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Abstract

A robust neuro-fuzzy controller with tuning mechanism of membership functions and neural weights to achieve the
tracking control of composite multivariable systems is proposed. The control strategy is developed to facilitate robust
property by self-tuning the consequent membership functions of the fuzzy controllers. By an on-line tuning mechanism,
the fuzzy system can e5ectively deal with the equivalent uncertainties that may appear in the subsystems due to plant
uncertainty, function approximation error, or external disturbance. By using Lyapunov stability theory, the overall system
with the proposed controller has been proved to be uniform ultimate bounded. Simulation results of a two-link robot
control demonstrate the e5ectiveness and robustness of the design. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The fuzzy control method has been demonstrated to have advantage of robustness through industrial appli-
cations [9,11] and theoretical analysis [4,6,19]. In [4], a robustness measurement, which gives the bound on
allowable uncertainties or nonlinearity, and robust stability of fuzzy control systems have been studied through
the Popov–Lyapunov approach. However, the control system to be analyzed should be able to transform into
a perturbed Lur’e system. Yi and Chung [19] presented control theoretic analysis of a fuzzy control system
in the sense of Lyapunov based on the similarity between prevalent fuzzy logic controllers and the variable
structure controller. In [6], Johansen used fuzzy sets and fuzzy inference to construct a nonlinear model of
plant and provided an analysis of stability, robustness and performance of the control loop. The controller is
a discrete-time nonlinear decoupler but nonfuzzy model based.
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Recently, using the fuzzy basis function expansion (FBFE) to represent the unknown nonlinearity of plants,
several researchers have proposed adaptive fuzzy control methods [7,13,17,20]. These methods take the ad-
vantages of fuzzy basis function and stable parameter adaptation schemes and are derived by using Lyapunov
theory. However, as indicated in [8,16], the adaptive fuzzy controllers which will change their parameters
of membership function of fuzzy rules used in fuzzy inference may result in ine5ectualness of the robust
property of fuzzy control. In [2], by adding a robust stability factor to the controller, an adaptive law is
obtained to be robust with respect to the modeling error resulting from the fuzzy approximators. Here we
propose a robust neuro-fuzzy controller with self-tuning on the consequent membership function to encounter
the equivalent uncertainty resulted by function approximation error, external disturbances, and measurement
noise. But no additional robust stability factor as in [2] is added in the design since it will make the entire
controller not being in a context of fuzzy logic control system. The robustness of the neuro-fuzzy control
system against system uncertainties is analyzed; this analysis gives an account of the relationship between
control performance and the design parameters of the neuro-fuzzy controller, which was previously obscure
in the theory of fuzzy=neural control. Comparing with the results in [12,14,17], our e5ort has been on the
extension to composite multivariable systems and the robust parameter adaptation schemes. Two weight adap-
tation schemes are proposed and compared. One is the gradient weight scheme that is widely used in adaptive
fuzzy=neural control law [10,13,17]. Another is a robust adaptation scheme with self-tuning on the consequent
membership functions of the fuzzy part. The result of the former approach can only be proved when the
parameters are initialized not too far from their optimal values (local stability) [10]. The latter we proposed is
shown to release the above assumptions and be able to considerably reduce the tracking error residual set and
obtain robustness in the sense that the self-tuning mechanism can automatically adapt the controller to react
to the e5ect of equivalent uncertainties for unknown plant dynamics. The overall system with the adaptation
schemes has been proved to be able to guarantee uniform ultimate bounded.

The remainder of this paper is organized as follows: The output-tracking problem of composite multivariable
nonlinear systems is formulated in Section 2. The robust neuro-fuzzy controller for multivariable systems is
proposed and formulated in Section 3. The gradient adaptation and the robust adaptation schemes are proposed
and compared in Section 4. In Section 5, the control of a two-link robot carrying a heavy load is simulated
to illustrate the e5ectiveness and robustness of the proposed control system. Section 6 is the conclusion.

