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tIn spite of the ever-in
reasing availability of 
omputation and 
ommuni
ation re-sour
es in modern networks, the overhead asso
iated with network managementproto
ols, su
h as traÆ
 
ontrol and routing, 
ontinues to be an important aspe
tin the design of new methodologies. Resour
e eÆ
ien
y of su
h proto
ols has be
omeeven more prominent with the re
ent developments of wireless and ad-ho
 networks,whi
h are marked by mu
h more severe resour
e 
onstraints in terms of bandwidth,memory, and 
omputational 
apabilities. This paper presents an Agent-Based ap-proa
h to Distan
e Ve
tor Routing that addresses these resour
e 
onstraints. Agent-Based Distan
e Ve
tor Routing (ADVR) is a resour
e eÆ
ient implementation ofDistan
e Ve
tor Routing that is fault tolerant and s
ales well for large networks.ADVR draws upon some basi
 biologi
ally inspired prin
iples to fa
ilitate 
oordi-nation among the mobile agents that implement the routing task. Spe
i�
ally, sim-ulated pheromones are used to 
ontrol the movement of agents within the networkand to dynami
ally adjust the number of agents in the population. The behavior ofADVR is analyzed and 
ompared to that of traditional Distan
e Ve
tor Routing.Key words: Distan
e-Ve
tor Routing, resour
e eÆ
ient, intelligent mobile agents,ADVR.1 Introdu
tionThe unpre
edented pervasivness of network a

ess and the asso
iated growthof 
ommuni
ation networks represents a 
hallenge to traditional distributedrouting algorithms. The amount of network resour
es in the form of band-width, memory, and pro
essing power that are 
onsumed by these algorithmsPreprint submitted to Elsevier S
ien
e 25 Mar
h 2002



is dire
tly related to the size of the network (or autonomous systems). Thatis, traditional routing algorithms do not s
ale well with in
reasing networkdimensions. In fa
t, it is the la
k of s
alability of these me
hanisms thatfor
es hierar
hi
al stru
turing of a large network into autonomous domains.It has been observed, that the message overhead due to routing table up-dates in
reases drasti
ally as the size of the autonomous system in
reases(Malkin and Streenstrup 1995). This in
rease in message a
tivity is intrinsi
to the implementation of most routing algorithms that are in use today, and isne
essary to ensure that 
hanges in routing 
ost are propagated throughout thenetwork. Both, Distan
e Ve
tor and Link State routing algorithms manifest adistributed version of shortest path algorithms (Bertsekas and Gallager 1987)designed for graphs (i.e., Bellman-Ford and Dijkstra).In existing networks, the importan
e of fast route dis
overy and low routingdelays surpasses the requirement of low resour
e overhead. Hen
e, aggressivemessaging is deemed essential to qui
kly propagate lo
al information fromindividual routers, thereby enabling other routers to utilize this informationin routing de
isions. It is the resour
e overhead in
urred by this massively
on
urrent messaging that limits the s
alability of these routing algorithms.Even though we witness an ever-in
reasing availability of network resour
esin 
onventional networks, the tremendous in
rease in network traÆ
 makes itne
essary to re-visit the fundamental design of 
urrent routing methodologiesto �nd ways to limit the need for ex
essive messaging. Parti
ularly in view ofre
ent developments in mobile ad-ho
 networks, whi
h are 
hara
terized bylimited bandwidth, memory, and 
omputing power, it is imperative to �nd newways of redu
ing resour
e overhead asso
iated with routing algorithms. Thegoal is to devise a simple, resour
e eÆ
ient, s
alable routing algorithm thatdis
overs optimal routes expediently yet does so with bounded message a
tiv-ity. Towards this goal, this paper proposes the formulation of a new routingstrategy that exploits the intelligent mobile agent paradigm. In 
omparisonto ongoing resear
h e�orts that pursue the design of new routing paradigms,whi
h exploit 
on
epts su
h as reinfor
ement learning, this paper addressesthe issue of propagating routing information in the network. Spe
i�
ally, thispaper fo
usses on the design and evaluation of an agent-based Distan
e-Ve
torRouting algorithm that fa
ilitates s
alability, resour
e awareness, and fault tol-eran
e. The e�ort is motivated by two 
onje
tures, whi
h have been validatedthrough a number of 
arefully 
rafted experiments.Conje
ture 1 It is possible to bound the degree of message 
on
urren
y ofdistan
e-ve
tor routing without signi�
antly a�e
ting the 
onvergen
e behaviorof the algorithm.Conje
ture 2 It is possible to dynami
ally 
ontrol and e�e
tively regulate thedegree of message 
on
urren
y without 
entralized 
ontrol or global knowledgeof the state of the network. 2



