
The Journal of Systems and Software 69 (2004) 159–171

www.elsevier.com/locate/jss
Location management in cellular mobile computing systems
with dynamic hierarchical location databases q

Guo-Hui Li a, Kam-Yiu Lam b,*, Tei-Wei Kuo c, Shi-Wu Lo c

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
b Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

c Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC

Received 1 November 2001; received in revised form 1 April 2002; accepted 1 June 2002
Abstract

An important issue in the design of a mobile computing system is how to manage the location information of mobile clients. In

the existing commercial cellular mobile computing systems, a two-tier architecture is adopted. However, the two-tier architecture is

not scalable. In the literatures, a hierarchical database structure is proposed in which the location information of mobile clients

within a cell is managed by the location database responsible for the cell. The location databases of different cells are organized into

a tree-like structure to facilitate the search of mobile clients. Although this architecture can distribute the updates and the searching

workload amongst the location databases in the system, location update overheads can be very expensive when the mobility of

clients is high. In this paper, we study the issues on how to generate location updates under the distance-based method for systems

using hierarchical location databases. A cost-based method is proposed for calculating the optimal distance threshold with the

objective to minimize the total location management cost. Furthermore, under the existing hierarchical location database scheme,

the tree structure of the location databases is static. It cannot adapt to the changes in mobility patterns of mobile clients. This will

affect the total location management cost in the system. In the second part of the paper, we present a reorganization strategy to

restructure the hierarchical tree of location databases according to the mobility patterns of the clients with the objective to minimize

the location management cost. Extensive simulation experiments have been performed to investigate the reorganization strategy

when our location update generation method is applied.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Mobile computing system; Location management; Location database; Location update cost; Location database reorganization
1. Introduction

Recent advances in mobile communication technol-

ogy have greatly increased the functionality of mobile

information services and have made many novel mobile

computing applications a reality. Various innovative

applications, such as news updates, real-time traffic in-
qThis work was partially supported by a grant from the CityU

[Project No. 7001259] and National Science Foundation under Grant

60203017.
*Corresponding author. Address: Department of Computer Sci-

ence, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon,

Hong Kong. Tel.: +852-2788-9807; fax: +852-2788-8614.

E-mail addresses: cskylam@cityu.edu.hk, csedchan@cityu.edu.hk

(K.-Y. Lam), ktw@csie.ntu.edu.tw (T.-W. Kuo).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00082-7
formation and navigation systems, and real-time stock

monitoring systems, are emerging rapidly. One of the

most important issues in the design of these mobile

computing systems is the location management of mo-

bile clients (Das and Sen, 1999; Pitoura and Samaras,

2001; Plassmann, 1994; Xie et al., 1993). This is not only

essential for providing efficient mobile communication

services among mobile clients but also important to
many new mobile computing applications, such as sys-

tems to support location dependent queries (Gok and

Ulusoy, 2000).

In a cellular mobile network, the whole service area is

divided into a collection of inter-connected cells. Mobile

clients may move within their current cells or move into

other cells. While a mobile client is moving, the system

has to maintain the real-time locations of its clients. To

mail to: cskylam@cityu.edu.hk,


160 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
efficiently manage the locations of mobile clients, loca-

tion databases are defined. It is obvious that data items

corresponding to the locations of mobile clients are real-

time data (Xiong et al., 2001). Their validity may

change rapidly with time, especially for the case where

the mobility of the clients is high. In order to maintain
the validity of the location data items, a mobile client

has to generate a location update whenever it moves

into a new cell or when it is far from its last reporting

location.

In the existing cellular mobile networks, a two-tier

location database architecture is adopted to manage the

locations of mobile clients (Mouly and Pautet, 1992). In

the system, the mobile switching centers (MSCs) are
responsible to maintaining the user profiles and their

locations. One of the MSCs maintains a location dat-

abase, called home location register (HLR) which keeps

the client profiles, including the real-time locations of

mobile clients. In addition, other MSCs maintain a vis-

itor location register (VLR) for the location information

of the mobile clients, which are currently within the cell

responsible by the MSC. When a mobile client moves
out of its current cell and enters into another cell, a new

entry of the client location is added into the VLR of the

new cell, and then the HRL will be updated accordingly.

In locating a mobile client, the VLR of the cell, where

the query is initiated, will be searched first. If the client

cannot be found in the VLR, a request will be sent to the

HLR of the client to find out its location. Once the cell,

where the location of the client is recorded, has been
identified, polling messages will be broadcast in the cell

to communicate with the client to ensure that it is the

right cell where the client is now residing.

This two-tier architecture is simple and easy to

implement. However, it has two serious performance

problems, which make it not suitable to many new

mobile computing applications. Firstly, the number of

mobile clients in a mobile computing system can be very
large, and the system may need to maintain a large

amount of real-time location information for its mobile

clients. It is obvious that the two-tier architecture is not

scalable. Secondly, because a mobile client is perma-

nently associated with an HLR, the overheads for

maintaining the locations of mobile clients can be very

heavy if the mobility of clients is high. It is obviously

that the cost for locating a mobile client highly depends
on the locations of the calling mobile client and the

called mobile client. If the called mobile client is far

away from the HLR, the cost for locating it could be

very expensive.

In order to improve the system performance and to

reduce the total cost for locating a mobile client, various

strategies have been proposed. One of the efficient

methods is to organize the location databases in a hi-
erarchical structure (Pitoura and Samaras, 2001; Pitoura

and Fudos, 1998). Although the hierarchical structure of
the databases can improve the searching of the locations

of mobile clients, the total update overheads for main-

taining the real-time locations of mobile clients can also

be heavy. In the organization of the hierarchical data-

bases, it is important to consider the update cost as well

as the movements of mobile clients, i.e., the mobility
patterns. Although various location update generation

methods have been proposed in the research of the

previous work, most of them are mainly designed for

systems using the two-tier location database architec-

ture. These proposed methods may not be suitable to the

systems using hierarchical location databases. For ex-

ample, one of the efficient and widely used update gen-

eration methods is the distance-based method in which a
client will generate a location update when the difference

between its current position and its previous reported

position is greater than a pre-defined threshold. The

number of location databases to be updated under this

method depends on how the databases are organized

and how the client moves.

At the same time, different mobile clients will have

very different mobility patterns, and their mobility pat-
terns may change gradually with time. Therefore, a

static hierarchical location database structure may not

be able to meet the requirements in minimizing the lo-

cation management cost. To our best knowledge, it is

lack of any detailed study on the relationship between

update generation methods and the organization of the

location database tree.

