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Abstract

This paper presents a new design of adaptive fuzzy variable structure control to solve the traditional problem of model
reference adaptive control (MRAC) for a class of single-input, single-output minimum-phase uncertain nonlinear systems
via backstepping. Instead of taking the tedious coordinate transformation and yielding a “hard” high-gain controller, we
introduce smooth B-spline-type membership functions into the controller so as to compensate for the uncertainties much
“softer”, i.e., in a much smoother and locally weighted manner. To be rigorous, it is shown that the stability of the
closed-loop system can be assured and the tracking error can globally approach to an arbitrary preset dead-zone range. In
order to demonstrate the e6ectiveness of the developed novel controller, an example is extensively simulated to provide
quite satisfactory performance. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Based on the di6erential geometrical approach, output feedback control problems of a;ne nonlinear sys-
tems subject to some coordinate-free conditions can be solved by adaptive controller design via a backstepping
approach which can be employed to yield global asymptotical stability either through some linear parame-
terization process [8,9] or nonlinear one [10]. For more general and challenging problems, involving system
uncertainties which are not lineariable, the above-mentioned adaptive control may not achieve the control goal
of model reference adaptive control (MRAC). Furthermore, it is well known that variable structure control
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(VSC) is invariant to disturbances and parametric uncertainties based on a simple realization [2]. However,
discontinuous control in VSC is not realizable via backstepping approach based on Lyapunov stability theory
employing the so-called “hard” high-gain control laws which yields undesirable chattering. This is because
during the backstepping procedure, the foregoing non-smooth controller will harden the subsequent controllers,
resulting in excessively large control gains. This kind of problem can be resolved by taking “soft” control
laws by using smooth controller design with embedded arbitrarily small dead-zone range [3]. However, a
systematic approach is lacking for enhancing the smoothness of the controllers.
On the other hand, fuzzy-rule-based modeling can now play a role as a so-called universal approximator

[16,11], which can facilitate parameterization of vague system or uncertain systems. This motivates some
researches on combining fuzzy control techniques with nonlinear control theories [1] such as adaptive fuzzy
control [6] and fuzzy sliding mode control [14,4]. Besides, fuzzy control can also provide the smoothness
by selecting smooth membership functions [7] such as Gaussian functions and splines (in particular, B-
spline) with arbitrary order [15,17]. Furthermore, fuzzy control can approximate the variable structure con-
trol [12,13]. In this paper, an adaptive fuzzy variable structure controller employing smooth membership
functions and backstepping concept is hereby systematically developed to yield improved tracking perfor-
mance relative to that from the conventional high-gain controller. We choose the smooth B-spline basis
functions as the membership functions in the paradigm of fuzzy approximation [5]. This choice is due to
the fact that nonlinear functions whose feature are mostly strongly local can be represented by smooth
and compact support [6]. Given such smooth B-spline-type membership functions, the proposed adaptive
fuzzy variable structure controller with a dedicated structure can adaptively compensate for the system un-
certainties, in a smooth and locally weighted manner, but not to evolve into a global “hard” high-gain
controller [3].
The organization of the paper is as follows. Section 2 formulates the problem to be investigated and intro-

duces the output-feedback variable structure control based on backstepping when all the necessary bounding
functions can be evaluated. Section 3 introduces the output-feedback variable structure control based on back-
stepping when all the necessary bounding functions can be evaluated. In Section 4, we propose a novel
adaptive fuzzy variable structure to solve the problems in the presence of system uncertainties while avoiding
getting into a hard high-gain controller. Finally, Section 5 makes some concluding remarks.

2. Problem formulation

Consider an a;ne nonlinear system of the form as follows:

ẋ = f(x; �) + g(x; �)u;

y = h(x; �) (1)

where x∈R n; u∈R , y∈R , and � (∈
�: a compact set) is an unknown constant parameter vector which
characterizes the smooth nonlinear function vectors f, g, and scalar h, satisfying f(0; �)= 0, g(0; �) �= 0 and
h(0; �)= 0; ∀�∈
�.
If the nonlinear system described in (1) can satisfy some geometric coordinate-free conditions (deNned in

[9]), then there exists a coordinate transformation z=T (x) such that the nonlinear system can be transformed
into the following output-feedback form:

ż = Az + �(y; �) + b(�)�(y)u;

y = cTz; (2)
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where

A =


0 1 0 : : : 0
0 0 1 : : : 0
...

...
...
. . .

...
0 0 0 : : : 1
0 0 0 : : : 0

 ; �(y; �) =

�1(y; �)
...

�n(y; �)

 ; b(�) =

 b1(�)
...

bn(�)

 ; c =


1
0
...
0

 :

Furthermore, system (1) is assumed with strong relative degree � [9]. Here, our control goal is to force the
output y to follow a desired trajectory ym, constructed by the following reference model:

żm = Aczm + bmrm;

ym = cTzm; (3)

where

Ac =


− a1 1 0 : : : 0
− a2 0 1 : : : 0
...

...
...
. . .

...
− an−1 0 0 : : : 1
− an 0 0 : : : 0


is a stable Hurwitz matrix with constant parameters a1; a2; : : : ; an and, constant vector bm= [0; : : : ; bm�; : : : ;
bmn]T and rm ∈L∞ is a bounded reference input, or ym=Wm(s)rm with Wm(s)= (bm�sn−� + · · ·+ bmn)=(sn +
a1sn−1 + · · ·+ an) so that ym ∈L∞.
Given such tracking problem, we proceed with rearranging form (2) by the following:

ż = Az − ay + ay + �(y; �) + b(�)�u

= Acz + ay + �(y; �) + b(�)�u;

y = cTz; (4)

where a= [a1; a2; : : : ; an]T and the input–output transfer function is deNned as

W (s) = cT(sI − Ac)−1b =
b�sn−� + · · ·+ bn

sn + a1sn−1 + · · ·+ an
: (5)

Furthermore, we deNne the error vector e= zm − z, and then the error model can be derived as follows:

ė = Ace − ay − �+ bmrm − b�(y)u;

eo = ym − y = cTe: (6)

Remark. Apparently, to force eo approaching zero can realize our control goal. To achieve this goal, the
intuitive control e6orts to solve the tracking problem are either to cancel or to make the system robust to the
nonlinear term �(y; �) by properly designing the control input u through the input gain b(�)�(y). However,
it is di;cult to exactly construct the transformation T (x), satisfying the above-mentioned coordinate-free
conditions. Therefore, in this paper we propose the robust variable structure controller design to compensate
for unknown nonlinear term �, instead directly cancelling �. In order to make the model tracking problem
more tractable, we make the following reasonable assumptions.
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Assumptions.