2. Problem formulation

Consider a composite multivariable nonlinear plant governed by

y(r) = f (x) + G(x)u + d(x; t); (1)

where y = [y1; : : : ; ym]T and y(r) ≡ [y(r1)
1 ; : : : ; y

(rm)
m ]T denote the output vector and its derivative, respectively,

r = [r1; : : : ; rm] with
∑m
i=1 ri = n is deHned as the system relative degree, u= [u1; : : : ; um]T is the system in-

put, x= [x1; : : : ; xn]T = [y1; : : : ; y
(r1−1)
1 ; : : : ; ym; : : : ; y

(rm−1)
m ]T is the state vector, f (x) = [f1(x); : : : ; fm(x)]T;G(x)

= [+1(x); : : : ; +m(x)]; fi(x) and +i(x) = [gi1(x); : : : ; gim(x)]T are unknown smooth functions satisfying the mild
assumption |gij(x)|¿0; ∀x; and d(x; t) = [d1(x; t); : : : ; dm(x; t)] is the disturbance with the properties of stan-
dard smoothness and boundedness. Then given a desired trajectory yd(t), the purpose of design is to Hnd
a controller for the composite multivariable plant described by (1) so that the tracking error represented by
e= [eT1 ; : : : ; e

T
m]

T with ei= [yi − yid ; ẏ − ẏid ; : : : ; y(ri−1)
i − y(ri−1)

id ]T will be attenuated to an arbitrarily small
residual tracking error set.
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Fig. 1. ConHguration of a robust neuro-fuzzy control system. Fig. 2. The synaptic connection topology of the ith multi-layer
fuzzy system.

3. Design of the robust neuro-fuzzy controller

The control of an MIMO nonlinear system poses diKculties mainly in three aspects. Firstly, the interac-
tions among subsystems usually cause the input applied to one subsystem undesirably a5ecting some other
subsystems. Secondly, the functions f and G or parameters of the system are being unknown or diKcult to
measure. The Hnal one is the presence of equivalent uncertainties which resulted from the function approxi-
mation error and the disturbances. To overcome the above diKculties and shrink the tracking error residual
set, the proposed robust neuro-fuzzy controller is composed of the following three parts: a multi-layer fuzzy
system with rule credit assignment, a self-tuning mechanism on the consequent membership functions, and
a decoupling network. The conHguration of the robust neuro-fuzzy control system in the case of controlling
two-input=two-output nonlinear system is shown in Fig. 1. The multi-layer fuzzy system and the decoupling
network are nominal designs based on an on-line approximation of the unknown nonlinear functions of the
plant. The self-tuning mechanism is designed to encounter the equivalent uncertainty which resulted from the
plant uncertainty, the function approximation error, or the external disturbances.

3.1. The multi-layer fuzzy system

Fig. 2 shows the proposed synaptic connection topology of the ith multi-layer fuzzy system for the ith
subsystem of the controlled plant. Considering the request of numerical input and output of the fuzzy sys-
tem, a particular class of fuzzy system with the singleton fuzziHed, algebraic product T-norm, the sup star
compositional operator [17] and the local mean-of-maximum method [1] are used. The basic components of
the multi-layer fuzzy system and its self-tuning mechanism will be discussed and formulated in the following
paragraph.
Fuzzy rule base: A multivariable system can be controlled by the following linguistic rules

Rj: IF x1 is A
j
1 AND · · ·AND xn is Ajn

THEN u1 is B
j
1 · · · um is Bjm; j = 1; : : : ; N + 1;

where N + 1 is the number of fuzzy rules, the antecedent part, Ajk , is deHned as the following Gaussian type:

Ajk(xk) = exp(− (xk − mjk)2=ajk) (2)
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and the consequent membership function of the consequent part is deHned as

Bji (ui) =

{
(1 + ((cji − ui)=aLi)2)−1 if ui6c

j
i ;

(1 + ((ui − cji )=aRi)2)−1 if ui ¿c
j
i ;

(3)

where {ajk ; mjk} and {aLi ; aRi ; c ji } are referred to the premise and consequence parameters, respectively.
Rule credit assignment: The basic idea of the rule credit assignment is to reward good rules by increasing

the conHdence of the consequent fuzzy sets and the recommendation fuzzy output of this rule. Denote !jii¿1
(or !jii¡1) as a reward (or a punishment) o5ered to the jth rule in the ith knowledge rule base, then the
consequent membership function (3) can be reshaped into

B̃ji (ui) =

{
(1 + (!jii(c

j
i − ui)=aLi)2)−1 if ui6c

j
i ;

(1 + (!jii(ui − cji )=aRi)2)−1 if ui ¿c
j
i

(4)

and the recommendation fuzzy output of each rule is determined in singleton form as follows:

!jiiI(A
j(x0); B̃

j
i (ui)) =

{
!jiiA

j(x0) for ui = c̃
j
i ;

0 otherwise;
(5)

where x0 = (x01 ; : : : ; x
0
n); A

j(x0) =Aj1(x
0
1)A

j
2(x

0
2) · · ·Ajn(x0n) denotes the given input and the matching degree,

respectively, c̃ ji denotes the location of the singleton implication fuzzy set and is deHned as (see Fig. 5 [1])

c̃ ji = the centroid of the set {ui: B̃ji (ui)¿Aj(x0)}: (6)

Using (4) and (6) can be resolved into (see Appendix A)

c̃ji = cji −
aLRi

!jii

√
1
Aj

− 1 (7)

where aLRi= (aLi − aRi)=2.
The study of assigning rule credit assignment may be complicated, where, the modiHcation of control rules

is achieved by giving a credit or reward value to individual rules engaged in the problem solving process. In
[15,18], the credit value is obtained from a fuzzy algorithm which deHnes the desired performance linguisti-
cally. However, as addressed in [3,21], the control rules may often be improperly modiHed when the set-point
changes. Generally, for a fuzzy=neural system, these parameters are updated according to the output value and
the associated teacher signals. But for the control problems under consideration, the teacher signals are not
available and only the error information between the plant and the desired trajectory can be used. Therefore,
in this paper, the entire problem is approached in the context of Lyapunov-based adaptive systems theory to
provide on-line tuning rules for !jii as shown in the next section.
Self-tuning mechanism: Physically, the parameter aLRi represents the left–right spread di5erence of the

consequent membership functions. In traditional fuzzy logic control system, aLi is set to be equivalent to aRi
or the consequent membership is just in singleton form [13]. In this paper, this term is employed as a robust
control component and a robust adaptive law for it is proposed in the next section.
Analytical formulation of the multi-layer fuzzy system: Using the center average defuzziHcation, the output

response of the fuzzy controller is

u0i = Fi(Aj; !
j
ii) =

∑N+1
j=1 !

j
iiA
jc̃ji∑N+1

j=1 !
j
iiAj

: (8)
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In the rule base, the (N + 1)th rule is chosen to be of Takagi–Sugeno type and its consequent membership
function BN+1

i is singleton with support represented as the form of the synthesis input

c′i = y
(ri)
di − $Ti ei (9)

where 	i = [$i1; : : : ; $iri ]
T being positive constants chosen such that pn+$irip

ri−1+· · ·+$i1 is a stable (Hurwitz)
polynomial. The curvature control parameter of its antecedent membership function, aN+1

k , is assumed to
approach to inHnity so that this rule will be Hred whatever x0 is. The credit assignment takes place in rules
Rj; j= 1; : : : ; N but assigned to be 1 for RN+1. Accordingly, using (7) and (9), the analytical formulation of
the multi-layer fuzzy system in Eq. (8) resolves into

u0 = D̂−1(−f̂ + c′ − aT
LRf̂LR); (10)

where D̂=Block diag[!T
11+̂!; : : : ;!T

mm+̂!]; f̂ = [�′T1 f̂&; : : : ; �′Tm f̂&]T with !ii and +̂! are (N + 1)× 1 column
vectors composed of !jii and A j, respectively, �′i and f̂& are N × 1 column vectors composed of !jiic

j
i and

−A j, respectively, c′ = [c′1; : : : ; c
′
m]

T; aLR = [aLR1; : : : ; aLRm]T and f̂LR =
∑N
j=1 A

j
√

1=A j − 1.

3.2. The decoupling neural network and the overall control law

Since the multi-layer fuzzy system does not take the interconnection among subsystems into consider-
ation, the decoupling network is required to eliminate the interaction. The construction of the decoupling
neural network is conceptually explained as below. Let D(x) =Block diag[g11; : : : ; gmm] and assuming that
the subsystems are not interconnected (i.e., gij = 0; ∀i 	= j), and the nonlinear function f (x) of the system is
known exactly, then the desired control input u∗0 for each individual subsystem without disturbance can be
theoretically computed from

u∗0 = D−1(− f + c′); (11)

where 	i ; i= 1; : : : ; m are chosen to obtain exponential decay of the tracking error. When the subsystems
are interconnected (i.e. gij 	= 0), to ensure e→ 0 as t→∞, the desired control input needs to counteract the
interactions as

u∗ =G−1(− f + c′)

