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Abstract

A solution strategy for optimizing the dynamic systems with $exible inequality constraints is proposed. To apply fuzzy
inference in solution, the $exible portion in the problem is treated as fuzzy constraints. After functional values are bounded
in a region, the objective function of this problem can also be fuzzi6ed easily. When the problem is formulated as a fuzzy
dynamic optimization problem, the iterative dynamic programming integrated with fuzzy inference is adopted to 6nd the
solution. Two examples are employed, demonstrating the facility of the proposed algorithm. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Since 1960, the optimization of transient behavior
for chemical processes has received signi6cant atten-
tion [5,10,15,4]. All these investigations share a com-
mon assumption that each portion in the problem,
including objective function (goal), system dynamics,
and constraints are all de6nite in general. However,
real-world situations are not so rigid. For example, the
operator may moderately relax the limitation on the
use of resource or cost to exchange the improvement
of quality. Such $exibility in operation largely de-
pends on the operator’s subjective considerations. In
addition, engineers also need to make decisions under
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the circumstance with uncertain factors. However,
the current dynamic optimization techniques becomes
futile as the problem contains $exible portion. The
aim of this paper is to 6nd a solution strategy for
dynamic systems subjected to $exible inequality
constraints.
The fuzzy dynamic optimization problems with

single or multiple objectives under deterministic
or fuzzy environment has been discussed in litera-
ture [14]. In [14], both the dynamic equations and
the control policy were discretized, the so-called
complete parametrization [4], the problem was
then solved by the goal programming technique.
Despite making the problem easily port on exis-
tent softwares, complete parametrizations not only
largely expand dimension for properly approximating
highly nonlinear dynamics, but also cause conver-
gence diFculties for the system with multimodal
nature.
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In this study, the fuzzy set concept, initialized by
[18], will be used to grade the degree of acceptabil-
ity for a $exible constraint. Then, the transformation
method, proposed by [16,17] for solving linear static
optimization problems with $exible constraints, will
be adopted to grade the degree of satisfaction for the
objective function. By way of such a fuzzi6cation on
the problem, the fuzzy dynamic programming, devel-
oped by [1], will be applied for further computation.
Obviously, when dynamic programming (DP) is used
to solve the dynamic optimization problem (DOP), the
drastic expansion in problem’s dimension, the well-
known curse of dimensionality, will become unavoid-
able. To avoid this diFculty, Luss [10] proposed the
use of coarse but accessible state grids and region con-
tracting to reduce dimension expansion, and the itera-
tive computation to promote reliability of the solution.
The above modi6cation of DP is called the iterative
dynamic programming (IDP).
In the rest of this paper, Section 2 introduces the

formulation of the problems and the fuzzi6cation of
objective function and $exible constraints. Section 3
brie$y reviews fuzzy optimization. Section 4 presents
the solution algorithms, the fuzzy dynamic program-
ming and the iterative dynamic programming. Sec-
tion 5 provides numerical illustrations of the proposed
algorithm. Conclusions are 6nally made in Section 6.

2. Problem formulation

Consider the following dynamic optimization
problem:

max
u(t)∈�̃

J [x(tf)]; (1)

where J [x(tf)] denotes the objective function to be
minimized and �̃ represents the feasible space of con-
trol policy, in which all control policies u(t) satisfy
system dynamics and $exible inequality constraints,
i.e. �̃≡{u(t) | ẋ(t)= f(x(t); u(t)); x(0)= x0; g(x(t);
u(t))6b̃; u(t)6u(t)6Mu(t)}. Here, x(t)∈Rn and
u(t)∈Rm are state and control vectors, respectively,
f(x(t); u(t))∈Rn and g(x(t); u(t))∈RK . Elements in
b̃= [b̃1; : : : ; b̃K ]T are the $exible boundaries for the
constraints.
Eq. (1) seems to be a stochastic or probabilistic

programming problem. If so, the $exible portions b̃k ’s
will behave randomly during simulation. In practice,

the sources of random variables depend on the nature
and the type of the problem. For example, in the
design of aircraft the actual loads acting on the plane
depends on the atmospheric conditions, which cannot
be predicted precisely in advance [12]. In Eq. (1),
however, we assume that the operator does not ran-
domly change the values of b̃k ’s, but changes on his
preference.