(A1) b= [b1; : : : ; bn]T is a vector of Hurwitz coe;cients of degree �, i.e., the associated polynomial

b1sn−1 + b2sn−2 + · · ·+ bn

is of degree n − � (i.e., b1 �=0 if �=1 or b1 = · · · = b�−1 = 0; b� �= 0, if �¿1) and is Hurwitz.
(A2) The sign of b�(�) is known and constant for any �∈
�, 16�6n.
(A3) �(y; �) can be expressed as a Taylor’s series expansion in y for any �∈
�, i.e., �(y; �)=�(y0; �) +∑∞

n=1[(1=n!)(@
(n)�=@yn)|y=y0 (y − y0)n]:

(A4) ‖�(y; �)− �(y0; �)‖6l�(y − y0; y0; �)|y − y0|, for some l�(y − y0; y0; �)¿0.

Based on the former assumptions, T (x) may not need to be known, but the control problems can still be
formulated as a backstepping-based tracking problem.
To derive the backstepping-based error model, Nrst we deNne a stable Nlter

W−1
f (s) =

1
(s+ !1) · · · (s+ !i) · · · (s+ !�−1)

; (7)

where �¿1 (the case of �=1 can be intuitively derived), !i¿0, characterizing the input–output relationship
#1 =W−1

f (s)�(y)u. Based on the Nlter (7) and the above assumptions, we can apply the tranformation de-
veloped by Marino and Tomei [10] to the error model (6) and yield the backstepping-based error model as
follows (derived in Appendix A):

ėo = $1 +
d2(�)
d1(�)

eo − &(eo; ym; �)− a1ym − d1#1; (8)

where $1 is a new auxiliary variable, d= [d1; : : : ; dn] is a constant vector, deNned in Appendix A, and

&(eo; ym; �) = �1(ym − eo; �) = �1(y; �): (9)

Example 2.1. Consider the system (see [10]) as follows:

ẋ1 = x2 + x�
1 ;

ẋ2 = u;

y = x1:

The system is a relative degree �=2 system and matches the nonlinear system (2). The desired model
reference trajectory can be given as ym(t)= (1=(s2 + 2s + 1))rm(t), and rm(t) is given as a step input, i.e.,
rm(t)= 1. A stable Nlter (7) is given as 1=(s + 1) and we can derive the backstepping-based error model as
follows:

ėo = $1 + eo − (ym − eo)� − 2ym − #1;

#̇1 = − #1 + u:

3. Output-feedback variable structure control via backstepping

It is well known that applying the controller design based on the backstepping procedure can solve the
control problem with the error model (8) [10]. The concepts of the backstepping control are to Nrst design
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the designated controller of the Nrst desired Nlter state, #∗1 , which can guarantee that the output tracking error
eo given in Eq. (8) can approach zero, and then to design the designated controller of the second desired
Nlter state, #∗2 , which can realize #1 as #∗1 subject to the equation

#̇1 = −!1#1 + #2: (10)

Similarly, the controller design back steps to the designated control input controller �(y)u= #∗� so that #�−1
can approach #∗�−1.
Now, we design a variable structure controller #∗1 as follows:

#∗1 = sgn(d1)k11eo + sgn(d1)k12(t) sgn(eo) (11)

with smooth functions k11(t) and k12(t) satisfying the following expressions:

k11(t)¿
1

|d1|

(∣∣∣∣d2d1
∣∣∣∣+ (12 + ‖P‖(‖*‖+ l�))2

q0
+ �,1

)
;

k12(t)¿
1

|d1| (‖$̂‖+ |&|+ |a1||ym|); (12)

where q0, ,1¿0 are positive constants, P is a positive deNnite matrix deNned in Appendix B, and ‖$̂‖ is
constructed from the following dynamic equation:

˙̂$ = -$̂+.(ym; �) +.r(ym; rm) (13)

with initial conditions $̂(0)= $̂0, where -, . and .r are deNned in Appendix B. Apparently, system (13) is
BIBO stable, since .(ym; �) and .r(ym; rm) are bounded for the bounded ym, �, and rm, resulting in $̂∈Ln−1

∞ .
This control law will be shown e6ective to the tracking control problem via the following proposition.

Proposition 3.1. If #1 = #∗1 as given in Eq. (11); then the output tracking error of system (6) will be driven
to zero globally and exponentially.

Proof. See Appendix B.1.

To realize control law (11), apparently, the switching function sgn(eo) will render #∗1 to be discontinuous
at eo=0. This fact often causes #∗1 to be unrealizable when it comes to design the subsequent designated
controller #∗2 . To resolve this problem, it is straightforward to modify the previous controller by embedding
a smooth compensator for a speciNed dead-zone range, such as a saturation-type compensator or a hyper
tangent-type compensator. Then, this controller can be expressed as follows:

#†1 = sgn(d1)k1(eo; �; /e) =
{
sgn(d1)[k11(t)eo + k12(t) sgn(eo)] if eo =∈ [−/e; /e];
ks1(eo; �; /e) otherwise;

(14)

where ks1(·) is a smooth function to make #†1 smooth, and [−/e; /e] is a designated dead-zone range which
can be arbitrarily set. Then, the following proposition is valid.

Proposition 3.2. If the control law #1 = #†1 is given as in Eq. (14); then the tracking error of system (16)
will be driven to the dead zone range [−/e; /e] globally and exponentially.

Proof. See Appendix B.2.
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However, in fact #1 is driven by #2 according to the Nrst-order equation (10), and hence we deNne the
di6erence between the desired smooth Nlter state #†1 and the real Nlter state #1 as #̃1 = #†1 − #1, so that its
time derivative can be derived from (10) as follows:

˙̃#1 = #̇†1 − #̇1 =
@#†1
@eo

ėo − !1#̃1 + !1#
†
1 − #2: (15)

As a result, the goal of the control law #2 is apparently to force #1 to achieve #†1 and, hence, we derive the
variable structure control #∗2 as follows:

#∗2 = !1#
†
1 + k21(t)#̃1 + k22(t) sgn(#̃1); (16)

where smooth functions k21(·) and k22(·) satisfy the following conditions:

k21(t)¿ |d1|
∣∣∣∣∣@#†1@eo

∣∣∣∣∣+ (d1 + (d2=d1)(@#
†
1=@eo))2

4,1
+

1
4,2

(
@#†1
@eo

)2

;

k22(t)¿

∣∣∣∣∣@#†1@eo

∣∣∣∣∣
(
‖$̂‖+ |&|+ |a1||ym|+ |d1||#†1|+

∣∣∣∣d2d1
∣∣∣∣/e

)
; (17)

so that the following proposition will be valid.

Proposition 3.3. If #2 = #∗2 is given as in (16); then the tracking error of system (6) will converge to the
dead-zone range [−/e; /e] globally and exponentially.

Proof. See Appendix B.3.