Although DVR-
lass algorithms like the distributed Bellman-Ford are sim-ple to implement, they 
an su�er from the routing loops and the 
ounting toin�nity problem (Rajagopalan and Faiman 1989). However, there are a widerange of Distan
e Ve
tor-based algorithms that eliminate temporary and per-manent routing loops and avoid the 
ounting to in�nity problem altogether(Rajagopalan and Faiman 1989; Cheng et al. 1989). This paper aims at re-du
ing the message 
omplexity of 
onventional DVR-
lass algorithms. It doesnot aim at solving the looping problem and 
ounting to in�nity asso
iated withthem. Ongoing resear
h fo
usses on implementing the agent based approa
hto 
ertain Loop-Free routing algorithms, thereby making ADVR loop-free, re-sour
e eÆ
ient, and s
alable.The following se
tion summarizes some of the resear
h e�ort in agent-basedrouting during re
ent years and highlights prin
iple approa
hes. The designof Agent-Based Distan
e Ve
tor Routing (ADVR) is dis
ussed in Se
tion 3.We will revisit Conje
tures 1 and 2 in Se
tions 4 where we present the experi-mental analysis of ADVR. Se
tion 5 
on
ludes the paper with a summary anddire
tion for future work in the area of agent-based network-
entri
 algorithms.2 Mobile Agents in RoutingIntelligent Mobile Agent is a term that des
ribes the 
on
ept of mobile 
omput-ing or mobile 
ode (Bradshaw; Fugetta et al. 1998). The appeal of the mobileagent paradigm is quite alluring - mobile agents roaming the network 
ouldsear
h for or distribute information, meet and intera
t with other agents orremain bound to a single host or node. In general, an agent manifests fourdistin
t 
hara
teristi
s, namely, intelligen
e, 
ommuni
ation, autonomy, andmobility. Intelligen
e is the ability of agents to adapt their a
tions to 
ir
um-stan
es brought upon by the dynami
s of the system (or network). Commu-ni
ation is the property whereby the agents 
ollaborate or 
oordinate theira
tions by the means of expli
it or impli
it ex
hange of information. Auton-omy allows agents to make de
isions and a
t upon them without the expli
it
ontrol of a user. Last but not least, mobility is the property that makes agents
ondu
ive for distributed systems and network appli
ations, as it allows theagent to migrate among the 
onstituent nodes of the environment.Most of the work in agent-based network routing is biologi
ally inspired andbased on inse
t 
olonies (Di Caro and Dorigo 1997; White 1997). It relies onthe prin
iples that individual inse
ts exhibit a simple behavior while 
olle
-tive 
ommunities of these inse
ts exhibit 
omplex problem solving 
apabilities.Considerable resear
h has been 
ondu
ted in mapping the foraging a
tivi-ties of ants to routing and network management a
tivities of mobile agents.Real ants are represented as arti�
ial agents that traverse the network 
olle
t-3



ing spe
i�
 information from their environment and 
oordinate their a
tionsthrough Pheromones. On the basis of this information the agents make sev-eral de
isions to adapt their behavior (Rea
tive Agents) and/or 
hange theexisting environment a�e
ting their future a
tions (Proa
tive Agents). AntBased Control (ABC), is a re
ent network-
entri
 algorithm, that utilizes anant-based approa
h for routing and network management in 
ir
uit swit
hednetworks (S
hoonderwoerd et al. 1997). Other approa
hes that exploit agentsfor routing and network management s
hemes in 
ir
uit swit
hed networksexploit Swarm Intelligen
e (White 1997; White and Pagurek 1998). Su
h anapproa
h exploits the 
on
ept of multiple 
olonies of agents 
oexisting and insome 
ases 
oordinating with ea
h other working towards independent goals.AntNet applies the idea of deploying agents for routing in pa
ket swit
hednetworks (Di Caro and Dorigo 1997). The algorithm generates mobile agents(arti�
ial ants) at regular intervals at di�erent nodes in the network. Theseagents sele
t a random destination in the network; traverse the network torea
h the destination and on their way ba
k to the sour
e node 
olle
t routinginformation. Although AntNet is an interesting approa
h for stati
 networkswith a good adaptive property, its appli
ation in dynami
 networks is yet tobe explored.The performan
e of any agent-based system will depend on its agent popu-lation. Although signi�
ant resear
h has been 
ondu
ted on agent-based sys-tems, little 
onsideration has been given to the importan
e of agent popula-tion in dynami
 networks. Most of the agent-based implementations assumea �xed number of agents in the network. Certain systems 
reate agents atregular intervals and destroy them on
e the required task is a

omplished(Di Caro and Dorigo 1997). Although the latter approa
h provides some de-gree of 
exibility it does not adapt to sudden 
hanges in the network topology.It is diÆ
ult to know, a priori, the optimal degree of 
on
urren
y or the num-ber of agents required in the system sin
e it depends on the system dynam-i
s and availability of resour
es. Therefore, autonomous multi-agent systemsshould be 
apable of adapting to their environment and 
hanging the agentpopulation to an appropriate number with respe
t to resour
e availability.3 Agent-based Distan
e Ve
tor Routing (ADVR)All Distan
e Ve
tor Routing (DVR) algorithms ex
hange a metri
 that rep-resents the distan
e from a node ni to any destination nj (Hedri
k 1988).Distan
e is a generalized 
on
ept and may in
lude transmission delay on alink, monetary 
ost of traversing a link, se
urity level of links/nodes, or reli-ability measures. In most implementations of DVR, this information (metri
)is ex
hanged among adja
ent nodes in the form of triggered updates, whi
hare initiated whenever a 
hange in the routing table o