2.1. Fuzzi0cation of 1exible constraints

As previously stated, the system’s behavior is
aNected by a set of $exible inequality constraints,
gk(x(t); u(t))6b̃k ; k =1; : : : ; K . Here, the so-called
$exible inequality constraint means that when the rea-
sonable limiting value bk and the acceptable maximal
tolerance pk can be preliminarily de6ned, all those
values that are smaller than bk + pk can be regarded
as satisfying gk . Therein, all values less than bk are
thoroughly satis6ed. For values in between bk and
bk + pk , however, the extent satisfying gk decreases
with an increase of its value. To quantitatively demon-
strate such an linguistic character, a fuzzy set Ck with
�Ck (x(t); u(t)) denoting the degree of acceptability
for the inequality constraint gk(x(t); u(t)), is de6ned.

�Ck (x(t); u(t))

=




1 if gk(x(t); u(t))
¡ bk;

FCk (x(t); u(t); bk ; pk) if bk 6 gk(x(t);
u(t))6 bk + pk;

0 if gk(x(t); u(t))
¿ bk + pk;

(2)

where F denotes any monotonic decreasing function,
and is used to describe the membership value for
�Ck . The general criteria for de6ning FCk are some-
how subjective. Two types of monotonic decreasing
membership functions commonly used are listed in the
following (also shown in Figs. 1 and 2):

FCk (x(t); u(t); bk ; pk)

=




bk+pk−gk (x;u)
pk

for linear type;
1−exp[−�(bk+pk−gk (x;u))=pk ]

1−exp[−�] for exponential

type;

(3)
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Fig. 1. Linear-type monotonic decreasing membership function for
$exible inequality constraints.
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Fig. 2. Exponential-type monotonic decreasing membership func-
tion for $exible inequality constraints.

where �∈R1 is the shape-adjusting factor. For sim-
plicity, we will adopt the linear-type monotonic
decreasing membership function Ck ’s. A new fuzzy
set can be aggregated as considering all $exible con-
straints,

C = C1 ∩ · · · ∩ CK : (4)

The overall degree of acceptability �C(x(t); u(t)) can
be found as

�C(x(t); u(t))

= T{�C1 (x(t); u(t)); : : : ; �CK (x(t); u(t))}: (5)

Here, �C(x(t); u(t)) represents the degree of accept-
ability for the aggregated fuzzy inequality constraints
and T denotes the operation of fuzzy intersection [9].

2.2. Fuzzi0cation of objective function

Eq. (1) can be classi6ed into a parameter sensitiv-
ity problem related to the right-hand side bounded on
path constraints [12]. For determining the eNects of
parametric variations, the general way is to solve a
series of DOP with each of these parameters changed
from large to small values, or vice versa. This proce-
dure, especially in solving a highly nonlinear DOP, is
tedious and ineFcient. Werners [16,17] has addressed
the fuzzy linear programming problems that consists
of a crisp objective and fuzzy resources. For solv-
ing these problems, Werners [16,17] recommended
that the objective should be fuzzi6ed and its resulting
optimum with highest satisfaction is bounded by the
optimum under the lavish resource and the optimum
under the conservative resource. For Eq. (1), we can
obtain the similar conclusion by the analysis of Euler–
Lagrange theory [13]. Therefore, two new subprob-
lems are solved at 6rst: one is restricted by constraints
with optimistic boundary bk+pk , while the other one
is con6ned by the constraints with pessimistic bound-
ary bk . That is,

J 1 = max
u(t)∈�1

J (x(tf)); (6)

where �1≡{u(t) | ẋ(t)= f(x(t); u(t)); x(0)= x0; g(x
(t); u(t))6b+ p; u(t)6u(t)6Mu(t)} and