However, the controller given in (16) again faces the problem with discontinuity so that, similar to (14),
we replace controller (16) with a smooth compensator with the dead-zone range [−/#1 ; /#1 ] as follows:

#†2 = !1#
†
1 + k2(eo; #̃1; �; /e; /#1 ); (18)

where

k2(eo; #̃1; �; /e; /#1) =

{
k21(t)#̃1 + k22(t) sgn(#̃1); #̃1 �∈ [−/#1; /#1];

ks2(eo; #̃1; �; /e; /#1) otherwise
(19)

with ks2(·) being a smooth function in order to make #†2 smooth. By the same token, the controller design
back steps to the equation containing the real control input:

#̇�−1 = − !�−1#�−1 + �(y)u: (20)

However, unfortunately, the above controller, can realize its designated controller only up to the corresponding
dead-zone ranges. For example, the controller #†2 given in (18) can realize #†1 given in (14) only up to the
dead-zone range [−/#1; /#1]. This fact results in which the former proposition will no longer hold. Thus, we
will require additional compensators to compensate for the backward dead-zone ranges, yielding the following
set of designated controllers (desired Nlter states):

#†1 = sgn(d1)[k1(eo; �; /e) + k�1eo];

#†2 = !1#
†
1 + k2(eo; #̃1; �; /e; /#1 ) + k�2(eo; �; /e; /#1; /#2)#̃1;
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...

#†�−1 = !�−2#
†
�−2 + k�−1(eo; #̃1; : : : ; #̃�−2; �; /e; /#1; : : : ; /#�−2)

+ k��−1(eo; #̃1; : : : ; #̃�−2; �; /e; /#1; : : : ; /#�−1)#̃�−2;

�(y)u = #†� = !�−1#
†
�−1 + k�(eo; #̃1; : : : ; #̃�−1; �; /e; /#1; : : : ; /#�−1); (21)

where k3(·); : : : ; k�(·) and k�1(·); : : : ; k��−1(·) are the designated compensators to be deNned in Appendix C,
the tracking errors are deNned as #̃2 = #†2− #2; : : : ; #̃�−1 = #†�−1− #�−1 corresponding to the dead-zone ranges
[−/#2; /#2]; : : : ; [−/#�−1; /#�−1], respectively, and

#̃j/ =

{
#̃j as #̃j ¡ −/#j or #̃j ¿/#j;

0 otherwise (i:e: #̃j ∈ [−/#j; /#j]);
(22)

so that

˙̃#j/ =
˙̃#j for #̃j/ �= 0 for j = 1; : : : ; � − 1:

Then, the following theorem is valid.

Theorem 3.1. If the control law �(y)u= #†� is given as in (21); then the system state in (4) is guaranteed
to be bounded and the tracking error of system (6) will converge to the dead-zone range [−/e; /e] globally
and exponentially.

Proof. See Appendix D.

3.1. Computer simulation

In this subsection, we simulate controller (21) on the system introduced in the Example shown in Section
2. Here, �=2 is given. Simulation is run for the initial condition x(0)= [0:5; 0] by Matlab and the control
law can be easily derived from (12), (17), (21) and (63) by setting /e=/#1 = 0:1, ,1 = 0:5, ,2 = 0:5, P=1,

q0 = 1, ‖$̃‖62, ‖*‖ = 1, l�6e2o +
1
4 + 2, as follows:

#†1 =
(
e2o + 6

3
4

)
eo + (6 + 2e2o)

tanh(21eo)
tanh(21/e)

;

u= #†1 +

@#†1
@eo

+
(1 + @#†1=@eo)2

2
+ 2

(
@#†1
@eo

)2
 #̃1 +

@#†1
@eo

7 + 2e2o + /e +

(
#†1
2

)2
 tanh(22#̃1)
tanh(22/#1)

; (23)

where

@#†1
@eo

= 3e2o + 6
3
4 + 4eo

tanh(21eo)
tanh(21/e)

+
(6 + 2e2o)
tanh(21/e)

421
(e21eo + e−21eo)2

¿ 0

and 21 = 10, 22 = 5. Fig. 1(a) shows that the tracking errors cannot only converge into the dead-zone range
but also approach zero. Fig. 1(b) shows that the system state x2 can be bounded. Figs. 1(c) and (d) show
that the designated Nlter controller #†1 and the Nnal control input u are smooth.
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Fig. 1. The simulation results for the nonlinear controller.

Remark. While the given designated controllers are not smooth, then the subsequent designated controllers
will be hardened with high gain since the controllers contain the di6erential terms, e.g., @#†1=@eo, @#†2=@eo,
@#†2=@#̃1; : : : ; @#

†
�−1=@#̃�−2 [3]. Besides, it is di;cult to realize these designated controllers when considering

the uncertainties of the controlled system. In the following section, we will propose an adaptive fuzzy variable
structure control to solve the above-mentioned problem.

4. Adaptive fuzzy variable structure control

Consider a fuzzy controller uf = [uf1; : : : ; uf�]
T, consisting of � multi-input single-output (MISO) fuzzy

controllers, which are respectively characterized by

uf1, uf1(w1) : 
w1 → 	;

uf2, uf2(w1; w2) : 
w1 × 
w2 → 	;

...

ufi , ufi(w1; : : : ; wi) : 
w1 × 
w2 × · · · × 
wi→ 	;

...

uf�, uf�(w1; : : : ; w�) : 
w1 × · · · × 
w� →	;
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Fig. 2. The mth-order B-spline basis for m = 0; 1; 2, and 3.

where ufi(w1; : : : ; wi) is the ith fuzzy controller; w= [w1; : : : ; w�]T = [eo; #̃1; : : : ; #̃�−1]T and w1; : : : ; w� are de-
Nned as input fuzzy variables; and 
w1≡[−4/1; 4/1], 
w2≡ [−4/2; 4/2]; : : : ; 
w� ≡ [−4/�;4/�], with 4
being an arbitrarily large positive integer, and /1; : : : ; /� being some positive real numbers. Here, each of
the membership functions is given as an mth (m¿2)-order multiple dimension central B-spline function (as
depicted in Fig. 2), the jth dimension of which is deNned as follows:

Nmj(x) =
m+1∑
k=0

(−1)k
m!

(
m+ 1

k

)[(
x +

(
m+ 1
2

− k
)

/j

)
+

]m

; (24)

where we deNne the notation

x+ := max(0; x): (25)

The mth-order B-spline type of membership function has the following properties:

• an (m − 1)th order continuously di6erentiable function, i.e., Nmj(x)∈Cm−1;
• local compact support, i.e., Nmj(x) �= 0 only for x∈ [− ((m+ 1)=2)/j; ((m+ 1)=2)/j];
• Nmj(x) ¿ 0 for x∈ (− ((m+ 1)=2)/j; ((m+ 1)=2)/j);
• symmetric with respect to the center point (zero point);
• ∑∞

i1 =−∞ · · ·∑∞
ij =−∞ Nm1(x − i1/1) · · ·Nmj(x − ij/j)= 1; ∀x∈	; j∈Z+.