= (D + C)−1(− f + c′) (12)

or using (11) to obtain

u∗ = (D + C)−1Du∗0
= u∗0 +Mu∗0 ; (13)

where C =G −D and M =− [Im + C−1D]−1 with Im denoting an m×m identity matrix.
When the system is disturbed and has unmodeled dynamics, (13) cannot be practically applied. Accordingly

this paper proposes the robust neuro-fuzzy controller that uses the multi-layer fuzzy controller (10) as an
alternative of (11) and invokes a decoupling neural network to counteract the interaction by learning as
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follows:

u = u0 + M̂u0; (14)

where the matrix M̂ is chosen as

M̂ = − (Im + Ĉ
−1
D̂)−1 (15)

and

Ĉ =




0 !T
12+̂! · · · !T

1m+̂!
!T

21+̂! 0 · · · !T
2m+̂!

...
...

. . .
...

!T
m1+̂! !T

m2+̂! · · · 0


 (16)

Fig. 1 illustrates the concept of the robust neuro-fuzzy controller with the decoupling neural network. Using
(10), (14), (15) and the matrix inversion lemma [5]

(A+ BCD)−1 = A−1 − A−1B(DA−1B+ C−1)−1DA−1 (17)

the robust neuro-fuzzy controller resolves into

u= (Im − (Im + Ĉ
−1
D̂)−1)D̂

−1
(− f̂ + c′ − aTLRf̂LR)

= Ĝ
−1

(− f̂ + c′ − aTLRf̂LR); (18)

where Ĝ = Ĉ + D̂:

4. Learning algorithms and performance analysis

Let �i= [�′Ti ;!
T
i1; : : : ;!

T
im]

T being bounded by M&i = {�i: |�i|6�i;Max}, and deHne the parameters of the best
function approximation to be

�′∗i ≡ arg min
&′i∈M&i

[sup |fi − �′Ti f̂ &|];

!∗
ij ≡ arg min

!ij∈M&i
[sup |gij − !T

ij+̂!|]: (19)

Applying (18) to (1), then subtracting
∑m
j=1 !

T
ij+̂!uj and adding − �′Ti f̂&+ c′i −aTLRif̂LR to the right-hand side,

the ith component is obtained as

y(ri)
i = y(ri)

di − 	T
i ei + (�′∗T

i − �′Ti )f̂ & +
m∑
j=1

(!∗T
ij − !T

ij)+̂!uj + *i − aLRif̂LR (20)

or

ėi = Aiei − bi�̃T
i w+ bi(*i − aLRif̂LR); (21)
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where *i= (fi − �′∗T
i

ˆf&) +
∑m
j=1(+ij − !∗T

ij +̂)uj + di, �̃i= �i − �∗i denotes the parameter estimation error, and

Ai =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
− $i1 − $i2 − $i3 · · · − $iri


 ; bi =




0
0
...
0
1


 ; w =



f̂ &
+̂!u1

...
+̂!um


 : (22)

In the following paragraph, a gradient weight adaptation scheme which shutdown the self-tuning mechanism
(i.e. aLRi= 0) and a robust weight adaptation scheme which applies the self-tuning mechanism (i.e., aLRi 	= 0)
are proposed and compared.
Gradient weight adaptation scheme: For aLRi= 0, the tracking error represented by (21) allows us to use

the parameter adaptation law in [10,13]

�̇i =
{

0 if eTPbbTPe6d2
0;

(I − d&i�i⊥�T
i⊥)R−1

i b
T
i Pieiw otherwise

(23)

with

d&i =
{

0 if �T
i⊥(R−1

i b
T
i Pieiw)60;

min[1; dist(�i ; M&i)=-&] otherwise;
(24)

where Ri is a diagonal matrix with positive diagonal elements, b=Block diag[b1; : : : ; bm], P=
Block diag[P1; : : : ; Pm], and Pi=PT

i is the solution of the following Riccati-like equation:

PiAi + AT
i Pi +

1
%2
PibibTi Pi + Qi = 0 (25)

with the design parameters Qi ¿ 0 and 0¿ 0; M -&i denotes the union of M&i and its boundary layer with
thickness -&, the preHx @ denotes the boundary, and �i⊥ = �i=|�i| is the unit normal vector. The adaptation
is turned-o5 when the tracking error is smaller than some threshold. The deadzone is to stop updating the
parameters when the excitation is insuKcient to distinguish between the regression signal and the noise. By
referring to the result in [10], this adaptive law has the following property:

Theorem 1. Let *= [*1; : : : ; *m]T; Q=Block diag[Q1; : : : ; Qm] and assume that there exists Q*=Supx; t‖*i‖2;
and ‖ei‖¡21; ‖�̃i‖¡22; 21 and 22 are small enough; the adaptive law (23) guarantees
(1) �i and the control input u are bounded.
(2) e converges to the residual set {e: eTQe602 Q* or eTPbbTPe6d2

0 }. Moreover; in the special case that
‖*‖6(1=202)d0; e converges to the dead-zone {e: eTPbbTPe6d2

0 }.

Robust weight adaptation scheme: To counteract the equivalent uncertainty, the self-tuning mechanism
aLRif̂LR is employed. The parameter aLRi is chosen as aLRi(#i) =#i tanh(bTi Pieif̂LR=-) where #i is an auxiliary
adjustable parameter and - is a small positive constant. Using the following assumption:

Assumption 1. There exists the smallest non-negative parameter values #∗i ¿0 such that for all x∈Rn and
t ∈ R+

|*i|6#∗i f̂LR : (26)



188 W.-S. Lin et al. / Fuzzy Sets and Systems 124 (2001) 181–195

And let M#i = {#i: |#i|¡#i;max} be the bound of #i, M-#i be the union of M#i and its boundary layer of
thickness -#. We propose the following smooth robust weight adaptation scheme:

�̇i =

{
0 if eTPbbTPe6d2

0;

(I − d&i�i⊥�T
i⊥)R−1

i [wbTi Piei − 41(�i − �i0)] otherwise
(27)

with

d&i =

{
0 if �T

i⊥[wbTi Piei − 41(�i − �i0)]60;

min[1; dist(�i ; M&i)=-&] otherwise
(28)

and

#̇i =

{
0 if eTPbbTPe6d2

0;

(1 − d#i)r−1
#i

[w′
i b

T
i Piei − 42(#i − #i0)] otherwise

(29)

with

d#i =

{
0 if #i[w′

i b
T
i Piei − 42(#i − #i0)]60;

min[1; dist(#i;M#i)=-#] otherwise:
(30)

w′
i = f̂LR tanh

(
bTi Pieif̂LR

-

)
; (31)

where Ri is a diagonal matrix with positive diagonal elements, Pi is a symmetric positive-deHnite matrix
satisfying the Lyapunov equation AT

i Pi + PiAi=−Q′
i , with the design parameters Q′

i¿0, and 41 and 42 are
chosen small but positive constant to keep �i and #i from growing unbounded.

Theorem 2. Consider the nonlinear composite system (1) with controller (18); the parameter adaptation
schemes (27) and (29) operating in the bounded state x ∈ 6. Then
(1) �i ; #i and the control input u are uniformly ultimately bounded.
(2) Given any 0 satisfying 0∗¡0 where

0∗ =
∑m
i=1 [41(�

∗
i − �i0)T(�∗i − �i0) + 42(#∗i − #i0)2 + 27#Mi -]

minimin{8min(Q′
i)=8max(Pi); 41=8max(Ri); 42=9#} (32)

with #Mi ≡ max{#∗i ; #i0} and 7 being a constant that satis<es 7= e−(7+1); i.e.; 7= 0:2785; there exists
T such that for T6t6∞ the tracking error e converges to the residual set

{e: eTPe60 or eTPbbTPe6d2
0}: (33)

Proof. Let V& and V# be positive-deHnite functions of the forms V&= 1
2

∑m
i=1(�

T
i �i); V#= 1

2

∑m
i=1 #

2. Their time
derivative are V̇&=

∑m
i=1 �

T
i &̇i and V̇#=

∑m
i=1 #

T
i #̇i, respectively. If the Hrst line of (28) is true then d&i = 0,

and the conclusion V̇&60 is trivial. If the second line of (28) is true then d&i¡1 and �i ∈M-&i (but �i =∈ @M-&i).
Therefore, either V̇&60 or �i ∈M-&i is obtained. Similarly we have either V̇#¡0 or #i ∈M-#i . Therefore, the
boundedness of �i, #i, and u is guaranteed. To show the performance of the closed-loop system formed
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by (1), (18), (27), and (29), we choose the following positive-deHnite functions:

V = V1 + · · · + Vm; (34)

where

Vi =




1
2d

2
0 + 1

2 �̃
T
i Ri�̃i + 1

2 r#i #̃
2
i if eTPbbTPe6d2

0;
1
2e

T
i Piei +

1
2 �̃

T
i Ri�̃i + 1

2 r#i #̃
2
i otherwise;

(35)

#̃i=#i − #Mi are the auxiliary adjustable parameter error and #Mi ≡ max{#∗i ; #i0}. Taking the derivative of Vi
along the trajectories of the closed-loop system and taking (21), (27), and (29) into account we obtain: V̇i= 0
for eTPbbTPe6d2

0 , and

V̇ i = eTi Pi(Aiei − bi�̃
T
i w+ bi(*i − aLRif̂LR)) + �̃

T
i (I − d&�i⊥�T

i⊥)[wbTi Piei

− 41(�i − �i0)] + #̃i(1 − d#)[w′
i b

T
i Piei − 42(#i − #i0)]

= 1
2e

T
i (A

T
i Pi + PiAi)ei − eTi Pibi�̃

T
i w+ eTi Pibi(*i − #iw′

i)

+ �̃
T
i wb

T
i Piei − 41�̃

T
i (�i − �i0) + #̃iw′

i b
T
i Piei − 42#̃i(#i − #i0)

−d&�̃
T
i �i⊥�T

i⊥[wbTi Piei − 41(�i − �i0)] − d##̃i[w′
i b

T
i Piei − 42(#i − #i0)] (36)

for eTPbbTPe¿d2
0 . By (28), if �T

i⊥[wibTi Piei−41(�i−�i0)]60, we have d&i = 0 and the last term of the above
equation is equal to zero. When �T

i⊥[wibTi Piei−41(�i−�i0)]¿0, if �i ∈M&i we also have d&i = 0 and the above
conclusion holds. If �i =∈M&i and suppose that M&i and M#i are appropriately selected such that �∗i and #∗i are
in the interior of M&i and M#i ; respectively, we obtain

�̃
T
i �i⊥ = (�i − �∗i )T�i=|�i|

= 1
2 [(�i − �∗i )T(�i − �∗i ) + �T

i �i − �∗T
i �∗2

i ]=|�i|
¿ 0 (37)

or

�̃
T
i �i⊥�T

i⊥[wbTi Piei − 41(�i − �i0)]¿0: (38)

In a similar way, it can be shown that

#̃i[w′
i b

T
i Piei − 42(#i − #i0)]¿0: (39)

Therefore,

V̇ i6 1
2e

T
i (A

T
i Pi + PiAi)ei + e

T
i Pibi(*i − #Mw′

i) − 41�̃
T
i (�i − �i0)

−42#̃i(#i − #i0): (40)

Using Assumption 1, the second term on the right-hand side satisHes the inequality

eTi Pibi(*i − #Mw′
i)6 |eTi Pibi|#∗i f̂LR − eTi Pibi#Mw′

i

6 #Mi (|eTi Pibi|f̂LR − eTi Pibiw′
i)
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= #Mi

(
|eTi Pibif̂LR| − eTi Pibi f̂LR tanh

(
eTi Pibif̂LR

-

))

6 #Mi 7-: (41)

Since the following fact can be shown easily by straightforward algebraic manipulation.

Claim 1.

06|r| − r tanh
( r
-

)
67- (42)

for any 9∈R. Furthermore, it can be readily shown that

�̃
T
i (�i − �i0) = 1

2 �̃
T
i �̃i + 1

2(�i − �i0)T(�i − �i0) − 1
2 (�

∗
i − �i0)T(�∗i − �i0);

#̃i(#i − #i0) = 1
2 #̃

2
i + 1

2(#i − #i0)2 − 1
2 (#

∗
i − #i0)2: (43)

Therefore,

V̇ i6− 1
2e

T
i (Q

′
i)ei −

41

2
�̃

T
i �̃i −

42

2
#̃

2
i +
41

2
(�∗i − �i0)T(�∗i − �i0) +

42

2
(#∗i − #i0)2 + 7#Mi -

6− aiVi + 8i; (44)

where

ai ≡ min
{
8min(Q′

i)
8max(Pi)

;
41

8max(Ri)
;
42

9#i

}

and

8i =
41

2
(�∗i − �i0)T(�∗i − �i0) +

42

2
(#′i − #i0)2 + #Mi 7-

or

V̇6− aV + 8 (45)

where a= mini ai and 8=
∑m
i=1 8i. The di5erential inequality (45) satisHes

06V(t)6
8
a

+
(
V(0) − 8

a

)
e−at : (46)

Therefore ei; �i ; #i are uniformly ultimately bounded. Let 0∗ = 28=a then from (46) we readily obtain (33).