J 0 = max
u(t)∈�0

J (x(tf)); (7)

where �0≡{u(t) | ẋ(t)= f(x(t); u(t)); x(0)= x0;
g(x(t); u(t))6b; u(t)6 u(t)6 Mu(t)}. Herein, b=
[b1; : : : ; bK ]T; p= [p1; : : : ; pK ]T; J 1 and J 0 represent
the global optima for the two subproblems, respec-
tively. Once J 1 and J 0 are determined, the optimal
value for Eq. (1) will fall in between these two values.
Moreover, owing to various acceptability for gk

changed from bk to bk +pk , it will have diNerent sat-
isfaction for J as it changes from J 0 to J 1. It means
that values larger than J 1 have the highest satisfaction
and values less than J 0 are unacceptable. For objective
values in between J 0 and J 1, greater J value results in
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Fig. 3. Linear-type monotonic increasing membership function for
the objective.

Fig. 4. Exponential-type monotonic increasing membership func-
tion for the objective.

increased degree of satisfaction. A fuzzy set J with
degree of satisfaction, �J[x(tf)], can thus be de6ned.

�J(x(tf)) =



0 if J¡J 0;
FJ(J; J 0; J 1) if J 06J6J 1;
1 if J¿J 1:

(8)

Two frequently used monotonic increasing member-
ship functions, as shown in Figs. 3 and 4 are listed as
follows:

FJ(J; J 0; J 1)

=




J−J 0
J 1−J 0 for linear type;
1−exp[−�((J−J 0)=(J 1−J 0))]

1−exp[−�] for exponential

type;

(9)

where �∈R1 is the shape-adjusting factor. Similar to
the selection for FCk , the choice for FJ is also subjec-
tive and dependent on the DM’s preference.

3. Fuzzy optimization

As objective and constraints have been fuzzi6ed,
the optimization problem in a fuzzy environment can
be described as [8]

Attain Fuzzy Objective J

and Satisfy Fuzzy Constraints C: (10)

the above statement implies that control policy is
viewed as the aggregation of the fuzzy objective J
and the fuzzy inequality constraint C,

D = C ∩J: (11)

The fuzzy decision can be measured by the degree of
feasibility, �D(x0|u(t)).
�D(x0|u(t)) =T{�J(x(tf)); �C(x(t); u(t))}

=T{�J(x(tf)); �C1 (x(t); u(t)); : : : ;

�CK (x(t); u(t))}; (12)

where �D(x0|u(t)) denotes the degree of feasibility
for continuous control policy u(t) starting from ini-
tial state x0. For a collection of control actions, the
most feasible control policy u∗(t) is the one having
the highest degree of feasibility, �∗D(x0|u∗(t)).
�∗D(x0|u∗(t))

= max
u(t)∈�̃

�D(x0|u(t))

= max
u(t)∈�̃

T{�J(x(tf)); �C(x(t); u(t))}

= max
u(t)∈�̃

T{�J(x(t)); �C1 (x(t); u(t)); : : : ;

�CK (x(t); u(t))}: (13)

The problem can thus be interpreted as 6nding an op-
timal continuous control u∗(t) over t ∈ [t0; tf] which
can simultaneously maintain the degree of satisfaction
of objective and the degree of acceptability of fuzzy
inequality constraints as much as possible.