Based on the deNnition of the local compact support, the above property can be rewritten as∑
i1∈Ic1(x)

· · ·
∑

ij∈ Icj(x)

Nm1(x − i1/1) · · ·Nmj(x − ij/j) = 1; ∀x ∈ 	; j ∈ Z+; (26)

where Icj(x) is an integer set, deNned as follows:

Icj(x)≡
{
i:

x
/j

− m+ 1
2

¡ i ¡
x
/j
+

m+ 1
2

; i ∈ Z; j ∈ Z+
}

: (27)
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Then the membership functions for the jth fuzzy variable wj are deNned as follows:

7ji(wj) = Nmj(wj − i/j); i = −4; : : : ; 0; : : : ; 4 (28)

whose compact support is given as


wji
=
[(

i − m+ 1
2

)
/j;

(
i +

m+ 1
2

)
/j

]
; i = −4; : : : ; 0; : : : ; 4; (29)

which means that wj ∈ int (
wji
) implies that 7ji(wj) ¿0. Apparently, we can get 
wj ≡

⋃
i∈{−4;:::;4}
wji

≡ [−4/j;4/j]. Besides, it is possible that 
wji
∩
wj k

�= ∅, for some i �= k, i.e., wj can simultaneously
fall into several compact supports. It is interesting to note that the indices labeling those supports by the
deNnition of (27) can be reexpressed as

Icj(wj)≡ {i: wj ∈ int(
wji
); i ∈ Z; −46i64}

≡ {i: 
wji
⊂
cj (wj)}; (30)

where 
cj(wj) is the union set of those compact supports, deNned as follows:


cj(wj) ≡
⋃

i∈Icj(wj)


wji
; (31)

which means that i∈ Icj(wj) if and only if wj ∈ 
cj(wj).
As a general representation of the MISO fuzzy controller with center average defuzziNer, inference with

product compositional operator, and singleton fuzziNer [16], we can represent the above fuzzy controllers as
follows:

uf1 =

∑4
i1=−4 71i1 (w1)8i1∑4
i1=−4 71i1 (w1)

=
4∑

i1=−4

9i1 (w1)8i1 =
∑

i1∈Ic1(w1)

9i1 (w1)8i1 = 8(1)
T
9(1);

...

ufk =

∑4
i1=−4 · · ·∑4

ik=−4 71i1 (w1) · · · 7k ik (wk)8i1i2···ik∑4
i1=−4 · · ·∑4

ik=−4 71i1 (w1) · · · 7k ik (wk)

=
4∑

i1=−4

· · ·
4∑

ik=−4

9i1···ik (w1; : : : ; wk)8i1···ik

=
∑

i1∈Ic1(w1)

· · ·
∑

ik∈Ick (wk )

9i1···ik (w1; : : : ; wk)8i1···ik = 8(k)
T
9(k);

...

uf� =

∑4
i1=−4 · · ·∑4

i�=−4 71i1 (w1) · · · 7�i�
(w�)8i1i2···i�∑4

i1=−4 · · ·∑4
i�=−4 71i1 (w1) · · · 7�i�

(w�)

=
4∑

i1=−4

· · ·
4∑

i�=−4

9i1···i�(w1; : : : ; w�)8i1···i�

=
∑

i1∈Ic1(w1)

· · ·
∑

i�∈Ic�(w�)

9i1···i�(w1; : : : ; w�)8i1···i� = 8(�)
T
9(�); (32)
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Fig. 3. The network implementation of fuzzy controllers.

where i1; : : : ; ik ; : : : ; i� are integer indices, 9i1···ik (w1; : : : ; wk) is the fuzzy basis function of the kth fuzzy
controller associated with the indices i1 · · · ik , deNned as follows:

9i1···ik (w1; : : : ; wk) =
71i1 (w1) · · · 7k ik (wk)∑4

i1=−4 · · ·∑4
ik=−4 71i1 (w1) · · · 7k ik (wk)

=
71i1 (w1) · · · 7k ik (wk)∑

i1∈Ic1(w1)
· · ·∑ik∈Ick (wk ) 71i1 (w1) · · · 7k ik (wk)

;

8i1···ik is the parameter of the kth fuzzy controller associated with the indices i1 · · · ik ; 9(k) and 8(k) are the
vectors consisting of 9i1···ik and 8i1···ik for i1 =−4; : : : ; 4; : : : ; ik =−4; : : : ; 4 , respectively. The proposed fuzzy
controller (32) can be implemented as a network implementation as shown in Fig. 3 and the block diagram
of the overall closed-loop system is depicted in Fig. 4. Furthermore, we realize the adaptive fuzzy variable
structure control law as an integrated control consisting of the former fuzzy control vector uf and a supervised
control vector R#= [#1; : : : ; #�]T as follows:

if w1 ∈ 
w1; then #†1 = sgn(d1)(uf1 + kf1w1); otherwise #†1 = #1;

if w2 ∈ 
w2; then #†2 = !1#
†
1 + uf2 + kf2w2; otherwise #†2 = #2;

...

if w�−1 ∈ 
w�−1; then #†�−1 = !�−2#
†
�−2 + uf�−1 + kf�−1w�−1; otherwise #†�−1 = #�−1;

if w� ∈ 
w�; then #†� = !�−1#
†
�−1 + uf� + kf�w�; otherwise #†� = #�; (33)
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Fig. 4. The block diagram of the closed-loop system with �¿2.

where kf1; : : : ; kf� are some positive constants and

#1 = sgn(d1)k1(t);

#2 = !1#
†
1 + k2(t);

...

#� = !�−1#
†
�−1 + k�(t); (34)

where sgn(kj)= sgn(wj) and |kj(t)|¿|kj(t) + k�j(t)wj|, for j=1; : : : ; �, with kj(t) and k�j(t) being deNned in
(14), (19), (61) and (63).

Remark. The supervised compensator R# is to assure that if the jth input fuzzy variable wj =∈
wj, the integrated
control can drive wj into the compact set 
wj, and, in turn, the jth fuzzy controller ufj can then be applied to
derive wj further into the prespeciNed dead-zone range [−/wj ; /wj ] for wj ∈
wj . Apparently, R# is a high-gain
compensator, and instead we can set the compact sets 
wj’s to be su;ciently large to avoid applying R# so
frequently. Such strategy will however result in a trade-o6 which creates more fuzzy rules.
Here, the dead-zone ranges are deNned as the compact supports of membership functions 714 (w1); : : : ; 7�4 (w�),

namely,


w10 ≡
[
−m+ 1

2
/1;

m+ 1
2

/1

]
≡ [−/w1; /w1] ≡ [−/e; /e];

...


w�0 ≡
[
−m+ 1

2
/�;

m+ 1
2

/�

]
≡ [−/w�; /w�] ≡ [−/#�−1; /#�−1]: (35)

Then, the following proposition can be established.
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Proposition 4.1. If the control law �(y)u= #†� is given as in Eqs. (32)–(34); then there exist a class of the
fuzzy controller vector uf given as in (32) which can drive the tracking error of system (6); w1 (i.e.; eo);
into the dead-zone range [−/w1

; /w1
] globally and exponentially.