urs in one of the4



nodes in the network. After re
eiving the update information from a neigh-boring node, a node ni updates its own routing table in the following manner(Hedri
k 1988; Malkin and Streenstrup 1995):D(i; j) = 8><>: 0 8 i = jmin[d(i; k) +D(k; j)℄ 8 nk adja
ent to ni (1)where D(i; j) represents the metri
 of the best route from node ni to node nj
urrently known to ni. d(i; k) represents the 
ost of traversing the link fromnode ni to node nk. Any node ni that re
eives D(k; j) from a neighbor nk,
omputes D(i; j) based on equation(1) and integrates this value in its routingtable. When the routing table of ni is updated, the 
hanges are propagatedto all neighbors, whi
h in turn perform the same algorithm. Therefore, anupdate in one routing table 
an 
ause a sequen
e of update messages in nodesthroughout the entire network.In ADVR, the ex
hange of the metri
s and the pro
ess of route dis
overymoves from the nodes to the agents. Hen
e in this approa
h, route dis
overyand updates are manifested in the movement of agents 
arrying routing infor-mation from one node to another rather than the propagation of individual up-date messages. Agents in ADVR 
an be formally des
ribed as: �(i; x; y; Rx; 
),where � is an Agent with ID i migrating from node nx to node ny, 
arrying therouting table Rx and using the migration strategy 
 to move among adja
entnodes. Rx is a subset of rx, the routing table of nx (See Figure 1).In ADVR, agents start at arbitrary nodes and migrate to adja
ent nodes using
. Upon arriving at a node ny, an agent �(i; x; y; Rx; 
) updates the routingtable Ry based on the following equation:D(y; j) = min(D(y; j); [d(y; x) +D(x; j)℄) 8 nj in Rx (2)where D(x; j) is an entry in Rx. After performing the update, the agent sele
tsRy and migrates to an adja
ent node using migration strategy 
.At every node the agent has to make a de
ision regarding the routing datait would 
arry to the next node. This de
ision plays an important role inproviding a resour
e eÆ
ient solution with ADVR. If the agent 
arries the en-tire routing table available at ea
h node, it would in
ur ex
essive overhead intransferring redundant data. On the other hand, if the agent sele
ted a subsetof total routing data available at the node, it would unne
essarily delay thepropagation of important routing information. The 
exibility adopted by theagents in sele
ting the routing data re
e
ts the inherent degree of intelligen
ea
quired by it. It is important for the agents to exe
ute 
ertain book keep-5
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Fig. 1. Sele
tion of Routing Table Entries by the Agenting fun
tions at every node whereby it would limit the routing data 
arriedby it to a minimum without a�e
ting the propagation of important routinginformation.To redu
e the amount of information propagated in ADVR, agents refrainfrom transferring 
omplete routing tables whenever possible. Agents identifyrouting table entries that have been modi�ed, yet have not been transferredto a parti
ular neighbor. Asso
iated with every entry exi in routing tablerx is a ve
tor Vxi of boolean 
ags for ea
h of the neighbors nodes of nx.j Vxi j=j Hx j 8exi, i.e., the size of ea
h of the Vxi is equivalent to the sizeof the neighborhood of a node nx, Hx. Upon sele
ting a neighbor ny of the
urrent node nx, an agent �(i; x; y; Rx; 
) will 
arry only those entries exi in Rxfor whi
h Vxi[y℄ == 1. The agent 
opies ea
h entry exi that is to be transferredto neighbor node ny to its data segment, and sets the 
orresponding boolean
ag Vxi[y℄ == 0. At startup, all the 
ags are set, i.e., Vxi := 1 8exi. Further,any routing table entry exi that is modi�ed by an agent will have all its 
agsVxi reset. To fa
ilitate robustness and fault toleran
e, all 
ags Vxi 8exi willexpire after some time �T and reset (i.e., Vxi := 1). Resetting 
ags after �Tenables nodes to re-transmit routing updates that may have been lost duringprevious transmission attempts.3.1 Agent Migration StrategyThe mere repla
ement of messages with agents and the design of me
hanismsthat fa
ilitate an optimized sele
tion of information to be transferred betweennetwork nodes are insuÆ
ient to guarantee adequate performan
e of routedis
overy and maintenan
e. Agents must 
ollaborate and 
oordinate their a
-tions in order to strike a balan
e between resour
e eÆ
ien
y and performan
eof route dis
overy and maintenan
e. In ADVR, a population of individual6



