to jitter, paketloss, or ongestion in large networks implementing DVR. Among other things,the non-salable harateristis of DVR restrits its use in large networks.Conversely, ADVR exhibits its salability by inurring a marginal inrease inthe IRL, proportional to the inrease in number of agents.Our simulation model assumes that the agent ode segment onsumes 100bytes of the IP paket. In view of the main objetive of this paper, to redue the15
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(b) Route DisoveryFig. 9. Comparison of Convergene and Route Disoveryresoure overhead, it is imperative to onsider the struture of the agents. If theagent ode segment is exessive, the agent will onsume signi�ant amountsof resoures in terms of bandwidth, memory, and omputing. Conversely, ifthe ode segment is severely restrited, it may be impossible to supply someof the agents with suÆient intelligene to optimize their task performane.In order to redue the size of the ode segment, it is possible to supply theagents ode as pre-loadable software modules at eah node. The behaviorof these modules is ontrolled by a set of parameters that are provided bythe agent upon arrival at that node. These parameters will replae the odesegment that is otherwise arried by the agents, resulting in smaller light-weight agents that may onsume less bandwidth. Nevertheless, this approahdoes not eliminate the problem, it does only shift the resoure overhead fromthe link (i.e., bandwidth) to the node (i.e., omputation).4.2.2 Analysis of Path-Cost Convergene and Route DisoveryIt is the harateristis of DVR that every hange in the routing table of anindividual node is broadasted to its immediate neighbors. Additionally, theentire routing table of every node is broadasted periodially to eah of itsneighbors. These events our asynhronously making use of message onur-reny, whih in turn auses DVR to be highly reative to small hanges. Hene,any hange in a single routing table has a asading e�et initiating a sequeneof broadasts throughout the network. Suh an aggressive parallelism in DVRresults in bursts of update messages within the network. Conversely, ADVRimplements ontrolled parallelism haraterized by the number of agents inthe network. Although ADVR an repliate the behavior of DVR, routing in-formation, enapsulated in the agent payload, is generally propagated to onlyone neighbor. Suh an approah restrits the outburst of routing pakets dueto small hanges. Nevertheless, ontrolled parallelism redues the sensitivityof the algorithm, thereby exhibiting a relatively slow onvergene. Figure 9(a)16



shows the aggressive nature of DVR inherent in its rapid path-ost onver-gene when ompared to the moderate yet omparable onvergene behav-ior of ADVR. It an be shown, that in a stati network, a single agent anahieve the orret onvergene of routing tables at all nodes in the network,provided that it uses an appropriate migration strategy, whih allows for om-plete traversal of the network. Nevertheless, a single agent is insuÆient toomplete this task in a time that is omparable to that of onurrent messag-ing i.e. DVR. Hene, a population of agents will have to be deployed. Theseagents impliitly ooperate, thereby aelerating the proess of route disoveryand path ost onvergene.Route disovery plays an important role in the performane of ommuniationnetworks. It is ruial to evaluate any routing algorithm with respet to thespeed at whih every node in the network obtains a route for every other nodein the network. Even if these routes are sub-optimal, they provide a benhmarkto measure the availability of the network to be used by other appliations.Figure 9(b) depits the number of nodes that aquire omplete onnetivityto all other nodes in the network over time. It is observed that the aggressiveparallelism in DVR failitates quik assimilation of network onnetivity forDVR. On the other hand, a small population of onstituent agents, restrainedin their onurreny are insuÆient to disover routes as rapidly as DVR.Route disovery in ADVR an be improved to outperform DVR by esalat-ing the agent population, thereby inreasing the degree of onurreny. Eventhough inreasing the number of agents in the network inreases the resoureonsumption by agents, it is extremely low when ompared to DVR. It is im-perative to note that the performane of ADVR in terms of route disovery isgreatly a�eted by the migration strategy adopted by the agents. A detailedomparison of the migration strategy is presented in (Amin et al. 2001).4.2.3 Analysis of Agent Population in ADVRAs mentioned earlier, agents are the arriers of information in ADVR. Hene,the agent population in the network determines the resoure overhead. A statiagent population represents an upper bound on the degree of message onur-reny, and the hene resoure overhead. All the above experiments assume a�xed agent population, however Figure 10(a) shows the the e�ets of dynamiagent population ontrol mehanisms using Node Pheromones. As explainedin Setion 3, values of 	, 