C.-L. Chen et al. / Fuzzy Sets and Systems 127 (2002) 165–176 169

4. Solution method

4.1. Fuzzy dynamic programming

The dynamic programming had been applied by
Bellman and Zadeh [1] to solve multistage fuzzy
optimization problems for a time-invariant discrete
system. To extend their algorithm to solve continuous
cases, the in6nite-dimensional control u(t) in Eq. (1)
can be discretized into a set of 6nite-dimensional
piece-wise constant control actions, such as

max
u0 ;:::;uP−1∈�̃d

J (xP); (14)

where �̃d= {u0; : : : ; uP−1 | ẋ(t)=f(x(t); ui); x(0)=
x0; g(x(t); ui)6b̃; u(t)6ui6 Mu(t) ∀t ∈ [ti; ti+1]≡ [iT;
(i + 1)T ]; i=0; : : : ; P − 1} represents the feasible
space of discretized control policy; T = tf=P is the
control interval in which the control action is kept
constant. With the discretized control policy, the de-
gree of feasibility de6ned in Eq. (12) can be recast
as

�D(x0|u0; : : : ; uP−1)

= T{�C(x0; u0); : : : ; �C(xP−1; uP−1); �J(xP)};

(15)

where �C(xi ; ui)≡T{�C1 (xi ; ui); : : : ; �CK (xi ; ui)} rep-
resents the degree of acceptability for aggregating
fuzzy inequality constraints when starting from xi and
using ui as the control action during t ∈ [iT; (i+1)T ];
and �J(xP) represents the degree of satisfaction
for fuzzy objective at the 6nal time end. Now the
problem lies in 6nding a consecutive optimal con-
trol series u∗0 ; : : : ; u

∗
P−1 with the highest degree of

feasibility, by which, the degree of satisfaction for
fuzzy objective and the degree of acceptability for
fuzzy constraints can be attained as much as possible,
that is,

�∗D(x0|u∗0 ; : : : ; u∗P−1)

= max
u0 ;:::;uP−1∈�̃d

�D(x0|u0; : : : ; uP−1)

= max
u0 ;:::;uP−1∈�̃d

T{�C(x0; u0); : : : ;

�C(xP−1; uP−1); �J(xP)}: (16)

The dynamic programming cab be easily applied
to solve Eq. (16). Notably, the last two right-hand
side terms depend only on the current state condi-
tion xP−1 and the applied control action uP−1. The
fuzzy decision at the last stage can thus be characte-
rized by

�D(xP−1|uP−1) = T{�C(xP−1; uP−1); �J(xP)}:
(17)

During the maximization over the sequence of control
policies u0; : : : ; uP−1 in Eq. (16), these control actions
can be divided into two parts:
1. the maximization over the interval not directly re-
lated to the last stage: u0; : : : ; uP−2, and

2. the maximization over uP−1.
Eq. (16) can thus be rewritten as

�∗D(x0|u∗0 ; : : : ; u∗P−1)

= max
u0 ;:::;uP−2∈�̃d

T
{
�C(x0; u0); : : : ; �C(xP−2; uP−2);

max
uP−1∈�̃d

T[�C(xP−1; uP−1); �J(xP)]
}

= max
u0 ;:::;uP−2∈�̃d

T{�C(x0; u0); : : : ; �C(xP−2; uP−2);

�∗D(xP−1|u∗P−1)}; (18)

where �∗D(xP−1|u∗P−1) denotes the maximal feasibil-
ity at the last time stage caused by the best control
policy u∗P−1. Furthermore, owing to the next decision
�DP−2 (xP−2|uP−2) depends only on the current state
xP−2 and the applied control action uP−2, Eq. (18)
can be expressed as

�∗D(x0|u∗0 ; : : : ; u∗P−1)

= max
u0 ;:::;uP−3∈�̃d

T{�C(x0; u0); : : : ; �C(xP−3; uP−3);

max
uP−2∈�̃d

T[�C(xP−2; uP−2); �∗D(xP−1|u∗P−1)]}

= max
u0 ;:::;uP−3∈�̃d

T{�C(x0; u0); : : : ; �C(xP−3; uP−3);

�∗D(xP−2|u∗P−2)}: (19)
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Continuing the above iteration in a backward man-
ner, the optimal sequence of control policies u∗P−3;
u∗P−4; : : : ; u

∗
0 can be determined by the following re-

current relations:

�∗D(xi|u∗i ) = max
ui∈�̃d

T{�C(xi ; ui); �∗D(xi+1|u∗i+1)};

i = P − 1; : : : ; 0; (20)

where �∗D(xP|u∗P)≡ �∗J(xP).