agents migrates among the nodes in the network to obtain and distributerouting 
osts. The size of this agent population is mu
h smaller than thenumber of messages that 
on
urrently traverse the network in 
onventionaldistan
e ve
tor routing. Even though ea
h agent 
an be viewed as an individ-ual, the movement of all agents must be 
oordinated in order to avoid agentsto form 
lusters in some parts of the network while negle
ting to migrate toother parts. This 
oordination manifests itself in what we refer to as migrationstrategy (
).An agent follows the migration strategy to determine the next node to visit(i.e., a neighbor of the 
urrent node). It is imperative that an agent-basedsystem should 
arefully 
hoose its migration strategy as there is no 
onsen-sus on a single global optimal strategy. A method suitable for one system
an produ
e unwanted side e�e
ts for other systems. The simplest migrationstrategy is a random sele
tion among all neighbors with uniform probability(Amin et al. 2001; Minar et al. 1998; Minar et al. 1999; Kramer et al. 1999).Although simple, the random nature of this strategy 
ould severely degradethe performan
e of ADVR, as 
ertain areas of the network may remain unvis-ited for long periods.Another 
andidate for agent migration strategy is the depth-�rst sear
h of thenetwork based on network information 
arried by the agents (Minar et al. 1998).This s
heme requires that agents maintain a migration history 
arrying re
ordsof their previous node visitations. Systems implementing su
h a s
heme 
ouldbene�t from population of agents ex
hanging their migration history, therebyinforming other agents of re
ently visited nodes. Multiple agents on the samenode ex
hange their migration history and make migration de
isions based onthe 
ombined migration history to visit an unvisited node. However, it wasobserved that by ex
hanging their migration history, all the agents on a givennode 
ontain the same global history thereby making similar de
isions result-ing in 
lustering of agents in spe
i�
 parts of the network while leaving otherparts unvisited (Minar et al. 1998). Further, 
arrying the migration history asa part of agent payload in
reases the agent size imposing an overhead on thesystem resour
es.A biologi
ally inspired migration strategy uses a population of naive, au-tonomous agents (simulating biologi
al inse
ts) performing 
omplex tasks us-ing Stigmergy (S
hoonderwoerd et al. 1997; Di Caro and Dorigo 1997). Stig-mergy is the me
hanism for naive individuals to 
ommuni
ate with ea
h othervia lo
al 
hanges in the environment. Most of the migration strategies basedon this s
heme simulate foraging a
tivities of ants. Although this strategy hasshown impressive results in 
ertain appli
ations, it tends to favor migrationpatterns, preventing uniform distribution of agents throughout the network.Hen
e, it may not be a feasible solution for systems su
h as ADVR that requireagents to explore the entire network with equal probabilities.7
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AgentFig. 2. Migration Strategy using Edge PheromonesThe migration strategy employed in ADVR 
ombines the strengths of both ofthe above mentioned s
hemes. Our approa
h exploits the stigmergeti
 featureof the inse
t 
olonies and the exploratory feature of the depth-�rst-sear
h.That is, with very little knowledge of the network, the agents 
ommuni-
ate with ea
h other via the environment and perform the depth-�rst-sear
hon the network as a 
ommunity. The agents do not 
arry any network in-formation as a part of their payload. They simply indi
ate their presen
eleaving pheromone trails. Pheromone is a volatile 
hemi
al, de
aying expo-nentially, released by inse
ts in the environment indi
ating their presen
e.Ants use pheromone trails to follow the path of the su

essor ant. Whilethe ant pheromones are used to attra
t other members of the 
ommunity(S
hoonderwoerd et al. 1997; Di Caro and Dorigo 1997; White 1997), in ourapproa
h, pheromones repel other agents. An agent traversing a link xy fromnode nx to ny deposits a pheromone on xy. Another agent migrating fromnx will 
hose a link with the weakest pheromone value thereby migrating toa least re
ently visited region of the network. For example, Figure 2 showsthat the agent arriving at node A (time = t0) sele
ts the edge with leastpheromone value. It also shows that the while traversing the edge, the agentdeposits pheromone trails on it preventing other agents to immediately followitself. This paper refers to this 
lass of pheromones, that assist in agent migra-tion strategy as Edge Pheromones. It 
an be observed that su
h an approa
hexploits the stigmergeti
 behavior of inse
t 
olonies and avoids the 
lusteringof agents in spe
i�
 regions of the network. By 
hanging and retrieving infor-mation from the environment as opposed to 
arrying the network information(Minar et al. 1998; Minar et al. 1999), agents in ADVR impose minimal re-sour
e requirements.3.2 Controlling the Agent PopulationWhile an appropriate migration strategy may fa
ilitate the performan
e ofroute dis
overy and maintenan
e, it 
ontributes little towards solving the prob-lem of resour
e eÆ
ien
y, whi
h is the 
entral theme of this paper. There isno stri
t de�nition for resour
e eÆ
ien
y. In fa
t, resour
e eÆ
ien
y is ratherrelative to the amount of resour
es that are available, the 
omplexity of thetask to be performed, and the level of performan
e (i.e., in terms of 
onver-8



# Agents Convergen
e Time Average Routing OverheadMeasured (ms) Normalized Measured (KB/ms) Normalized10 150 1.0 4.73 0.3015 85 0.57 7.91 0.5120 78 0.52 9.70 0.6325 59 0.39 12.27 0.8030 47 0.31 15.44 1.0Table 1Convergen
e Time and Routing Overhead for Di�erent Agent Populationgen
e, quality of routes, routing 
ost et
) expe
ted from the algorithm. Foragent-based routing, all routing traÆ
 for route dis
overy and maintenan
e,is 
arried by the 
onstituent agents in the system. Hen
e, it is the size of theagent population, whi
h manifests the resour
e overhead. In fa
t, if the size ofthe population is stati
, it represents an upper bound on the degree of mes-sage 
on
urren
y, and hen
e the resour
e overhead. The message a
tivity in
onventional routing algorithms (DVR) is in prin
iple unbounded, however, inADVR it is limited by the number of agents that 
onstitute the 
urrent agentpopulation.
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Fig. 3. Comparison of Routing Overhead with Path-Cost Convergen
eA large population of agents would in
rease the parallelism of ADVR result-ing in an improved 
onvergen
e (Amin et al. 2001). However, it is extremelyimportant to analyze the agent overhead in terms of bandwidth 
onsumptionand 
omputational 
y
les. In
reasing the agent population will improve thepath-
ost 
onvergen
e of the algorithm at the expense of in
reased resour
edemands. Table 1 displays the 
onvergen
e time and average routing over-head for di�erent agent population. Figure 3 plots the normalized 
onvergen
etime and average routing overhead for multiple agent population. The averagerouting overhead was 
al
ulated by dividing the 
umulative routing overheaden
ountered in ADVR till 
onvergen
e by the 
onvergen
e time. It 
an be seenfrom Figure 3 that the 
onvergen
e time and routing overhead are inversely9
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1Fig. 4. Population Control using Node Pheromonesrelated to ea
h other. It was observed that a large agent population has asigni�
antly lower 
onvergen
e time owing to its parallelism. Although low
onvergen
e time is desirable, it has other side e�e
ts. A larger agent popula-tion has a signi�
antly larger average message overhead be
ause a substantialnumber of agents traverse the network 
on
urrently imposing resour
e require-ments on the network. For s
alable systems, the average overhead should beas low as possible. Therefore it is apparent that signi�
antly large agent pop-ulations, resulting in high average overhead hamper the s
alability of ADVR.On the other hand, a very small agent population will hinder the performan
eof ADVR, in terms of 
onvergen
e times and rea
tivity to the dynami
 be-havior of networks. Hen
e, we shall strive for an optimal agents populationfor a given network that results in a