In this paper, we study the location update problem
in hierarchical databases for mobile computing systems

over cellular networks. Our objective is to minimize the

total location management cost. The total location

management cost consists of two parts: location update

(called registration) and locating cost (called paging). A

key parameter of the distance-based method is how to

define the optimal distance threshold. In this paper, we

first design an efficient way to derive an adaptive value
for the distance threshold such that the total cost for

location management is minimized. Then we propose an

effective method to reorganize the location databases to

reduce the total location management cost.

The remaining parts of this paper are organized as

follows. Section 2 is the related work. Section 3 defines

the system model. Section 4 proposes a new method for

deriving the distance threshold. Section 5 presents a
strategy to reorganize the location databases to reduce

the location update cost. Section 6 is the performance

studies on the proposed methods. Section 7 is the con-

clusion and future work.
2. Related work

The research in mobile computing systems has re-

ceived a lot of interests in recent years. One of the most



DB 0

DB 1 DB 2 DB 3

DB 4 DB 5 DB 6 DB 7 DB 8 DB 9 DB11DB10 DB12

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9

Fig. 1. Hierarchical databases to store the mobile clients’ locations.

G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 161
important topics is location management. In the past

few years, different location update methods have been

proposed. Most of them are for systems using the two-

tier location database structure. The design of location

update generation for hierarchical location databases

has received growing interests in recent years. The pro-
posed methods basically can be categorized into the

following four basic policies, location-area, time-based,

distance-based, and movement-based.

In the location-based update method, all of the cells

in the system are partitioned into a number of disjointed

location areas. A mobile client updates its location

when it enters another location area. In the time-based

method, a mobile client updates its location periodically
for every pre-specified time interval (Rose, 1996). In

the distance-based method, a mobile client updates its

location whenever the distance between the current

cell and the last registered cell exceeds a pre-defined

threshold value. In the movement-based method, a mo-

bile client updates its location if the number of cells it

has traveled since the last location update exceeds a pre-

defined threshold value. In addition to these methods, a
paging method (Rose and Yates, 1996) is proposed,

where the whole service area is divided into location

areas (LAs), and the cells in a location area are paged

simultaneously. When there is an incoming call to a

mobile client, the LAs are sequentially paged for the

client following a pre-defined paging strategy. To im-

prove the probability of finding a mobile client and to

reduce the paging cost, the system estimates the most
possible cell that the client is residing, based on the ve-

locity and the direction information of a mobile client

(Wan and Lin, 1999). In Levy and Naor (1999), an ac-

tive tracking policy (using non-utilized system resources)

is proposed to find out the location information of a

mobile client. In this paper, we will concentrate on the

distance-based update method since it is widely used in

the existing cellular mobile networks.
In recent years, a hierarchical location database

structure is proposed to organize the location databases

in the system (Pitoura and Samaras, 2001). Researchers

explored several essential problems, such as location

caching, replication, and concurrency control in the hi-

erarchical location databases. In order to reduce the

location update cost, some previous works suggested to

use location pointers. However, the main concern of this
method is that it creates the problem in managing the

location pointers. Furthermore, the forwarding pointers

can be maintained in any level of the hierarchical loca-

tion databases, and it is difficult to determine what is the

best level to set the forwarding pointers.

Another proposed method to reduce the searching

delay and cost is to use caching and data replication to

maintain the location information of mobile clients. The
main problem of this method is obviously on how to

maintain the validity of the cached data items. The
overhead can be heavy when the mobility of clients is

high. Although using the hierarchical database archi-

tecture can speed up the cost in locating a mobile client,

to our best knowledge, it is still lack of an efficient

location update generation policy for the hierarchical

structure. Furthermore, the tree architecture of a hier-
archical location databases proposed in the literatures is

static and is not suitable to mobile clients with a good

variation on the mobility patterns. It is the purpose of

this paper to study how to generate location updates

based on the distance-based method for systems with

hierarchical databases for location management. Our

main focus is on the definition of a proper distance

threshold for the distance-based method and the pre-
sentation of an effective location database reorganiza-

tion that aims at the reducing of location management

cost.
3. Cellular mobile network and location databases model

A cellular mobile network is based on the concept of
frequency reuse. The whole service area is divided into a

number of connected cells with a base supporting sta-

tion (BSS) in each cell. The limited wireless bandwidth is

partitioned into channels. The mobile clients within a

cell communicate with the BSS of the cell through a

wireless channel. Since channels are limited resources,

how to use the channels is one of the most important

issues in mobile network management.
Each BSS maintains a location database. The loca-

tion databases of different neighboring BSS’s are orga-

nized into a hierarchical tree structure, as shown in Fig.

1. Note that in an existing GSM mobile network, the

location databases are managed by MSCs. It is assumed

that there are a large number of mobile clients in the

system. They may make a call or submit a query on the

locations of other mobile clients. The call distribution is
not even in practice. It is assumed that a mobile client

usually has a higher probability to make a call to a

group of mobile clients than the remaining mobile cli-

ents in the system. To simplify the discussion, we assume



162 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
that each move of a mobile client consists of one to

several steps. Each step represents a move across a cell

boundary. The mobility of a mobile client is defined by

two parameters: (1) the frequency of movement; and (2)

the moving distance for each move. It is assumed that

different mobile clients have different mobility patterns.
Furthermore, the mobility pattern of a mobile client

may change with time.
4. Location update generation––a cost-based method

In this section, we will introduce a method for

deriving the optimal distance threshold for the distance-
based update method such that the total location man-

agement cost can be minimized. In the distance-based

method, when a mobile client x moves from its previ-

ously residing cell, old cellðxÞ, into the current cell,

cur cellðxÞ, an update will be generated to update its

location to the location database of cur cellðxÞ if the

distance between the two cells is greater than a pre-

specified threshold. (We call it the distance threshold in
this paper.)

In a hierarchical location database architecture, the

organization of the location databases is static, and the

system can pre-compute the distance between any two

cells and store the distances in a matrix. When a mobile

client moves across a cell boundary into another cell, the

system can easily query the matrix to get the distance

between the old cell and the new cell. However, how to
set the distance threshold is not an easy question. Any

improper value for the distance threshold could have a

serious impact on the system performance, i.e., heavy

cost in updating the location of a mobile client or a long

delay in locating a mobile client. If the distance

threshold value is small, then the locations of mobile

clients will be updated very frequently, and a lot of

system resources will be consumed on processing the
location updates. On the contrary, if the distance

threshold value is large, the location uncertainties of

mobile clients will be large, and the total cost and time

delay for locating a mobile client will become very large.

4.1. Basic principles and definitions

Location management in a cellular mobile computing
system basically consists of two procedures: location

update to report the new location of a mobile client and

paging for a mobile client. Thus, in the design of loca-

tion update generation policy, we need to consider the

update cost and the paging cost if we want to minimize

the total location management cost.