, and � have to be manipulated manually in orderto exerise e�etive ontrol on agent population. It was observed that irre-spetive of the initial population, the system onverges to a stable numberof agents in the system. Networks initialized with a small number of agentsesalate the agent population to a ertain value thereby improving the path-ost onvergene of the network. On the other hand, networks initialized witha large number of agents realize the per-agent overhead and ontinuously re-17
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(b) Degree of Volatility � = 0:5Fig. 10. Dynami Control of the Agent Populationdue the population until it reahes a stable number. Figure 10(b) displaysthe variane in agent population with Node Pheromones having redued de-gree of volatility (�). Low values of � signi�antly stabilizes the variation inagent population. Although less volatile pheromones redues the variane inpopulation, it also redues the sensitivity of the system to reat and rapidlyadapt to sudden hanges in the environment.The agent population ontrol exhibits a exible, fault tolerant mehanismwhereby loss of agents in the network do not impose any performane penaltieson ADVR. This is extremely important in an adaptive, self-ontrolling agentbased system in the absene of entralized ontroller. Suh a ontrol meha-nism gives agents the autonomy to esalate their population on detetion oflink/node failures, thereby rapidly propagating the new information through-out the network without su�ering from the broadast dilemma.Regular agents,on deteting a link/node failure lone themselves to produe multiple Auxil-iary agents that are entrusted with the task of propagating the informationregarding link/node failure throughout the network. Although the onept ofAuxiliary agents is very interesting, its validity needs to be veri�ed. Ongoingresearh is investigating issues suh as routing loops reated/terminated bythese Auxiliary agents.5 Conlusion and Future WorkThis paper desribes a distane vetor routing sheme based on the mobileagent paradigm { Agent-based Distane Vetor Routing. One of the majordisadvantages of onventional implementations of distane vetor routing al-gorithms is that their orresponding resoure overhead is generally unbounded.In the proposed ADVR, the messages are replaed by a population of agents.18



The orresponding message ativity is thus bounded by the number of on-stituent agents. However, by limiting the number of agents in order to ontrolresoure overhead, the degree of onurreny whih the algorithm an employis restrited as well. We have onduted a number of experiments to analyzethe performane of an agent-based distane vetor routing sheme. In parti-ular, we have foused on the Instantaneous Routing Load (IRL), salability,path-ost onvergene, and route disovery of ADVR and have ompared theresults with that of DVR. We have also looked at the distributed manipulationof the agent population in the network.It was observed that as per our onjeture, the IRL in ADVR is onsiderablylow and salable when ompared to DVR. It was also veri�ed that the IRLfor ADVR has a very small variation as opposed to DVR whih results insharp spikes of routing loads for periods of ativity. Further, it was veri�edthat although DVR is aggressively reative in path-ost onvergene and routedisovery, ADVR with a substantial number of agents an ompete with theperformane of DVR. To validate our onjeture, a dynami and distributedmehanism was set up using pheromones to manipulate the number of agentsin the network in order to redue the overall protool overhead.The results of this paper are expeted to provide alternative ways to designand implement resoure eÆient routing algorithms. Partiularly in view ofthe reent developments in ad-ho and mobile networks, agent-based solutionsto routing may be alluring as the suh system are inherently fault tolerant.While the main objetive of this paper is on routing, agent-based solutions aredeemed suitable for many other network entri appliations. Network mon-itoring, for instane, ould take advantage of the mehanisms developed aspart of this approah. The dynami population ontrol mehanisms failitatethe design of adaptive solutions for monitoring proesses or sensors that un-dergo omplex dynamis and annot rely on statially designed shedules anditineraries. The distributed ontrol mehanisms desribed above may help tooordinate the ations of otherwise autonomous agents to �nd a global moni-toring strategy. The management of large networks and distributed omputingenvironments an take advantage of the mobile agent paradigm and the toolsdesigned for this researh. By exploiting mobility and intelligene, agents fa-ilitate system fault tolerane through the expedient disovery of redundantommuniation paths and/or alternative omputing platforms. Resoure man-agement and distributed luster sheduling in support of sienti� appliationsin Grid omputing may take advantage of suh properties. In general, we ex-pet that this paper and its orresponding results will motivate the design ofagent-based solutions for large sale system-level appliations.19
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