eptable path-
ost 
onvergen
e withoutprodu
ing ex
essive average overhead. It 
an be observed from Figure 3 thatfor su
h an optimal agent population the di�eren
e in the normalized 
on-vergen
e time and normalized average overhead would be minimum. Hen
ein the given example 15 agents would result in an optimal trade-o� between
onvergen
e time and resour
e overhead. However, the unpredi
table behaviorof dynami
 networks makes it very diÆ
ult to estimate a priori, the value ofthis optimal population. Thus, it is ne
essary that an adaptive multi-agentsystem dynami
ally alters the agent population in response to its resour
eavailability.Changing the agent population dynami
ally in response to its environment (re-sour
es) is a non-trivial issue in the absen
e of a 
entral 
ontroller. Individualagents la
king a bird's eye view of the system are unable to make global assess-ments regarding the environment in terms of resour
e availability. Therefore,it requires a high degree of 
oordination among agents to analyze the global10



environment from lo
al information available at nodes. To fa
ilitate su
h a
oordination, our approa
h exploits the stigmergeti
 properties of agents. Mo-bile agents with minimum 
ognitive 
apabilities 
ommuni
ate with ea
h otherusing pheromones, establishing an infrastru
ture that assists them in assessingtheir environment. Pheromones that aid the agents in population 
ontrol arereferred to as Node Pheromones to distinguish them from Edge Pheromones(see Se
tion 3).Whenever an agent visits a node it deposits a pheromone whi
h is simulatedby timed tokens. The poten
y of the Node Pheromones is represented as de-
ay fun
tions expressed by the equation e��(�t), where � represents the degreeof volatility of the pheromone and �t is the time sin
e the deposition of thepheromone. Using this equation the agents 
an extra
t the value of the NodePheromone at a given time and 
al
ulate the inter-agent arrival time at thatnode. An agent visiting a node nx at time t2 
al
ulates the value of the NodePheromone that was deposited at time t1 using the equation e��(t2�t1) (seeFigure 4). If this value is above a 
ertain Termination Threshold (	) andthe agent did not produ
e any routing update on nx, the agent terminatesitself. However if the Node Pheromone value has de
ayed below a CloningThreshold (
), the agent 
lones itself. Before leaving nx, the agent depositsadditional Node Pheromone at time t2. This approa
h 
ontrols the agent pop-ulation based on the inter-agent arrival time expressed as a fun
tion of theNode Pheromone. If the inter-agent arrival time is small (e��(�t) > 	) andthe agent produ
ed no updates in the existing routing table entries, it impliesan ex
essive number of agents in the system leading to the self termination ofthe agent. On the other hand, if the inter-agent arrival time is large (e��(�t)< 
), it implies there are a sub-optimal number of agents in the system re-sulting in agent 
loning. However if 
 � e��(�t) � 	, the agent neither 
lonesnor terminates. Terminating requires the agent to destroy its instan
e alongwith its 
ode and data segments. Cloning requires the agent to 
reate an-other instan
e of itself with same attributes and privileges. The volatility ofEdge Pheromones 
an be 
ontrolled by 
hanging the Degree of Volatility, �in e��(�t). Pheromones with higher values of � (Degree of Volatility) have ahigher rate of de
ay.ADVR implementing a dynami
 agent population may start with a singleagent or an arbitrary number of agents. Nevertheless, the agents 
oordinatethemselves and 
onverge to a parti
ular range of population. This range rep-resents an optimal population that results in an optimal performan
e of thenetwork based on the availability of resour
es. This range however dependson the values of 	, 
, and �. An adaptive system should adjust these valuesdynami
ally based on its resour
e availability.11
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Fig. 5. Simulation Model for DVR4 Experimental Analysis of ADVRThis se
tion dis
usses our simulation environment and experimental results.A series of experiments have been 
ondu
ted to support our 
onje
tures men-tioned in Se
tion 1.4.1 Simulation EnvironmentTo analyze the properties of agents in DVR, an event driven simulator hasbeen 
onstru
ted. The simulator is based on an obje
t-oriented paradigm andin
ludes methods for DVR, single agent ADVR and multi-agent ADVR. Anetwork is represented as a graph G(V;E) that is generated by a graph gen-erator. Every node in the graph represents a store-and-forward router, whi
his further 
hara
terized by a limited bu�er spa
e and pro
essing speed. A link
onne
ting two nodes is 
hara
terized with 
ertain link 
apa
ity. Following theexample of a parti
ular implementation of DVR, namely the Routing Informa-tion Proto
ol (RIP) (Hedri
k 1988), we assume a variable sized pa
ket with amaximum of 512 bytes. Ea
h pa
ket 
onsists of a 4 byte header and variablepayload. Ea
h entry in the routing table o