In the cost-based distance threshold method, we first

calculate the cost for processing a location update.
Then, we compare: (1) the total cost in locating a mobile

client when a location update is generated to report the
new location of a mobile client; with (2) the total cost in

locating a mobile client if a location update is not gen-

erated to report its new location. Finally, we calculate

the optimal distance threshold value by letting the cost

for location update equal to the saving in cost.

An important factor affecting the costs for locating a
mobile client and location update is the call to mobility

ratio (CMR) (Pitoura and Samaras, 2001). It is the av-

erage number of calls on a mobile client per cell

boundary crossing by the mobile client. If CMR is small,

the generation of a location update from a mobile client

will not result in much saving in the cost for locating the

mobile client. So the generation of a location update

may be deferred for this case. On the contrary, if CMR
is large, i.e., there are a large number of calls to a mobile

client per cell boundary crossing, the generation of a

location update can reduce the location cost signifi-

cantly.

Since the location databases are organized into a tree-

like structure, we define the least common ancestor of

location databases DBi and DBj as LCAðDBi;DBjÞ. The
height of LCAðDBi;DBjÞ to the leaf nodes of the tree is
denoted as lcaðDBi;DBjÞ. (We assume that all of the leaf

nodes of the location databases are at the same level in

the hierarchical location database tree.) Let the leaf

node of a location database for mobile clients at the cell

i be LDBðiÞ.

Definition 1. The distance between Cells i and j, termed

as disði; jÞ, is defined as the height of the least common
ancestor of the responsible leaf nodes of the location

databases:

disði; jÞ ¼ lcaðLDBðiÞ; LDBðjÞÞ
If i ¼ j then disði; jÞ ¼ 0:

Let cur cellðxÞ be the cell where mobile client x is now

residing.

Definition 2. The distance between clients x and y,
termed disðx; yÞ, is defined as the distance of the two cells

in which x and y is now residing, namely disðx; yÞ ¼
disðcur cellðxÞ; cur cellðyÞÞ.

The above definition captures the locality of two

mobile clients. It can be seen easily that a mobile client

takes a smaller cost to find the location information of

another mobile client if the distance between them is

smaller.
4.2. Cost-based distance threshold calculation

In this section, we will derive an optimal solution for

generating a location update. Similar to Pitoura and

Fudos (1998), when calculating the optimal value for the



G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 163
distance threshold, we consider the following related

costs in location update and the lookup procedure:

F the cost of sending a message to an arbitrary

cell for the case where the system knows at

which cell it is now residing
L the cost of following a link in the tree of the

location databases, i.e., sending a message to the

parent or the child node of a location database

U the cost of a database update

Q a database query cost

P the cost of polling for a specific client in a cell

To simplify the discussion, we assume that in the
hierarchical location database structure, each internal

node has d sub-nodes and we denote disðcur cellðxÞ;
old cellðxÞÞ as dis. When a client x moves from cell

old cellðxÞ to cell cur cellðxÞ, if an location update is

generated, the database entries for x in both from

old cellðxÞ up to LCAðcur cellðxÞ; old cellðxÞÞ and from

LCAðcur cellðxÞ; old cellðxÞÞ down to cur cellðxÞ have

to be updated.
To illustrate the searching and update procedure, we

can refer to the example hierarchical location databases

shown in Fig. 1. It is supposed that mobile client x
moves from the cell corresponding to the location dat-

abase DB5 to the cell corresponding to location database

DB8. To update the location of x, an entry for x’s lo-

cation is added into DB8. Then the system searches the

location information of x upward in the hierarchical
databases until reaching the least common ancestor of

DB5 and DB8, i.e., DB0. There is an entry for x’s loca-
tion information at DB0. Then, the system continues to

search for the location information of x until it reaches

the leaf node DB5. After that, all the information for x’s
location in DB5 up to DB0’s child nodes will be deleted.

In each location database from DB0 down to DB8, an
entry for x’s location will be added. Thus, the total cost
for the location update of x will be

update costðdisÞ ¼ 2disðold cellðxÞ; cur cellðxÞÞ � L

þ ð2disðold cellðxÞ; cur cellðxÞÞ
þ 1Þ � U ð1Þ

It is assumed that after the completion of the location

update, a mobile client y in cell cur cellðyÞ calls x. To
find the current location of x, a message is sent from the

cell in which y is now residing to its parent location

database node. If the parent node does not have an

entry for x’s location, a message is sent to the upper level

node until the database LCAðcur cellðyÞ; cur cellðxÞÞ is

reached where there exists an entry for x’s location.

Then, a message is sent downward following the hier-

archical database structure until it reaches the current
location cell of x. Finally, the system polls for mobile

client x.
In the above procedure, we can see that there are

totally 2lcaðcur cellðyÞ; cur cellðxÞÞ times of message

transmission and processing, 2lcaðcur cellðyÞ;
cur cellðxÞÞ þ 1 times of database queries, and one

polling for a specific mobile client in a cell. Thus, the

total cost for the case where the mobile client generates
an update to report its new location is

2disðcur cellðyÞ; cur cellðxÞÞ � L

þ ð2disðcur cellðyÞ; cur cellðxÞÞ þ 1Þ � Qþ P ð2Þ

If x does not generate a location update after it has

crossed a cell boundary, the call from client y will be

processed according to x’s old location entry in the

location databases. After finding that x is not in

old cellðxÞ, the system polls all the possible cells to find

the new location of x. The average number of polling
is 1=2� ddis, where dis ¼ disðcur cellðxÞ; old cellðxÞÞ,
where a random polling procedure is assumed. At last a

forwarding pointer is linked from old cellðxÞ to

cur cellðxÞ. For example, in the example hierarchical

location databases shown in Fig. 1, a mobile client x
moves from the cell corresponding to DB12 to the cell

corresponding to DB7 and the related location databases

are not updated. When there is a location call for x, the
old location information of x will be used first and the

system polls for x in the cell corresponding to DB12.
After finding that x is not in the cell, all the cells which

distances from the cell old cellðxÞ are less than the dis-

tance between old cellðxÞ and cur cellðxÞ are all the

possible cell where x is now residing. They will poll for x
until x is found. At most, there are ddis cells to be polled.

The average number of cells to be polled for x is thus
1=2� ddis, where a random polling procedure is as-

sumed. In the example architecture shown in Fig. 1, at

the worst case, all of the nine cells are possible to be

polled for locating x and the average number of polling

will be 1/2� 32 So, the first location call cost without

any location update is

2disðcur cellðyÞ; old cellðxÞÞ � L

þ ð2disðcur cellðyÞ; old cellðxÞÞ þ 1Þ � Qþ P

� 1
2
ddis þ F þ U ð3Þ

Note that there is no update on the databases of the cells

while the system is locating x. A forwarding pointer to

cur cellðxÞ is created inside the database of old cellðxÞ
(i.e., the cost of U in Eq. (3)).