Proof. To prove this, we have to assure that uf satisNes the two properties, namely, (a) sgn(ufj)=sgn(wj),
and (b) |ufj|¿|kj + k�jwj|, when wj ∈
wj\
wj 0

, for j=1; : : : ; �, respectively, from variable structure control

theory, by investigating especially Eqs. (14), (19), (61) and (63), presented in the previous section.

Proof of (a): From the deNnition Icj in (27), when wj ∈
wj\
wj 0
, it follows that

Icj(wj)⊂{−4; : : : ;−1}; wj/ ¡ 0
(
i:e: wj ¡ −m+ 1

2
/j

)
;

Icj(wj)⊂{1; : : : ; 4}; wj/ ¿ 0
(
i:e: wj ¿

m+ 1
2

/j

)
(36)

for j=1; : : : ; �, respectively, where {−4; : : : ;−1} and {1; : : : ; 4} are both integer sets. Then, the representation
of the jth fuzzy controller can be rewritten as follows:

ufj(w1; : : : ; wj) =


∑4

i1=−4 · · ·∑4
ij−1=−4

∑−1
ij=−4 9i1···ij (w1; : : : ; wj)8i1···ij as wj/ ¡ 0;∑4

i1=−4 · · ·∑4
ij−1=−4

∑4
ij=1 9i1···ij (w1; : : : ; wj)8i1···ij as wj/ ¿ 0:

Since 9i1···ij (w1; : : : ; wj) is always positive, the sign of ufj
can be determined by 8i1···ij ’s. Hence, we set

8i1···ij¡0, for −46ik64; k �= j; −46ij6 − 1 and 8i1···ij¿0, for −46ik64; k �= j; 16ij64 . As a
result, we can conclude that sgn(ufj)= sgn(wj), for j=1; : : : ; �.
Proof of (b): Given the following deNnitions for j=1; : : : ; �:

kjmax(w1; : : : ; w�) = max

{
sup

x∈
c1(w1)×···×
cj(wj)
|kj(x; �; /1; : : : ; /j)

+ k�j(x; �; /1; : : : ; /j; /j+1)xj|; x ∈ 	j} ;

8jmin(w1; : : : ; w�) = min{|8i1···ij |; i1 ∈ Ic1(w1); : : : ; ij ∈ Icj(wj)};
where 
c1(w1); : : : ; 
c�(w�) are deNned as in expression (31), kj(x; �; /1; : : : ; /j) and k�j(x; �; /1; : : : ; /j) are
deNned as in (14), (19), (61) and (63). Furthermore, by setting 8jmin¿kjmax, we will obtain the following
inequality:

|8i1···ij |¿8jmin¿kjmax for i1 ∈ Ic1(w1); : : : ; ij ∈ Icj(wj):

By virtue of the fact
∑4

i1=−4 · · ·∑4
ij=−4 9i1···ij =

∑
i1∈Ic1(w1)

· · ·∑ij∈Icj(wj) 9i1···ij =1 and in the cases of wj/ �=0,
for j=1; : : : ; �, we can derive the following result:

|ufj| =
∑

i1∈Ic1(w1)

· · ·
∑

ij∈Icj(wj)

9i1···ij (w1; : : : ; wj)|8i1···ij |

¿
∑

i1∈Ic1(w1)

· · ·
∑

ij∈Icj(wj)

9i1···ij (w1; : : : ; wj)8jmin
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= 8jmin(w1; : : : ; wj)¿kjmax(w1; : : : ; wj)

¿ |kj(t) + k�j(t)wj| as wj/ �= 0
for j=1; : : : ; �. Thus, from Theorem 3.1, we can conclude that w1/ → 0 as t→∞.

Now, deNne the optimal parameter vector of the jth fuzzy controller as follows:

8( j)∗ = argmin

 sup
w1∈
w1 ;:::;wij−1∈
wij−1 ;wj∈
wij

\
wj 0

4∑
i1=−4

· · ·
4∑

ij−1=−4

4∑
ij=−4

9i1···ij 8i1···ij sgn(wj)¿|kj(t) + k�j(t)wj|
}

: (37)

It is, however, that 8( j)∗ may not easily be available due to the complexity of kj(t) and k�j(t); j=1; : : : ; �.
Therefore, the following adaptive law to update the parameters vector 8( j) will be necessary so that the
tracking error can be driven toward the dead-zone range:

8̇
(1)
=
{

rd19(1)(w1)w1/ for w1 ∈ 
w1;
0 otherwise;

8̇
(2)
=
{

r9(2)(w1; w2)w2/ for w1 ∈ 
w1; w2 ∈ 
w2;
0 otherwise;

...

8̇
(�)
=
{

r9(�)(w1; : : : ; w�)w�/ for w1 ∈ 
w1; : : : ; w� ∈ 
w�;
0 otherwise;

(38)

where w1/= eo/; w2/= #1/; : : : ; w�/= #�−1/ are deNned as in (56) and (23). Based on the control law in
(32)–(34), and the adaptive law (38), the system can be shown to achieve appropriate output error convergence
into a prespeciNed dead-zone range. This is summarized and proved in the following theorem.

Theorem 4.1. If adaptive fuzzy variable structure control law is given as in Eqs. (32)–(34) with the adaptive
law (38); then the output tracking error of system (6) will be driven to the dead zone range [−/w1; /w1]
globally and asymptotically.