upies 20 bytes in the payload. Forfairness, both, DVR and ADVR, use the same pa
ket 
hara
teristi
s.Figure 5 shows the simulation model for DVR. Every node has an input queuewhereby all in
oming pa
kets are queued. The average servi
e rate for the in-put queue depends on the pro
essing rate of the router whi
h 
an be in therange of 300000� 500000 pa
kets per se
ond (pps) (Cis
o; Powerrail). Everynode has a routing pro
ess whi
h inspe
ts the input queue. The routing pro
essis responsible for routing data pa
kets to the appropriate output interfa
e aswell as maintaining the routing table. Ea
h outgoing link (interfa
e) is asso
i-ated with an output queue whose servi
e rate is 
ontrolled by the transmission12
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Fig. 6. Simulation Model for ADVRrate of the link. The transmission rate of the link is given by 1=Tt, where Tt isthe transmission time for one pa
ket. For our experiments we have assumedthe link 
apa
ity to be 10 Mbps, thereby giving us an average transmissionrate of approximately 2500 pa
kets per se
ond (pps). Hen
e it is 
lear thata majority of the queuing would o

ur at the output queues due to its slowservi
e rate.Figure 6 shows the simulation model for ADVR. It has an additional modulefor agent management whi
h provides a runtime environment for agents. Theagent management module provides the framework for agent transmission,re
eption, population 
ontrol, and route maintenan
e fun
tions. All agent re-lated pa
kets (agent 
ode and agent data) are forwarded to the agent manage-ment module where they are queued in the agent queue. Agents (agent 
ode)are a
tivated by the agent management module from the agent queue andre
eive their respe
tive data (agent data). Depending on the data re
eived bythe agents, they update the routing table. On 
ompletion of its task, the agentis transmitted by this module to the next node using the migration strategydis
ussed in Se
tion 3:1. The routing pro
ess is responsible for routing in
om-ing regular data pa
kets to the appropriate interfa
es using the routing tablemaintained by the agents.4.2 ResultsExperiments were 
ondu
ted on a medium sized 40 node network with anaverage degree of 7. The results in this se
tion represent the mean over mul-tiple random experiments and di�erent random graphs of the same type. Theanalysis does not 
over the performan
e of the network after 
onvergen
e ofthe routing tables, unless otherwise mentioned. The analysis of results in thisse
tion have been 
ondu
ted with referen
e to 
ertain de�nitions.13
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(b) Instantaneous Proto
ol Over-headFig. 7. Comparison of Overhead in DVR and ADVRDe�nition 1 Instantaneous Routing Load (IRL) of the routing algorithm ata given time is de�ned as the routing load or routing messages traversing thenetwork at that instant.De�nition 2 Path-Cost 
onvergen
e of the network is de�ned as the 
ondi-tion when every node has an optimal (shortest path) route to every other nodein the network.De�nition 3 Route dis
overy is the pro
ess, whereby every node in the net-work obtains a route for every other node in the network.4.2.1 Analysis of Message/Agent OverheadAs mentioned earlier DVR attributes its sensitivity to the large number ofrouting messages ex
hanged by the nodes. The number of 
on
urrent routingmessages in a network implementing DVR is a fun
tion of time and networksize. However, the number of 
on
urrent routing messages in ADVR is 
on-stant and manifested in the number of 
onstituent agents. Sin
e the numberof agents in the network 
an be adjusted as per resour
e availability, ADVR
an provide a highly s
alable solution to the routing problem. To validateConje
ture 1, Figure 7 
ompares the routing overhead in
urred in DVR andADVR. Figure 7(a) displays the 
umulative routing data ex
hanged by thenodes in the network until 
onvergen
e of the routing algorithm. It is appar-ent that DVR in
urs a signi�
ant message overhead due to its overly-rea
tivenature. As explained in the previous se
tion, although the total routing dataex
hanged among nodes until 
onvergen
e is approximately the same for dif-ferent agent populations, the average routing load is high for larger agentpopulations. In order to evaluate the s
alability of any routing algorithm, itis essential to analyze the Instantaneous Routing Load (IRL) in
urred in thealgorithm. For an algorithm to be s
alable, the IRL should be as low as possi-14
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(b) Instantaneous Proto
ol Over-headFig. 8. Comparison of Overhead in DVR and ADVR for Di�erent Network Sizesble and without large variation. Figure 7(b) shows the average IRL for DVRand ADVR in a time window of 3 millise
onds for a simulated time of 200millise
onds. In order to depi
t the behavior of DVR, we have simulated atimed update every 100 millise
onds. A timed update in ADVR is manifestedby the resetting of the routing 
ags. It 
an be observed that IRL in DVR is
ertainly higher than in ADVR. DVR is 
hara
terized with periods alternatinga
tivity and ina
tivity. Although periods of ina
tivity produ
es an IRL of 0KB/ms, it is the periods of a
tivity in DVR that produ
e an ex
essive IRL. Atimed update or any 
hange in network topology suddenly in
reases the IRLin DVR due to the broad
ast storming problem. With ADVR, agents 
ontin-uously traverse the network (with or without data segments), hen
e, there areno periods of ina
tivity. Therefore, unlike DVR, the IRL never redu
es to 0KB/ms. Nevertheless, IRL in ADVR is low, fairly stable, and proportional tothe number of agents in the system.Figure 8 
ompares the overhead involved in the two routing approa
hes overmultiple network sizes and analyzes their s
alability. Figure 8(a) shows the
umulative proto
ol overhead in
urred in the network until 
onvergen
e ofthe routing algorithm. It is apparent that even though ADVR 
onverges 
om-parable to DVR over multiple networks by varying the agent population, its
umulative overhead is always lower than that of DVR. Further, the non-s
alability of DVR is evident from Figure 8(b). An in
rease in network sizeprodu
es a ex
essive in
rease in the IRL. Su
h a sharp in
rease in routing traf-�
 