After the first location call on x has been resolved, the
cost for the following location calls on x for the case

where an location update is generated from x to report

its new location and for the case where no location

update is generated from x will be similar. The only

difference is that there will be one more database query

and one message searching for the no update generation

case.



Cell 1

Cell 4

Cell
 

5

Cell 2

Cell 3

 
Cell 7

Cell 6 

Cell8
 

Cell 9

Fig. 2. A mobile computing system consisting of nine cells.

164 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
When we subtract Eq. (2) from Eq. (3), we can get the

saving cost for processing the first location call as a

result of the generation of a location update:

ð3Þ–ð2Þ ¼ 2ðdisðcur cellðyÞ; old cellðxÞÞdisðcur cellðyÞ;
cur cellðxÞÞÞðLþ QÞ þ P 1

2
ddis þ F þ U � P

When the distance between the current locations of y
and x is as the same as the distance between y’s current
location and x’s previous location, then the total saving
cost including the following ðCMR� 1Þ times of location

calls (under the no update case) will be increased by

ðCMR� 1Þ � ðQþ F Þ:

savingðdisÞ ¼ 2ðdisðcur cellðyÞ; old cellðxÞÞ
� disðcur cellðyÞ; cur cellðxÞÞÞ � ðLþ QÞ
þ F þ U þ P � 1

2
ddis þ ðCMR� 1Þ

� ðQþ F Þ � P

When the distance between y and x’s current locations is
different from the distance between y’s current location
and x’s previous location, the above equation is also

valid if the following ðCMR � 1Þ times of location calls

are from the same cell where y is currently residing. Let

us assume that the distance between y and x’s current

locations is equal to the distance between y’s current
location and x’s previous location, the saving cost can be

revised as follows:

savingðdisÞ ¼ F þ U þ P � 1
2
ddis þ ðCMR� 1Þ

� ðQþ F Þ � P ð4Þ

Let savingðdisÞ ¼ update costðdisÞ, then
F þ U þ P � 1

2
ddis þ ðCMR� 1Þ � ðQþ F Þ � P

¼ ð2disþ 1Þ � U ð5Þ

We then calculate the distance value, Distance
Thresholdcost, which satisfies Eq. (5). It becomes the

distance threshold for location update generation. When

the distance between the new cell and the old cell of x is
more than Distance Thresholdcost, the location update

cost is smaller than the saving cost due to the location
update. For this case, the mobile client should generate

a location update.

One of the advantages of the proposed method for

calculating the distance threshold is that it is simple to

implement and can be adaptive to the dynamic mobility

pattern of the mobile clients. Furthermore, unlike the

conventional distance-based method, we do not need to

assign a static distance threshold. Instead, the distance
threshold is defined based on the system parameters and

how a mobile client moves. Every time, a new distance

threshold will be defined for a mobile client when it

moves across a cell boundary. It can be seen that most of

the system parameters can be computed easily before the

system setup, i.e., the distance between the cells can be pre-

calculated and stored in a symmetric distance matrix A.
5. Location database reorganization

5.1. Organization problem

As shown in the previous section, the location update

cost is proportional to the distance between the starting
and destination cells of the mobile client. In the pre-

sented distance-based location update policy, only the

movement with a distance larger than the distance

threshold will generate a location update. However, we

should point out that the distance between two location

databases is determined by how the location databases

for the cells in the hierarchical location database tree are

organized. Suppose that there is a mobile computing
system with a geographical topology as shown in Fig. 2

and the location databases be organized as shown in

Fig. 1. Note that even if two cells are neighbors to each

other, the distance in terms of the location database

hierarchy between the two cells may still be significant.

For example, Cell 6 is neighboring to Cell 9, but the

distance between them is 2 in the hierarchical location

database tree.
The hierarchical structure of the location databases

can have a significant impact on the location manage-

ment cost. Before constructing the location database

tree, we should consider the mobility patterns of all the

mobile clients to better optimize the total location

management cost. However, the mobility patterns of

mobile clients are not static and may change over time

so that the location update cost may only augment
gradually. The restructuring of location databases

should happen whenever it is necessary to reduce the

total location update cost.

For example, referring to the cell organization shown

in Fig. 2, if the border-crossing of mobile clients between

Cells 3 and 4 is more frequent than that between Cells 2



G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 165
and 3, the system should consider to reorganize the

database hierarchy to put the location databases DB6
and DB7, which are responsible for Cells 3 and 4, in the

same cluster in order to reduce the update cost.

Let us consider a more detailed example to illustrate

the problem. Suppose that, in the last period, there are
200 times of border-crossings between Cells 3 and 4, and

50 times of border-crossings between Cells 2 and 3.

According to Eq. (1) above, if all of the boundary-

crossings generate a location update, the total cost to

update the 200 times of border-crossings between the

Cells 3 and 4 is

200ð2� dis� Lþ 2� dis� U þ UÞ
¼ 200ð2� 2� Lþ 2� 2� U þ UÞ ¼ 800Lþ 1000U

where dis is the distance (see Definition 1) between the
two leaf location databases responsible for Cells 3 and 4.

The location update cost to update the 50 times of

border-crossings between Cells 2 and 3 is

100Lþ 150U

Therefore, the total location update cost is

900Lþ 1150U .

If we reorganize the location databases by switching

the positions of DB5 and DB7 with each other in the

hierarchical tree, the total cost to update the 200 times
of border-crossings between Cells 3 and 4 becomes

200ð2� dis� Lþ 2� dis� U þ UÞ
¼ 200ð2� 1� Lþ 2� 1� U þ UÞ ¼ 400Lþ 600U

The total cost to update the 50 times of border-crossings

between Cells 2 and 3 becomes

50ð2� dis� Lþ 2� dis� U þ UÞ
¼ 50ð2� 2� Lþ 2� 2� U þ UÞ ¼ 200Lþ 250U

The total location update cost in the reorganized case

will be 600Lþ 850U and the location update cost saving

is 300Lþ 300U . The cost reduction in location updates

can be more significant if we adopt the distance-based
location update policy proposed in Section 4.

Suppose the distance threshold for generation of lo-

cation update is 2. Before the location database reor-

ganization, the total cost for the location updates of the

200 times of boundary-crossings between Cells 3 and 4,

and 50 times of boundary-crossings between Cells 2 and

3 is 800Lþ 1000U . With the use of the distance-based

location update method, 50 times of boundary-crossings
between Cells 2 and 3 do not generate location database

update since the distance is less than the threshold. After

the location database reorganization, the total cost for

the location updates of the 200 times of boundary-

crossings between Cells 3 and 4 and 50 times of

boundary-crossings between Cells 2 and 3 will be
50ð2� dis� Lþ 2� dis� U þ UÞ
¼ 50ð2� 2� Lþ 2� 2� U þ UÞ ¼ 200Lþ 250U

We can see that after location database reorganization,

the total cost for location database updates decreases by

75%.
5.2. Reorganizing location database structure

In this section, we propose a location database reor-
ganization strategy with the objective to reduce the total

update cost based on the mobility patterns of clients. The

main idea is to maintain a mobility matrix, A, to count

the number of border-crossings between any two cells to

track the changes in the mobility patterns of clients.