Proof. DeNne 8̃
( j)
= 8( j)∗ − 8( j), and a new vector :∈	� with the jth element deNned as follows:

:j(w1; : : : ; wj) =
{
1 for w1 ∈ 
w1 ; : : : ; wj ∈ 
wj ;
0 otherwise:

(39)

Then, consider a Lyapunov function candidate

Vf = $̃
T
P$̃+

1
2

�∑
j=1

wj
2
/ +

1
2r

�∑
j=1

8̃(j)
T
8̃(j)

= $̃
T
P$̃+

1
2

�∑
j=1

[
(1− :j)

(
wj
2
/ +

1
r
8̃(j)

T
8̃(j)

)
+ :j

(
wj
2
/ +

1
r
8̃(j)

T
8̃(j)

)]
: (40)
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By applying Theorem 3.1 and Proposition 4.1, we can compute the time derivative of Vf for w1/¿0 as
follows:

V̇f = $̃
T
P ˙̃$+

˙̃
$TP$̃+

�∑
j=1

[
(1− :j)wj/ẇj/ + :j

(
wj/ẇj/ +

1
r
8̃(j)

T ˙̃
8(j)

)]

6− ,1w12/ − ,2‖$̃‖2 −
�∑

i=2

,i+1wi
2
/ + :1d1w1/9

(1)(8̃(1)
T − 8̃(1)

T
)

+
�∑

j=2

[:jwj/9
(j)(8̃(j)

T − 8̃(j)
T
)]

6− ,1w12/ − ,2‖$̃‖2 −
�∑

i=2

,i+1wi
2
/ (41)

and

V̇f6− ,2‖$̃‖2 −
�∑

i=2

,i+1wi
2
/ +

[
1
2 + ‖P‖(‖*‖+ l�)√

q0
w1

]2
+ (� − 1),1w21 for w1/ = 0:

It follows that wj/; 8( j); j=1; : : : ; � and $̃ are bounded and hence, Eqs. (40) and (41) imply

lim
t→∞

∫ t

0
−dVf(<)

d<
d< = Vf(0)− lim

t→∞Vf(t) ¡ ∞
(42)

which results in

lim
t→∞

∫ t

0
w1/2 (<) d< ¡ ∞: (43)

By applying Barbalat’s lemma, we obtain

lim
t→∞ |w1/| = 0: (44)

Remark. The fuzzy controller (32) with the adaptive law (38) possesses the following advantages:
• Locally weighted fuzzy controller: Only rules supported by compact set 
cj are required to be updated,
and hence, those rules are locally weighted.

• Smooth fuzzy controller: Apparently, the fuzzy controller (32) can behave as a smoother controller provided
the di6erential terms @uf1=@w1; @uf2=@w1; : : : ; @uf�=@w� can be made small, which then requires that smoother

membership functions are adopted. Thus, hardening the controllers with high gain in the backstepping
procedure can be naturally avoided here, if we can choose the membership functions to be even smoother
high-order B-spline functions.

4.1. Computer simulation

Consider the developed adaptive fuzzy variable structure control to be applied to the system described in
Section 2, �=2 is assumed to be unknown. The fuzzy controller is synthesized as follows: the Nrst fuzzy
controller for the designated Nlter state #1 takes the tracking error eo as its single input variable w1 whereas
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Fig. 5. The simulation results for the fuzzy controller.

Fig. 6. The bar diagram for the parameters of the Nrst fuzzy controller and control surface.

the second fuzzy controller takes the tracking error eo and output of the Nrst fuzzy controller as two input
variables (w1; w2). The fuzzy rule number of the Nrst fuzzy controller is equal to 24 +1=11 and that of the
second fuzzy controller is equal to 11× 11=121. Moreover, kf1 = kf2 = 10 is assigned. Fig. 5 shows that the
tracking errors can converge into the dead-zone range and the magnitude of the control input is smaller than
Fig. 1(d). Fig. 6(a) shows a bar diagram for the Nnal parameters of the Nrst fuzzy controller after updating.
Apparently, only a half of parameters of fuzzy rules had been updated since eo almost stays within the region
eo¡0 during the task running. Fig. 6(b) shows the smooth control surface of the Nrst fuzzy controller. Fig.
7(a) shows a three-dimensional (3d) bar diagram of the Nnal parameters of the second fuzzy controller after
updating and Fig. 7(b) shows a three-dimensional plot or smooth control surface of the Nrst fuzzy controller.
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Fig. 7. The 3d bar diagram for the parameters of the second fuzzy controller and control surface.

5. Conclusion

In this paper, we proposed a novel adaptive fuzzy variable structure control via backstepping for a class
of SISO nonlinear systems which can solve the traditional model reference adaptive control problem in the
presence of system uncertainties. It was rigorously proved that the stability of the overall system is assured and
the tracking error can be driven to the designated dead-zone range. Besides, with undesirable chattering from
the “hard” high-gain control laws can be avoided due to the adoption of the smooth B-spline-type membership
functions. Salient features of the present work includes that the involved rules are locally weighted and the
output control is rather smooth.

Appendix A

This appendix presents the derivation of the backstepping-based error model (8). First we realize the Nlter
(7) in the state-space form as follows:

#̇ = Af#+ bf�(y)u; # ∈ 	�−1; (45)

where

Af =


−!1 1 0 : : : 0
0 −!2 1 : : : 0
...

...
...
. . .

...
0 0 0 : : : 1
0 0 0 : : : −!�−1

 ; bf =

 0...
1

 ;
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# = [#1; : : : ; #�−1], and #(0) = #0. Then, augment the error model (6) with this Nlter (45) as follows:[
ė
#̇

]
=
[
Ac 0
0 Af

] [
e
#

]
+
[−b(�)

bf

]
�(y)u+

[− ay − �(y; �) + bmrm
0

]
eo = cTe; (46)

which is equivalent to the following:

=̇ = Ac= − ay − �(y; �) + bmrm − d(�)#1;

eo = cT= (47)

from the I=O point of view, where d = [d1; : : : ; dn] is a vector of Hurwitz coe;cients of degree one, derived
from the following transfer function:

W (s)Wf(s) =
b�sn−� + · · ·+ bn

sn + a1sn−1 + · · ·+ an
(s+ !1)(s+ !2) · · · (s+ !�−1)

=
d1sn−1 + · · ·+ dn

sn + a1sn−1 + · · ·+ an
: (48)

Apparently, d1 = b�. After applying the transformation developed by Marino and Tomei [10], we deNne a
new vector $ = [$1; : : : ; $n−1]T as follows:

$1 = =2 − d2(�)
d1(�)

eo;

...

$n−1 = =n − dn(�)
d1(�)

eo; (49)

whereby we can obtain a di6erent dynamic model as shown below:

$̇=


−d2=d1 1 0 · · · 0
−d3=d1 0 1 · · · 0

...
...

...
. . .

...
−dn−1=d1 0 0 · · · 1
−dn=d1 0 0 · · · 0

 $+


(d3=d1)− (d22=d21)
(d4=d1)− (d3d2=d21)

...
(dn=d1)− (dn−1d2=d21)

−dnd2=d21

 eo

+


(d2=d1)�1(y; �)− �2(y; �)
(d3=d1)�1(y; �)− �3(y; �)

...
(dn−1=d1)�1(y; �)− �n−1(y; �)
(dnd1)�1(y; �)− �n(y; �)

+


(d2=d1)a1ym − a2ym
...

(d�=d1)a1ym − (a�ym − bm�rm)
...