an over
ow transmission queues, thereby 
an 
ontribute to jitter, pa
ketloss, or 
ongestion in large networks implementing DVR. Among other things,the non-s
alable 
hara
teristi
s of DVR restri
ts its use in large networks.Conversely, ADVR exhibits its s
alability by in
urring a marginal in
rease inthe IRL, proportional to the in
rease in number of agents.Our simulation model assumes that the agent 
ode segment 
onsumes 100bytes of the IP pa
ket. In view of the main obje
tive of this paper, to redu
e the15
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(b) Route Dis
overyFig. 9. Comparison of Convergen
e and Route Dis
overyresour
e overhead, it is imperative to 
onsider the stru
ture of the agents. If theagent 
ode segment is ex
essive, the agent will 
onsume signi�
ant amountsof resour
es in terms of bandwidth, memory, and 
omputing. Conversely, ifthe 
ode segment is severely restri
ted, it may be impossible to supply someof the agents with suÆ
ient intelligen
e to optimize their task performan
e.In order to redu
e the size of the 
ode segment, it is possible to supply theagents 
ode as pre-loadable software modules at ea
h node. The behaviorof these modules is 
ontrolled by a set of parameters that are provided bythe agent upon arrival at that node. These parameters will repla
e the 
odesegment that is otherwise 
arried by the agents, resulting in smaller light-weight agents that may 
onsume less bandwidth. Nevertheless, this approa
hdoes not eliminate the problem, it does only shift the resour
e overhead fromthe link (i.e., bandwidth) to the node (i.e., 
omputation).4.2.2 Analysis of Path-Cost Convergen
e and Route Dis
overyIt is the 
hara
teristi
s of DVR that every 
hange in the routing table of anindividual node is broad
asted to its immediate neighbors. Additionally, theentire routing table of every node is broad
asted periodi
ally to ea
h of itsneighbors. These events o

ur asyn
hronously making use of message 
on
ur-ren
y, whi
h in turn 
auses DVR to be highly rea
tive to small 
hanges. Hen
e,any 
hange in a single routing table has a 
as
ading e�e
t initiating a sequen
eof broad
asts throughout the network. Su
h an aggressive parallelism in DVRresults in bursts of update messages within the network. Conversely, ADVRimplements 
ontrolled parallelism 
hara
terized by the number of agents inthe network. Although ADVR 
an repli
ate the behavior of DVR, routing in-formation, en
apsulated in the agent payload, is generally propagated to onlyone neighbor. Su
h an approa
h restri
ts the outburst of routing pa
kets dueto small 
hanges. Nevertheless, 
ontrolled parallelism redu
es the sensitivityof the algorithm, thereby exhibiting a relatively slow 
onvergen
e. Figure 9(a)16



shows the aggressive nature of DVR inherent in its rapid path-
ost 
onver-gen
e when 
ompared to the moderate yet 
omparable 
onvergen
e behav-ior of ADVR. It 
an be shown, that in a stati
 network, a single agent 
ana
hieve the 
orre
t 
onvergen
e of routing tables at all nodes in the network,provided that it uses an appropriate migration strategy, whi
h allows for 
om-plete traversal of the network. Nevertheless, a single agent is insuÆ
ient to
omplete this task in a time that is 
omparable to that of 
on
urrent messag-ing i.e. DVR. Hen
e, a population of agents will have to be deployed. Theseagents impli
itly 
ooperate, thereby a