Whenever a mobile client moves between Cells i and j, Aij

in the matrix is increased by one. When the system de-

tects that the total location management cost is too high,
the location databases are restructured based on the

mobility matrix such that the cells with a large number of

border-crossings will be put in the same sub-tree in the

hierarchical location database tree. In this way, the cost

for location database updates can be reduced.
5.2.1. The procedure

The system monitors the total update cost. Whenever
some value of the mobility matrix becomes very high,

i.e., being greater than the threshold, the reorganization

procedure will be invoked. The reorganization proce-

dure consists of three steps:

(1) mobility matrix transformation;

(2) location database clustering; and

(3) re-organization of location databases.

5.2.1.1. Mobility matrix transformation. Suppose the

location databases are organized, as shown in Fig. 1 and

Table 1 shows the mobility matrix for the location da-

tabases. From the mobility matrix, we can see that

mobile clients move more frequently among Cells 4, 5

and 7, than other cells. However, the two location da-

tabases responsible for Cells 4 and 5 form a cluster with
the location database responsible for Cell 6. Thus the

total location management cost is not optimal.

The mobility matrix of a location database system, as

shown in Table 1, consists of nine cells. Each entry in the

matrix indicates the number of bounding crossings be-

tween the corresponding two cells. For example, the

value 100 of the entry C1;2 indicates that there are 100

boundary-crossings between Cells 1 and 2. Note that
there are more crossings between Cells 1 and 2 than

those between Cells 1 and 5 (which corresponds to C1;5

with a value equal to 20). Based on the number of

boundary-crossings between cells, we cluster the loca-

tion databases in the location database tree to minimize



Table 1

An example of the mobility matrix for the location database structure shown in Fig. 1

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 C 100 0 30 25 0 0 0 0

C2 100 C 80 40 20 30 0 0 0

C3 0 80 C 0 10 30 0 0 0

C4 30 40 0 C 120 0 80 25 0

C5 25 20 10 120 C 15 160 30 50

C6 0 30 30 0 15 C 0 100 60

C7 0 0 0 80 160 0 C 40 0

C8 0 0 0 25 30 100 40 C 75

C9 0 0 0 0 50 60 0 75 C

166 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
the total location update cost. The cells which have

more boundary-crossings are clustered in the same sub-

tree in the location database hierarchy.

To determine what is the best way to group cells, we

could use the following equation to calculate the mo-
bility affinity of cells (MAC):

MAC ¼
XN

i¼1

XN

j¼1

AijðAi;j�1 þ Ai;jþ1 þ Ai�1;j þ Aiþ1;jÞ

where A0;j ¼ Ai;0 ¼ ANþ1;j ¼ Ai;Nþ1 ¼ 0.

Basically, the equation calculates the boundary-

crossing relationships of a cell with its neighboring cells.

We exchange the rows and columns in the matrix to

calculate MAC for different arrangements of cells. For a

mobility matrix with N cells (N -leaf location databases),

there are N ! different transformed matrixes, and each
matrix has a MAC value. We choose the matrix with the

greatest value of MAC for clustering.

Following the above idea, the matrix in Table 1 is

converted into Table 2, as shown below, where the trans-

formed mobility matrix has the greatest value of MAC.

5.2.1.2. Location database clustering. After the trans-

formation, we partition the mobility matrix into two

parts: the upper-left part LU and lower-right part RD.

LU includes as many cells as possible and, at the same

time, the total size of all the location databases re-

sponsible for the cells in LU has to be less than a pre-
defined database size threshold. (As it can be seen from

the hierarchical structure of the location databases, a
Table 2

The transformed mobility matrix

C1 C2 C3 C4 C

C1 C 100 0 30

C2 100 C 80 40

C3 0 80 C 0

C4 30 40 0 C
C5 20 20 10 120 C
C7 0 0 0 80

C8 0 0 0 25

C9 0 0 0 0

C6 0 30 30 0
location database includes the location information for

all of its child location databases. So an inner location

database has its capability limitation. The threshold is

determined by the capability limitation of a direct parent

location database of the leaf nodes.) All the databases

responsible for the cells in LU are clustered together. If

the size of the databases responsible for the cells in RD

is larger than the pre-defined database size threshold,
the location databases responsible for the cells in RD is

split and congregated in the same way as the above

procedure until all the location database sets are smaller

than the pre-defined threshold value.

For example, the transformed matrix is partitioned

into two parts, as shown in Table 3. The upper-left part

is denoted as LU, and the lower-right part is denoted as

RD. Suppose the total size of the three location data-
bases responsible for cells C1, C2, and C3 is smaller than

the pre-defined database size threshold, then the three

databases can congregate together. Suppose that the

total size of the six location databases responsible for

cells C4, C5, C6, C7, C8, and C9 is greater than the

threshold, we partition the six cells into two parts: One

includes cells C4, C5, and C7, and the other includes

cells C8, C9, and C6.
An alternative approach for location database clus-

tering is to adopt a graph model. We could construct a

weighted graph of N nodes, which corresponds to the N -

leaf location databases (cells) in the system. The weight

associated with an edge between the two leaf location

databases (cells), say LDBi and LDBj, is the number of

boundary-crossings between the two cells. It is similar to
5 C7 C8 C9 C6

20 0 0 0 0

30 0 0 0 30

10 0 0 0 30

120 80 25 0 0

160 30 50 15

160 C 40 0 0

30 40 C 75 100

50 0 75 C 60

15 0 100 60 C



Table 3

Partition of the transformed matrix into two parts

C1 C2 C3 C4 C5 C7 C8 C9 C6

C1 C 100 0 30 20 0 0 0 0

C2 100 C 80 40 30 0 0 0 30

C3 0 80 C 0 10 0 0 0 30

C4 30 40 0 C 120 80 25 0 0

C5 20 20 10 120 C 160 30 50 15

C7 0 0 0 80 160 C 40 0 0

C8 0 0 0 25 30 40 C 75 100

C9 0 0 0 0 50 0 75 C 60

C6 0 30 30 0 15 0 100 60 C

G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 167
Aij in the mobility matrix method. As the approach

adopted in the matrix method, we could partition the

graph into two parts: G1 and G2 to minimize the value of

NBCT , where

NBCT ¼
X

fWm;njLDBm 2 G1 ^ LDBn 2 G2g

Wm;n is the weight associated with the edge between the

nodes LDBm and LDBn.