Remark 1. The gradient weight adaptation scheme in [10] requires the assumption that the tracking error and
weight errors are initially bounded and suKciently small. In our construction of the robust weight adaptation
scheme by using the self-tuning mechanism, aLRif̂LR, the assumption of small initial weight errors is released.

Remark 2. From (32), if the design constants -; 41; 42; 9#; Qi; Pi and Ri are appropriately chosen, whether
�i0 and #i0 are close to �∗i and #∗i or not, it is possible to make 0∗ as small as desired and therefore better
tracking performance can be achieved.
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5. Performance comparisons

5.1. Simulation setup

A two-link robot is simulated to compare the robustness of the gradient weight adaptation scheme and the
proposed robust weight adaptation scheme.

The equations of motion of the arm can be expressed in the matrix form as follows:[
(m1 + m2)r21 + m2r22 + 2m2r1r2c2 + J1 m2r22 + m2r1r2c2

m2r22 + m2r1r2c2 m2r22 + J2

] [
Rq1
Rq2

]

+

[
−m2r1r2s2q̇1(q̇1 + q̇2)

m2r1r2s2q̇22

]
+

[
((m1 + m2)l1c2 + m2l2c12)g

(m2l2c12)g

]
=
[
u1
u2

]
+
[
d1

d2

]
; (47)

where m1; m2; J1; J2; r1 = 0:5l1, and r2 = 0:5l2 are the mass, the moment of inertia, the half length of link 1
and 2, and c1 ≡ cos(q1), s12 ≡ sin(q1 + q2), etc. The combined e5ects of friction and the external torque
disturbance are

d1 = 2:0 sin(q̇1) + 2:5 sin(q̇2) + 0:5 sin(t);

d2 = 5:0 sin(q̇1) + 4:0 sin(q̇2) + 0:4 sin(t): (48)

In the control experiments described below, the kinematics and inertial parameters of the arm are chosen as
l1 = 2:04 m; l2 = 1:66 m; J1 = J2 = 4:5 kg m; m1 = 0:60 kg; m2 = 7:02 kg, respectively. The excessive ratio
between m1 and m2 is to emphasize the load e5ect. The robot is given the following target joint rotations:

q1d = �=12 sin(0:5�t)

q2d = 2:5�=12 cos(0:5�t) + 2:5�=24 cos(0:5�t) (49)

with the initial states q1(0) = 1:5 rad; q2(0) = − 1:2 rad; q̇1(0) = 0 rad=s; q̇2(0) = 0 rad=s.
In (27) and (29), the design parameter are given by Q1 =Q2 = 10I2×2; R1 =Block diag[0:01I81×81;

32 000I81×81; 20 000I81×81]; R2 =Block diag[0:025I81×81; 20 000I81×81; 3200I81×81]; 0=0:01; r#1 =r#2 =
0:025; 41 = 42 = 0:002, and -= 0:005. The membership functions of state q1; q̇1; q2, and q̇2 (represented by
generic variable xk) for M = 34 = 81 regular rule partitions are deHned as {NB; ZE; PB} where NB: Ajk(xk) =
exp(− 4(xk + 1:8)2), ZE: Ajk(xk) = exp(− 4x2k), and PB: Ajk(xk) = exp(− 4(xk − 1:8)2).