elerating the pro
ess of route dis
overyand path 
ost 
onvergen
e.Route dis
overy plays an important role in the performan
e of 
ommuni
ationnetworks. It is 
ru
ial to evaluate any routing algorithm with respe
t to thespeed at whi
h every node in the network obtains a route for every other nodein the network. Even if these routes are sub-optimal, they provide a ben
hmarkto measure the availability of the network to be used by other appli
ations.Figure 9(b) depi
ts the number of nodes that a
quire 
omplete 
onne
tivityto all other nodes in the network over time. It is observed that the aggressiveparallelism in DVR fa
ilitates qui
k assimilation of network 
onne
tivity forDVR. On the other hand, a small population of 
onstituent agents, restrainedin their 
on
urren
y are insuÆ
ient to dis
over routes as rapidly as DVR.Route dis
overy in ADVR 
an be improved to outperform DVR by es
alat-ing the agent population, thereby in
reasing the degree of 
on
urren
y. Eventhough in
reasing the number of agents in the network in
reases the resour
e
onsumption by agents, it is extremely low when 
ompared to DVR. It is im-perative to note that the performan
e of ADVR in terms of route dis
overy isgreatly a�e
ted by the migration strategy adopted by the agents. A detailed
omparison of the migration strategy is presented in (Amin et al. 2001).4.2.3 Analysis of Agent Population in ADVRAs mentioned earlier, agents are the 
arriers of information in ADVR. Hen
e,the agent population in the network determines the resour
e overhead. A stati
agent population represents an upper bound on the degree of message 
on
ur-ren
y, and the hen
e resour
e overhead. All the above experiments assume a�xed agent population, however Figure 10(a) shows the the e�e
ts of dynami
agent population 
ontrol me
hanisms using Node Pheromones. As explainedin Se
tion 3, values of 	, 
, and � have to be manipulated manually in orderto exer
ise e�e
tive 
ontrol on agent population. It was observed that irre-spe
tive of the initial population, the system 
onverges to a stable numberof agents in the system. Networks initialized with a small number of agentses
alate the agent population to a 
ertain value thereby improving the path-
ost 
onvergen
e of the network. On the other hand, networks initialized witha large number of agents realize the per-agent overhead and 
ontinuously re-17
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(b) Degree of Volatility � = 0:5Fig. 10. Dynami
 Control of the Agent Populationdu
e the population until it rea
hes a stable number. Figure 10(b) displaysthe varian
e in agent population with Node Pheromones having redu
ed de-gree of volatility (�). Low values of � signi�
antly stabilizes the variation inagent population. Although less volatile pheromones redu
es the varian
e inpopulation, it also redu
es the sensitivity of the system to rea
t and rapidlyadapt to sudden 
hanges in the environment.The agent population 
ontrol exhibits a 
exible, fault tolerant me
hanismwhereby loss of agents in the network do not impose any performan
e penaltieson ADVR. This is extremely important in an adaptive, self-
ontrolling agentbased system in the absen
e of 
entralized 
ontroller. Su
h a 
ontrol me
ha-nism gives agents the autonomy to es
alate their population on dete
tion oflink/node failures, thereby rapidly propagating the new information through-out the network without su�ering from the broad
ast dilemma.Regular agents,on dete
ting a link/node failure 
lone themselves to produ
e multiple Auxil-iary agents that are entrusted with the task of propagating the informationregarding link/node failure throughout the network. Although the 
on
ept ofAuxiliary agents is very interesting, its validity needs to be veri�ed. Ongoingresear
h is investigating issues su
h as routing loops 
reated/terminated bythese Auxiliary agents.5 Con
lusion and Future WorkThis paper des
ribes a distan
e ve
tor routing s
heme based on the mobileagent paradigm { Agent-based Distan
e Ve
tor Routing. One of the majordisadvantages of 
onventional implementations of distan
e ve
tor routing al-gorithms is that their 
orresponding resour
e overhead is generally unbounded.In the proposed ADVR, the messages are repla
ed by a population of agents.18



The 
orresponding message a
tivity is thus bounded by the number of 
on-stituent agents. However, by limiting the number of agents in order to 
ontrolresour
e overhead, the degree of 
on
urren
y whi
h the algorithm 
an employis restri
ted as well. We have 
ondu
ted a number of experiments to analyzethe performan
e of an agent-based distan
e ve
tor routing s
heme. In parti
-ular, we have fo
used on the Instantaneous Routing Load (IRL), s
alability,path-
ost 
onvergen
e, and route dis
overy of ADVR and have 
ompared theresults with that of DVR. We have also looked at the distributed manipulationof the agent population in the network.It was observed that as per our 
onje
ture, the IRL in ADVR is 
onsiderablylow and s
alable when 
ompared to DVR. It was also veri�ed that the IRLfor ADVR has a very small variation as opposed to DVR whi
h results insharp spikes of routing loads for periods of a
tivity. Further, it was veri�edthat although DVR is aggressively rea
tive in path-
ost 
onvergen
e and routedis
overy, ADVR with a substantial number of agents 
an 
ompete with theperforman
e of DVR. To validate our 
onje
ture, a dynami
 and distributedme
hanism was set up using pheromones to manipulate the number of agentsin the network in order to redu
e the overall proto
ol overhead.The results of this paper are expe
ted to provide alternative ways to designand implement resour
e eÆ
ient routing algorithms. Parti
ularly in view ofthe re
ent developments in ad-ho
 and mobile networks, agent-based solutionsto routing may be alluring as the su
h system are inherently fault tolerant.While the main obje
tive of this paper is on routing, agent-based solutions aredeemed suitable for many other network 
entri
 appli
ations. Network mon-itoring, for instan
e, 
ould take advantage of the me
hanisms developed aspart of this approa
h. The dynami
 population 
ontrol me
hanisms fa
ilitatethe design of adaptive solutions for monitoring pro
esses or sensors that un-dergo 
omplex dynami
s and 
annot rely on stati
ally designed s
hedules anditineraries. The distributed 
ontrol me
hanisms des
ribed above may help to
oordinate the a
tions of otherwise autonomous agents to �nd a global moni-toring strategy. The management of large networks and distributed 
omputingenvironments 
an take advantage of the mobile agent paradigm and the toolsdesigned for this resear
h. By exploiting mobility and intelligen
e, agents fa-
ilitate system fault toleran
e through the expedient dis
overy of redundant
ommuni
ation paths and/or alternative 
omputing platforms. Resour
e man-agement and distributed 
luster s
heduling in support of s
ienti�
 appli
ationsin Grid 
omputing may take advantage of su
h properties. In general, we ex-pe
t that this paper and its 
orresponding results will motivate the design ofagent-based solutions for large s
ale system-level appli
ations.19
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