5.2.1.3. Location databases reorganization. The location

database reorganization procedure is started up when

the ratio of the total distance of the boundary-crossings

over a period of time is greater than a pre-defined
threshold. We construct a function f as follows:

f ðtÞ ¼ NDðtÞ
length of t

where NDðtÞ is the total distance of the boundary-

crossings which generate location update during time

period t.
It is assumed that the function f ðtÞ has a nearly ideal

value f ð1Þ for the first unit time when the location
database tree is constructed. As time goes by, the mobile

clients’ mobility patterns may have changed, and the

location update cost could become very high. The

function value becomes much greater than f ð1Þ. At

the ith unit time after the location database tree is re-

structured, if f ðiÞP d � f ð1Þ holds, then the location

database restructuring procedure is started up. d is ad-

justed by taking into consideration of the cost for the
restructuring procedure.

The steps of location-database reorganization is as

follows:

1. Calculate the mobility matrix M for a time interval.

2. Transform the matrix such that MAC with the largest

value.

3. Partition the matrix into two parts F and L. The vol-
ume of the location databases responsible for the cells

in F is less than a pre-specified size threshold

SVthreshold. The location databases responsible for

the cells in F form a cluster.
4. If the volume of location databases responsible for

the cells in L is larger than

SVthreshold,
Then

{

M ¼ L;
GOTO step 2;
}

Else

The location databases responsible for the cells in L
form a cluster.

5.2.1.4. Matrix distribution and computation cost. When

we use the mobility matrix to reorganize the location
database structure, we need to resolve two practical is-

sues: where to put the mobility matrix and how to

minimize the complexity in deriving the optimal orga-

nization based on the mobility matrix. The mobility

matrix records the number of border-crossings for each

pair of adjacent cells. It receives border-crossing counts

from the base stations (which generate a count when a

client crosses a cell border). It is obvious that if a single
mobility matrix is used and deployed in a fixed location

(a centralized scheme), a large number of border-cross-

ing counts will be generated, and the total network

communication overhead will become very high.

To minimize the communication overhead for the

management of the mobility matrix, an adaptive dis-

tributed method is proposed in this paper, in which Aij is

placed at the location database LCAðLDBðiÞ; LDBðjÞÞ.
Incrementing Aij by 1 only requires disðLDBðiÞ; LDBðjÞÞ
times of wired communication in traversing the database

hierarchy. In this way, if a location update is generated

when a mobile client x moves from cell i to cell j, then
there is no extra wired communication at all for the

matrix update.

When restructuring the location databases, we need

to gather all the information about the mobility matrix
from all the ‘‘non-leaf’’ location databases. The execu-

tion frequency for restructuring of the location data-

bases should be low so that the total communication

cost will not have too much negative impact on the



COST46 ¼ 0 COST87 ¼ 80Lþ 120U
COST56 ¼ 30Lþ 45U COST86 ¼ 400Lþ 500U
COST47 ¼ 320Lþ 400U COST96 ¼ 240Lþ 300U
COST57 ¼ 640Lþ 800U COST97 ¼ 0

COST46 ¼ 0 COST87 ¼ 160Lþ 200U
COST56 ¼ 60Lþ 75U COST86 ¼ 200Lþ 300U
COST47 ¼ 160Lþ 240U COST96 ¼ 120Lþ 180U
COST57 ¼ 320Lþ 480U COST97 ¼ 0

COST46 ¼ 0 COST87 ¼ 160Lþ 200U
COST56 ¼ 60Lþ 75U COST86 ¼ 0

COST47 ¼ 0 COST96 ¼ 0

COST57 ¼ 0 COST97 ¼ 0

COST46 ¼ 0 COST87 ¼ 0
COST56 ¼ 0 COST86 ¼ 400Lþ 500U
COST47 ¼ 320Lþ 400U COST96 ¼ 240Lþ 300U
COST57 ¼ 640Lþ 800U COST97 ¼ 0

168 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
system performance. However, if the number of cells in

the system is large, the total overhead for finding the

optimal solution can still be very high. To minimize the

computation overhead, we have design two approximate

solutions:

Suppose that there are N -leaf location databases in
the system. There are N ! different combinations for all

the leaf location databases. To get the optimal location

database organization, according to the algorithm pro-

posed in this paper, the cost of calculation can be very

high. In here, we propose two algorithms to achieve the

sub-optimal location database organization. Under the

first algorithm, the leaf location databases are parti-

tioned into m groups. In each group, there are n location
databases. For each group of n location databases, the

proposed location database reorganization algorithm in

this paper is applied to get the optimal organization for

these n location databases. For all of the N ðN ¼ m� nÞ
location databases, the reorganized structure is sub-op-

timal. We call this method as partion-based location
database reorganization (PABR).

For the second algorithm, we count the number of
boundary-crossings between each pair of adjacent cells

and then calculate the mean value. For any pair of leaf

location databases, if the number of boundary-crossings

between the two corresponding cells is larger than the

calculated mean value, the location databases are reor-

ganized to reduce the distance of the two leaf location

databases to 1. By restructuring the location database

tree, the total location database entries updated can be
reduced. We call this method as boundary-crossing
number comparison-based reorganization (BOCNU-

COR).

5.3. An example

Referring to the location databases shown in Fig. 1

and the system cell organization shown in Fig. 2, the
cost for a location update for a mobile client x crossing a
cell boundary is

2disðold cellðxÞ; cur cellðxÞÞ � L

þ ð2disðold cellðxÞ; cur cellðxÞÞ þ 1Þ � U

After reorganizing the location databases, the positions

of the nine location databases are the same as the po-

sitions in the old tree architecture except that the loca-

tion databases responsible for cells C6 and C7 have been

exchanged with each other. Therefore, the new location
update cost is the same except those for boundary-

crossings involving cells C6 or C7 (as the starting cell or

the destination cell).

The location update cost for the boundary-crossings

between cell i and cell j is denoted as COSTij. For the

location database architectures before and after the re-

organization, only the COSTij (i ¼ 4; 5; 8; 9; j ¼ 6; 7) is
different. In the old location database architecture,

COSTij are
The above values are obtained by using Eq. (1). For

example, when calculating COST96 the distance between

Cells 9 and 6 is 2 in hierarchical structure in Fig. 1.

There are 60 times of border-crossings between Cells 9

and 6 as shown in the matrix. The total cost for up-

dating the 60 times of border-crossings is as follows:

COST96 ¼ ð2� dis� Lþ ð2� disþ 1Þ � UÞ60
¼ ð2� 2� Lþ ð2� 2þ 1Þ � UÞ60
¼ 240Lþ 300U

The total location update cost for these boundary-

crossings is 1710Lþ 2165U . In the reorganized archi-

tecture, COSTij are
The total location update cost for these boundary-

crossings is 1020Lþ 1475U .