(dn−1=d1)a1ym − (an−1ym − bmn−1rm
(dn=d1)a1ym − (anym − bmnrm)


=-$+ *eo +.(y; �) +.r(ym; rm); (50)

where - is apparently a Hurwitz matrix. From assumption (A4), it can be easily veriNed that

‖.(y; �)− .(ym; �)‖6l�(eo; ym; �)|eo| for some l�(eo; ym; �)¿0: (51)
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On the other hand, from transformation (49) and Eq. (47), the output backstepping-based error model (8)
can be easily yielded.

Appendix B

This appendix presents the proof of Propositions 3.1–3.3.

B.1. Proof of Proposition 3.1

First, we deNne $̃= $ − $̂ as the di6erence between $ and $̂, and derive its time derivative as follows:

˙̃$ = -$̃+ *eo +.(y; �)− .(ym; �): (52)

Then, we consider a Lyapunov function candidate

V1 = 1
2e
2
o + $̃

T
P$̃; (53)

where P is a symmetric positive-deNnite matrix which satisNes the following:

-TP + P- = −Q6− (q0 + �,2)I ¡ 0; (54)

where I is an (n− 1)× (n− 1) identity matrix and ,2¿ 0 is a positive constant. By di6erentiating V1 along
the solution trajectories of (8) and (52), we obtain

V̇ 1 = eoėo + $̃
T
P ˙̃$+ ˙̃$

T
P$̃

= eo($̃1 + $̂1) +
d2
d1

eo
2 − eo[&(eo; ym; �) + a1ym]− |d1|k11eo

2

−|d1|k12|eo| − $̃
T
Q$̃+ 2$̃

T
P[*eo +.(y; �)− .(ym; �)]

6|eo|(‖$̂‖+ |&|+ |a1||ym| − |d1|�0k12) +
(∣∣∣∣d2d1

∣∣∣∣− |d1|k11
)

e2o

+2‖$̃‖|eo|
[
1
2 + ‖P‖(‖*‖+ l�)

]− q0‖$̃‖2 − �,2‖$̃‖2

6|eo|(‖$̂‖+ |&|+ |a1||ym| − |d1|k12) +
(∣∣∣∣d2d1

∣∣∣∣− |d1|k11
)

eo
2

+
[ 12 + ‖P‖(‖*‖+ l�)]2

q0
e2o −

[
1
2 + ‖P‖(‖*‖+ l�)√

q0
eo −√

q0‖$̃‖
]2

− �,2‖$̃‖2

6− �,1eo
2 − �,2‖$̃‖2: (55)

This implies boundness of eo, $̃ and the zero convergence of eo by stability theory of Lyapunov, which
completes the proof.
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B.2. Proof of Proposition 3.2

DeNne a new variable eo/ as follows:

eo/ =
{

eo as eo ¡ −/e or eo ¿ /e;
0 otherwise (i:e: eo ∈ [−/e; /e]);

(56)

so that

ėo/ = ėo for eo/ �= 0:
Consider a Lyapunov function candidate

V/ = 1
2e
2
o/ + $̃

T
P$̃: (57)

Similar to the procedure of proving Proposition 3.1, we can easily derive that

V̇/6


−�,1e2o/ − �,2‖$̃‖2 for eo/ ¿ 0;

−�,2‖$̃‖2 +
[
1
2 + ‖P‖(‖*‖+ l�)√

q0
eo

]2
for eo/ = 0;

(58)

which, Nrst of all, implies the boundedness of both eo/ (hence eo) and $̃. Next, we can conclude that eo/ → 0
again by the stability theory of Lyapunov, which implies that eo → [−/e; /e].

B.3. Proof of Proposition 3.3

Consider a Lyapunov function candidate

V2 = 1
2e
2
o/ + $̃

T
P$̃+ 1

2 #̃
2
1 (59)

whose time derivative for eo/ ¿ 0 can be derived as follows:

V̇2 = eo/(ėo/ − d1#
†
1 + d1#

†
1) + $̃

T
P ˙̃$+

˙̃
$TP$̃+ #̃1 ˙̃#1

6− �,1e2o/ − �,2‖$̃‖2 + d1eo/#̃1 + #̃1 ˙̃#1

6− �,1eo
2
/ − �,2‖$̃‖2 + #̃1

[
d1eo/ +

@#†1
@eo

ėo − (!1 + k21)#̃1 −k22 sgn(#̃1)

]

6− �,1e2o/ − �,2‖$̃‖2 −
(

!1 − d1
@#†1
@eo

+ k21

)
#̃1
2 +

@#†1
@eo

#̃1$̃1 +

(
d1 +

d2
d1

@#†1
@eo

)
eo/#̃1

+ #̃1

{
@#†1
@eo

[
$̂1 − & − a1ym − d1#

†
1+

d2
d1
(eo − eo/)

]
− k22 sgn(#̃1)

}

6− (� − 1),1e2o/ − (� − 1),2‖$̃‖2 − !1#̃
2
1
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and

V̇ 26− (� − 1),2‖$̃‖2 − !1#̃
2
1 +

[
1
2 + ‖P‖(‖*‖+ l�)√

q0
eo

]2
+ ,1e2o for eo/ = 0

which similarly implies the boundedness of all involved signals and the zero convergence of eo/.

Appendix C

This appendix contains the deNnition of k3(·); : : : ; k�(: : :). First, we have to derive the time derivative of #̃j

for j = 2; : : : ; � − 1 as follows:
˙̃#j = #̇†j − #̇j = #̇†j + !j#j − #j+1 = #̇†j − !j#̃j − kj+1 − k�j+1#̃j + #̃j+1

=
@#†j
@eo

ėo +
@#†j
@#̃1

˙̃#1 + · · ·+ @#†j
@#̃j−1

˙̃#j−1 − !j#̃j − kj+1 − k�j+1#̃j + #̃j+1

=
(
$̃1 + $̂1 +

d2
d1

eo − & − a1ym − d1#
†
1 + d1#̃1

)[
@#†j
@eo

+

( j−1∑
i=1

@#†j
@#̃i

@#†i
@eo

)
+

( j−1∑
i=2

@#†j
@#̃i

@#†i
@#̃i−1

@#†i−1
@eo

)

+ · · ·+
(

@#†j
@#̃j−1

@#†j−1
@#̃j−2

· · · @#
†
1

@eo

)]
+ (#̃2 − !1#̃1)

[
@#†j
@#̃1

+

( j−1∑
i=2

@#†j
@#̃i

@#†i
@#̃1

)
+

( j−1∑
i=3

@#†j
@#̃i

@#†i
@#̃i−1

@#†i−1
@#̃1

)

+ · · · +
(

@#†j
@#̃j−1

@#†j−1
@#̃j−2

· · · @#
†
1

#̃1

)]
+ · · ·+ (#̃j − !j−1#̃j−1)