For the purpose of comparison, computer simulations are also carried out using the proposed controller with
and without partial knowledge about the robot, i.e., rough mathematical model (but unknown disturbances)
and nominal parameters l01 = 2:0 m; l02 = 1:6 m; J 0

1 = 4:8 kg; J 0
2 = 5:1 kg m; m0

1 = 0:48 kg; m0
2 = 6:30 kg:

In the case that the nominal robot parameters are known a priori, through the training data {x(k)}, the initial
parameters �′i and !ij are chosen based on the element-by-element minimization of the following objective
function:∑

k

|f0
i (x

(k) | nominal robot parameters) − �′iT f̂ &|2;

∑
k

| g0ij(x(k)|nominal robot parameters) − !T
ij+̂!|2:

We choose 32 testing points either the sampled points along the desired trajectories or points near them,
for the training data x(k). If there are no nominal robot parameters, the elements in �′i and !ij are chosen
randomly in the interval (−10; 10) and (−2; 2), respectively.
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5.2. Results and discussion

Figs. 3 and 4 show the tracking performance using (a) the gradient weight adaptive scheme and (b)
the robust weight adaptive scheme with and without nominal robot parameters. The solid and dashed lines
correspond to the desired and controlled robot-arm angle trajectories, respectively. In comparing the set of
response (a) with (b) in Figs. 3 and 4, one can conclude that the tracking behavior is much better in the robust
weight adaptive scheme case. While the gradient weight adaptive scheme reaches a large error residual set,
the error in the robust weight adaptive scheme continues to decay around zero. This is exactly the di5erence
between these two schemes. The gradient weight adaptive scheme guarantees that the quadratic error eTQe
will be smaller than a certain bound, 02 Q*, however, Q* varies with the control e5ort u and the disturbance
d . To reduce the error, one has to reduce the design parameter 0 which will cause larger input e5ort and
then yield larger Q*. It seems that there is some limitation on reducing the error residual set. Since the error
residual set 0∗ does not directly depend on the magnitude of control e5ort (see Eq. (33)), the robust adaptive
scheme requires the design constants -; 41; 42; r#; Q′

i ; Pi and Ri to be just appropriately chosen such that 0∗

is reduced. This is the reason why a smaller tracking error residual set can be achieved. On the other hand,
in comparing Fig. 3(a) with Fig. 4(a), it is clear and expected that the tracking performance is much better
in the case that �′i and !ij are selected in advance according to nominal robot parameters. Nevertheless, as
shown in Fig. 3(b) and Fig. 4(b) signiHcant improvements of system tracking performance are achieved after
applying the robust weight adaptation scheme even without a priori knowledge of the nominal parameters of
the robot.

6. Conclusion

A novel robust neuro-fuzzy controller has been developed successfully for the tracking control of compos-
ite multivariable systems with uncertainties. The controller uses a decoupling neural network to counteract
the interaction among the interconnected subsystems. The system robustness against the e5ect of equivalent
uncertainties for unknown plant dynamics and disturbance is mainly obtained by self-tuning the consequent
membership functions of the fuzzy part. A robust weight adaptation scheme with self-tuning on the con-
sequent membership functions has been derived and shown to be able to considerably reduce the tracking
error residual set by automatically adapting the controller to react to the uncertainties. The overall system has
been proved to be uniform ultimate bounded. And the analysis gives an account of the relationship between
control performance and the design parameters of the neuro-fuzzy controller, which was obscure previously in
the theory of fuzzy=neural control. Comparison of the proposed method with an adaptive neuro-fuzzy control
system without self-tuning the consequent membership function has been carried out via theoretical analysis
and simulations. The results show that the proposed method is superior in both tracking performance and
robustness. The e5ectiveness of this design has been investigated and demonstrated by an example of robot
control.
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Fig. 3. Time responses of the robot control provided with the
rough mathematical model and nominal parameters use (a) the
gradient weight adaptive scheme, (b) the robust weight adaptive
scheme.

Fig. 4. Time responses of the robot control without knowing the
rough mathematical model and nominal parameters use (a) the
gradient weight adaptive scheme, (b) the robust weight adaptive
scheme.

Appendix A

The derivation of (7) is provided in this appendix. Referring to Fig. 5 and by (4), for the matching degree
A j at the left intersection point uP we have

Aj = (1 + (!jii(c
j
i − uP)=aLi))−1 (A.1)



194 W.-S. Lin et al. / Fuzzy Sets and Systems 124 (2001) 181–195

Fig. 5. The deHnition of c̃ji , the centroid of the line segment of height A j intercepted by the fuzzy membership function.

or

uP = cji −
aLi
!jii

√
1
Aj

− 1: (A.2)

Similarly at the right intersection point uQ, we have the following result:

uQ = cji +
aRi
!jii

√
1
Aj

− 1: (A.3)

Then by deHnition (6), we can obtain (7) as

c̃ji = (uP + uQ)=2: (A.4)
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