Obviously, after reorganizing the location database,

the total location update cost is reduced dramatically.

This location update cost reduction will be more obvi-

ous if the mobile clients’ mobility patterns among the

cells change more significantly. If the presented distance-

based location update generation policy is adopted, the
location update cost reduction could be more obvious.

For example, if the calculated distance threshold is 2,

before the location database reorganization, the costs

are
The total location update cost for these boundary-

crossings is 1600Lþ 2000U . After the location database

reorganization, the costs are
The total location update cost for these boundary-
crossings after location database reorganization is



G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 169
220Lþ 275U . It is only 15% of the cost before location

database reorganization.
6. Performance evaluation

We have developed an event-driven simulator to

study the performance of the proposed location update

generation policy (denoted as ADT in the figures) and

the two methods (PABR and BOCNUCOR) for deriv-

ing solutions for reorganization. We also developed a

simulation program using the distance-based method

with a static distance threshold (denoted as SDT in the

figures) for comparison. The simulation programs are
implemented in CSIM-18, which is a simulation lan-

guage for the C programming language.
0

100

200

300

400

500

600

700

1 1.25 1.5 1.75 2
Mean value of CMR 

Lo
ca

tio
n 

up
da

te
 c

os
t

(p
er

 ti
m

e 
un

it)
Th

ou
sa

nd
s

SDT
ADT

Fig. 3. Location update cost.

250

SDTos
t

6.1. Simulating system model, parameters setting and

performance metrics

In the simulation model, the whole service area is

partitioned into a set of neighboring cells. A location
database is defined for each cell to manage the locations

of the mobile clients within the cell. All location data-

bases are organized in a hierarchical tree structure such

that the location databases for the cells are leaf nodes in

the location database tree. In our baseline setting, each

inner node has 3 child nodes, and 200 mobile clients

roam around in the whole service area. When there is a

call to a mobile client, the related location databases are
queried to determine the position of the callee. Then the

callee is paged in the cell recorded in the location dat-

abase. Under the distance-based location update policy,

the distance threshold is set as 1. That is, whenever a

mobile client crosses a cell boundary, a location update

will be generated, and the location entries for the mobile

client in all the related location databases will be up-

dated accordingly. The call to mobility ratio (CMR) of
all the mobile clients follows a normal distribution. In

the experiments, it is assumed that the CMR’s of all the

mobile units follow an exponential distribution.

The following table summarizes the parameters and

the baseline setting:
Parameters Baseline value

Total number of mobile clients 200

Total number of cells 81

Height of the location database tree 5

Node out-degree for an inner

location database

3

Mean value of the CMR for mobile
clients

1

Deviation of the CMR for mobile

clients

0.5
6.2. Experiment results

Figs. 3 and 4 show the location update cost and total

location management cost under the ADT and SDT

methods when different mean values of CMR are used.

When CMR was smaller, the number of calls to the
number of cell boundary crossings would be larger. It is

because the mobile clients moved less frequently when

CMR was smaller. Therefore, as shown in Figs. 3 and 4,

the location update cost and the location management

cost decreased as increasing of CMR.

It can be observed from Fig. 3 that the location up-

date cost under ADT was much smaller than SDT, es-

pecially when the CMR value was small. The better
performance of ADT was due to a smaller number of

location updates. Under ADT, some of the cell bound-

ary crossings did not generate any location update.

Therefore, the total number of location updates gener-

ated was less than that in SDT.
0

50

100

150

200

1 1.25 1.5 1.75 2

Mean value of CMR

ADT

Lo
ca

tio
n 

m
an

ag
em

en
t c

(p
er

 ti
m

e 
un

it)
H

un
dr

ed
s

Fig. 4. Total location management cost.



0

1000

2000

3000

4000

5000

6000

7000

1 1.25 1.5 1.75 2

Mean value of CMR 

Static LDB &
SDT
BOCNUCOR &
ADT
PABR ADT

H
un

dr
ed

s

Lo
ca

tio
n 

m
an

ag
em

en
t c

os
t

(p
er

 ti
m

e 
un

it)

Fig. 6. Location update cost.

170 G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171
When the mean value of the CMR changed from 1 to

2, the differences in update cost between ADT and SDT

became smaller. The reason is that under ADT, if the

value of CMR was large, then the distance threshold

value would become small. Therefore, each mobile client

would generate more location updates on average.
When the CMR value was very large, the distance

threshold reduced to 1, and all the cell boundary

crossings would generate location database updates. For

this case, the number of location updates generation

under ADT was as the same as that under SDT.

Consistent with the results shown in Fig. 3, the total

location management cost under ADT was lower than

SDT for different values of CMR. Note that the per-
formance difference between ADT and SDT, as shown

in Fig. 4 was smaller, compared with the results shown

in Fig. 3 (especially when the value of CMR was large).

It was because the total management cost consisted of

both location update cost and paging cost. Under ADT

if a cell boundary crossing did not generate any location

database update, then the system might require to

search for the callee. This incurred a higher overhead for
locating a client.

Fig. 5 shows the location update cost when the PABR

and BOCNUCOR methods were used for location

databases reorganization as compared with the case

without reorganization (static LDB). In this set of

experiments, we used SDT for generating location

updates. As shown in Fig. 5, the location update costs

using the reorganization methods BOCNUCOR and
PABR were consistently lower than the case without

reorganization (static LDB). The improvement was

greater when a smaller CMR was used. When a larger

CMR value was used, the mobile clients in the system

moved less frequently. Therefore, the total location

management cost would be smaller, and the saving in

location update cost would be smaller in BOCNUCOR

and PABR. The performance of the two methods PABR
and BOCNUCOR was similar, as shown in Fig. 5. Al-

though they used different methods for deriving good
0

100

200

300

400

500

600

700

1 1.25 1.5 1.75 2

Th
ou

sa
nd

s

Mean value of CMR

Lo
ca

tio
n 

up
da

te
 c

os
t

(p
er

 ti
m

e 
un

it)