@#†j
@#̃j−1

− !j#̃j − kj+1 − k�j+1#̃j + #̃j+1

= g1j($̂1 − & − a1ym − d1#
†
1) + g1j$̃1 +

d2
d1

g1jeo + g2j#̃1 + · · ·+ gjj#̃j−1 + g(j+1)j#̃j

− !j#̃j − kj+1 − k�j+1#̃j + #̃j+1; (60)

where #̃�= �(y)u − #†�=0 and

g1j =
@#†j
@eo

+

( j−1∑
i=1

@#†j
@#̃i

@#†i
@eo

)
+

( j−1∑
i=2

@#†j
@#̃i

@#†i
@#̃i−1

@#†i−1
@eo

)
+ · · ·+

(
@#†j

@#̃j−1

@#†j−1
@#̃j−2

· · · @#
†
1

@eo

)
;

g2j = d1g1j − !1

[
@#†j
@#̃1

+

( j−1∑
i=2

@#†j
@#̃i

@#†i
@#̃1

)
+

( j−1∑
i=3

@#†j
@#̃i

@#†i
@#̃i−1

@#†i−1
@#̃1

)
+ · · · +

(
@#†j

@#̃j−1

@#†j−1
@#̃j−2

· · · @#
†
1

#̃1

)]
;

...

g(j+1)j =
@#†j

@#̃j−1
:

Then, k3(·); : : : ; k�(·) are designed as follows:

kj+1(t) =

{
k(j+1)1(t)#̃j + k(j+1)2(t) sgn(#̃j); #̃j =∈ [−/#j ; /#j ];

ksj+1(t) otherwise;
(61)
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where ksj+1(·) is a smooth function in order to make #†j globally smooth, and

k(j+1)1(t)¿
((d2=d1)g1j)

2

4,1
+

g1j
2

4,2
+

g2j
2

4,3
+ · · ·+

gj−1j
2

4,j
+
(1 + gjj)

2

4,j+1
+ |g(j+1)j|;

k(j+1)2(t)¿ |g1j|
(
‖$‖+ |&|+ |a1||ym|+ |d1#†1|+

∣∣∣∣d2d1
∣∣∣∣/e

)
+ |g2j|/#1 + · · ·+ |gjj|/#j−1 (62)

for j=2; : : : ; � − 1 and ,3; : : : ; ,� are deNned as (� − k),k+2 = !k for k =1; : : : ; � − 1, and k�1; : : : ; k��−1 are
deNned as follows:

k�1¿
/#1

/e
;

k�2(t)¿
/#2

/#1
+
∣∣∣∣d2d1

∣∣∣∣
∣∣∣∣∣@#†1@eo

∣∣∣∣∣ /e

/#1
;

...

k�j(t)¿
/#j

/#j−1

+
∣∣∣∣d2d1

∣∣∣∣ |g1(j−1)| /e

/#j−1

+ |g2(j−1)|
/#1

/#j−1

+ · · ·+ |g(j−1)(j−1)|
/#j−2

/#j−1

;

...

k��−1(t)¿
/#�−1

/#�−2

+
∣∣∣∣d2d1

∣∣∣∣ |g1(�−2)| /e

/#�−2
+ |g2(�−2)|

/#1

/#�−2
+ · · ·+ |g(�−2)(�−2)|

/#�−3
/#�−2

: (63)

Appendix D

Proof of Theorem 3.1. Consider a Lyapunov function candidate

V/ = 1
2eo

2
/ + $̃TP$̃+

1
2

�−1∑
j=1

#̃2j/ : (64)

From the former propositions, the time derivative of V/ for eo/ ¿ 0 can be derived as follows:

V̇/ = eo/(ėo/ − d1#
†
1 + d1#

†
1) + $̃TP ˙̃$+

˙̃
$TP$̃+ #̃1/( ˙̃#1 − #†2 + #†2) +

�−1∑
j=2

(#̃j/
˙̃#j)

6− �,1eo
2
/ − �,2‖$̃‖2 − eo/[k�1eo − d1(#̃1 − #̃1/)]

+ #̃1/

[
d1eo/ +

@#†1
@eo

ėo − (!1 + k21 + k�2)#̃1 − k22 sgn(#̃1)

]
+

�−1∑
j=2

(#̃j/
˙̃#j)

6− (� − 1),1eo
2
/ − (� − 1),2‖$‖2 − !1#̃21/ − eo/[k�1eo − d1(#̃1 − #̃1/)]

− #̃1/[k�2#̃1 − (#̃2 − #̃2/) + #̃2/] +
�−1∑
j=2

{
#̃j/

[
g1j($̂1 − & − a1ym − d1#

†
1) + g1j$̃1

+
d2
d1

g1jeo + g2j#̃1 + · · ·+ (gjj + 1) #̃j−1 + g(j+1)j#̃j − kj+1 − k�j+1#̃j + #̃j+1

]}
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6− (� − 1),1eo
2
/ − (� − 1),2‖$̃‖2 − (� − 1),3#̃12/ +

�−1∑
j=2

{
#̃j/

[
g1j($̂1 − & − a1ym − d1#

†
1) + g1j$̃1

+
d2
d1

g1jeo/ + g2j#̃1/ + · · ·+ (gjj + 1)#̃j−1/ + g(j+1)j#̃j/ − kj+1

]}
−

�−1∑
j=2

[(� − j),j+2#̃j
2
/]

−
�−1∑
j=2

{
#̃j/

[
k�j+1#̃j − (#̃j+1 − #̃j+1/)−

d2
d1

g1j(eo − eo/) − · · · − gjj(#̃j−1 − #̃j−1/)
]}

6−,1eo/
2 − ,2‖$̃‖2 −

�−1∑
j=1

,j+2#̃j
2
/ −

�−1∑
j=2

[(√
,1eo/ − (d2=d1)g1j

2
√

,1
#̃j/

)2
+
(√

,2‖$̃‖ −
g1j
2
√

,2
#̃j/

)2

+
(√

,3#̃1/ − g2j
2
√

,3
#̃j/

)2
+ · · · +

(
√

,j#̃j−2/ −
(gj−1j)

2
√

,j
#̃j/

)2

+

(
√

,j+1#̃j−1/ −
(gjj + 1)

2
√

,j+1
#̃j/

)2


6− ,1eo/
2 − ,2‖$̃‖2 −

�−1∑
j=1

,j+2#̃j
2
/; (65)

whereas

V̇/6 ,2‖$̃‖2 −
�−1∑
j=1

,j+2#̃j
2
/ +

[
1
2 + ‖P‖(‖*‖+ l�)√

q0
eo

]2
+ (� − 1),1e2o for eo/ = 0:

By Lyapunov stability theory, it is clear that when eo/ ¿ 0, eo/ and #̃j/ will converge to zero globally and
exponentially, which then implies the boundness of the input u. Referring to Eq. (6), we can then conclude
the boundness of the state e.
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