Static LDB
BOCNUCOR
PABR

Fig. 5. Location update cost.
structures in organizing the location databases, both

them could generate results close to the optimal one.
Fig. 6 shows the location update cost under the re-

organization methods BOCNUCOR and PABR were

used with ADT for generating location updates. Con-

sistent with our expectation and the results shown in

Fig. 5, the location update cost was smaller when the

reorganization methods were applied. Furthermore,

the reduction in update cost was great, compared with

the case when SDT was used.
7. Conclusion

Maintaining the real-time locations of mobile clients

is essential to many new mobile computing systems. In

this paper, we study how to improve the system per-

formance over a hierarchical location database structure

when a distance-based location update policy is used for

generating location updates. Although a hierarchical

database structure is more scalable, compared with a

two-tier location database structure, the cost for loca-
tion update can be very high when a distance-based

method is adopted. The cost for location update de-

pends on the distance between the callers and the callees,

and it can cause serious penalty to the system perfor-

mance. In this paper, a cost-based method is proposed

for deriving the optimal distance threshold. The objec-

tive is to minimize the total update cost and location

management cost. Furthermore, under the existing hi-
erarchical location database scheme, the tree structure

of the location databases remains static. It cannot be

adaptive to the changes on the mobility patterns of the

mobile clients. To solve the problem, we present a re-

organization strategy in the second part of the paper to

restructure the hierarchical tree of location databases

according to the mobility patterns of the clients. The

objective is to minimize the location management cost.
Simulation experiments have been performed to inves-



G.-H. Li et al. / The Journal of Systems and Software 69 (2004) 159–171 171
tigate the performance of the proposed method for de-

riving the optimal distance threshold and the reorgani-

zation strategy. Based on the results, we find out that the

proposed methods can effectively reduce the location

management cost.
References

Das, S.K., Sen, S.K., 1999. Adaptive location prediction strategies

based on a hierarchical network model in a cellular mobile

environment. The Computer Journal 42 (6), 473–486.

Gok, G., Ulusoy, €OO., 2000. Transmission of continuous query results

in mobile computing systems. Information Sciences 125 (1–4), 37–

63.

Levy, H., Naor, Z., 1999. Active tracking: locating mobile users in

personal communication service networks. Wireless Network 5 (6),

467–477.

Mouly, M., Pautet, M.B., 1992. The GSM System for Mobile

Communication, Cell and Systems, Telecom Publishing.

Pitoura, E., Fudos, I., 1998. An efficient hierarchical scheme for

locating highly mobile users. In: Proceedings of the 6th ACM

International Conference on Information and Knowledge Man-

agement (CIKM98), pp. 218–225.

Pitoura, E., Samaras, G., 2001. Locating objects in mobile computing.

IEEE Transactions on Knowledge and Data Engineering 13 (4),

571–592.

Plassmann, D., 1994. Location management strategies for mobile

cellular networks of 3rd generation. In: Proceedings of 44th IEEE

Vehicular Technology Conference, pp. 649–653.

Rose, C., 1996. Minimizing the average cost of paging and registration:

a timer-based method. Wireless Network 2 (2), 109–116.

Rose, C., Yates, R., 1996. Minimizing the average cost of paging under

delay constraints. Wireless Network 2 (3), 109–116.

Wan, G., Lin, E., 1999. Cost reduction in location management using

semi-realtime movement information. Wireless Network 5 (5), 245–

256.

Xie, H., Tabbane, S., Goodman, D., 1993. Dynamic location area

management and performance analysis. In: Proceeding of 43rd

IEEE Vehicular Technology Conference, pp. 536–539.

Xiong, M., Ramamritham, K., Stankovic, J.A., Towsley, D., Siva-

sankaran, R., 2001. Scheduling transactions with temporal con-

straints: exploiting data semantic. IEEE Transactions in

Knowledge and Data Engineering 14 (5), 1155–1166.
Li Guohui, he got his Ph.D. degree in 1999 in Huazhong University of
Science and Technology (HUST) in China. Currently, he is an Asso-
ciate Professor in the School of Computer Science and Technology in
HUST. His main research interests include Active Database Systems,
Real-Time Database Systems and Mobile Computing Systems.

Lam Kam-Yiu received the B.Sc. (Hons) degree in Computer Studies
with distinction and Ph.D. degree from the City University of Hong
Kong in 1990 and 1994, respectively. He is currently an Associate
Professor in the Department of Computer Science, City University of
Hong Kong. He has served as a program committee member and
reviewer for conferences on real-time systems, mobile computing and
databases, including the International Workshop on Real-time Data-
bases, the International Workshops on Active, Real-time and Tem-
poral Database Systems, the International Conference on Real-time
Computing and Applications and the International Conference on
Mobile Data Access. He is also a reviewer for international journals
including the IEEE Transactions on Computers, IEEE Transactions
on Data and Knowledge Engineering, IEEE Transactions on Parallel
and Distributed Systems, Real-Time Systems, IEEE Multimedia,
Journal of Real-Time Systems, The Computer Journal, the Informa-
tion Processing Letters and the Journal of Systems and Software. His
current research interests are real-time database systems, real-time
active database systems, location–dependent continuous query pro-
cessing, mobile computing and distributed multimedia systems. He was
the Guest Editor of the Journal of Systems and Software on the special
issue of Real-time Active Database Systems. He is a member of the
IEEE.

Tei-Wei Kuo received B.S.E. degree in Computer Science and In-
formation Engineering from National Taiwan University in Taipei,
Taiwan, in 1986. He received the M.S. and Ph.D. degrees in computer
sciences from the University of Texas at Austin in 1990 and 1994,
respectively. He is currently a Professor in the Department of Computer
Science and Information Engineering of the National Taiwan Univer-
sity, Taiwan, ROC. He was an Associate Professor in the Department
of Computer Science and Information Engineering of the National
Chung Cheng University, Taiwan, ROC, from August 1994 to July
2000. The research interest of him includes real-time databases, real-
time process scheduling, real-time operating systems, and embedded
systems. He is the Program Co-Chair of IEEE 7th Real-Time Tech-
nology and Applications Symposium, 2001, and an Associate Editor of
the Journal of Real-Time Systems since 1998. He has consulted for
government and industry on problems in various real-time systems
design. He is a member of the IEEE computer society.

Shi-Wu Lo received the B.S.E. degree in Computer Science and En-
gineering from Yuan Ze University in Chungli, Taiwan, ROC, in 1998.
He received the M.S. degree in Computer Science from the National
Chung Cheng University, Taiwan, ROC, in 2000. He is currently a
candidate for a doctor degree in the Department of Computer Science
and Information Engineering of the National Taiwan University,
Taiwan, ROC. His research interest is on real-time and embedded
systems.


	Location management in cellular mobile computing systems with dynamic hierarchical location databases
	Introduction
	Related work
	Cellular mobile network and location databases model
	Location update generation--a cost-based method
	Basic principles and definitions
	Cost-based distance threshold calculation

	Location database reorganization
	Organization problem
	Reorganizing location database structure
	The procedure
	Mobility matrix transformation
	Location database clustering
	Location databases reorganization
	Matrix distribution and computation cost


	An example

	Performance evaluation
	Simulating system model, parameters setting and performance metrics
	Experiment results

	Conclusion
	References