4.2. Fuzzy iterative dynamic programming

Direct application of dynamic programming to de-
termine the optimal policy for a nonlinear dynamic
system is extremely diFcult. Two major obstacles
discourage the direct use of dynamic programming
[10]. The greatest one, commonly referred to as the
curse of dimensionality, involves the use of a large
amount of grid values for the state and the control,
respectively, to have reasonable result. Therefore, nu-
merous integrations must be performed at each time
stage. Another problem arises when the trajectory cal-
culated for a particular grid point does not meet the
grid point at the next time step. Although interpolation
can be used, the approximation may still be unreliable.
To tackle these drawbacks, Luss [10] proposed the
method of iterative dynamic programming (IDP). By
using of coarse grid points and region-reduction strat-
egy, IDP not only successfully overcomes the curse
and promotes the eFciency of computation but greatly
increases numerical accuracy. Since then, extensive
researches [6,7,2,3,11] have shown that IDP is one re-
liable method on obtaining global solution for nonlin-
ear dynamic optimization problems. So, we attempt
in this study to integrate the IDP and the fuzzy infer-
ence to provide an eFcient way on 6nding the solution
of a dynamic optimization problem with $exible in-
equality constraints. All these works are summarized
as follows:

(I) Preliminary preparations
1. Select suitable monotonic decreasing=incre-
asing functions for �Ck ’s and �J, respec-
tively. The linear-type functions will be used
in this study.

2. Use bk and bk + pk to de6ne �Ck ’s,

�Ck (x; u)

=




1 if gk(x; u)¡bk;
bk+pk−gk(x; u)

pk
if bk6gk(x; u)

6bk+pk;

0 if gk(x; u)¿bk+pk:
(21)

3. Solve Eqs. (7) and (6) by any existing opti-
mization method to determine J 0 and J 1.

4. Use J 0 and J 1 to de6ne �J.

�J(xP) =



0 if J¡J 0;

J−J 0
J 1−J 0 if J 06J6J 1;

1 if J¿J 1:

(22)

5. Select operating parameters:
(a) Set the number of time stages, P. Pre-

vious experience shows that a setting of
P=10 is enough in general. For prob-
lems with high nonlinearities, however,
it is necessary to take P as 20–25 to ob-
tain higher numerical accuracy.

(b) Assign the number of grid points N at
each time stage, and the number of con-
trol trials M for testing the control per-
formance when starting from a speci6c
grid point. In the following, we use an
oddM value and theM control trials are
equally spaced in between uj and Muj.

(c) Choose a searching region r for uj’s, and
a contracting factor �. Then � value can
be set as 0:8–0:9 in most cases.

(II) Generation of grid points
By using N values of evenly distributed con-
trols inside the allowable region, integrate
the system dynamic equations N times to
generate the state grids at each time stage, i.e.,
x(ti; n); i=1; : : : ; P − 1; n=1; : : : ; N; ti= iT ,
as shown in Fig. 5.

(III) The FIDP
1. Begin at the last stage (i.e., stage P), cor-
responding to t∈[tP−1; tP]=[tf−T; tf], as



C.-L. Chen et al. / Fuzzy Sets and Systems 127 (2002) 165–176 171

Fig. 5. Illustration of FIDP method (N =3; M =3).

shown in Fig. 5. Start from xP−1 = x(tP−1;
n=1):
(a) Integrate the system dynamic equations

over t ∈ [tP−1; tP] with testing control
input uP−1 = u(tP−1; m=1). Notably,
the M testing inputs are equally spaced
in the allowable regions centered at the
temporal best value.

(b) Calculate the acceptability, �Ck (xP−1;
uP−1), k =1; : : : ; K and the resultant
degree of satisfaction, �J(xP).

(c) Aggregate �Ck (xP−1; uP−1)’s and �J(xP)
to determine the feasibility, �D(xP−1|
uP−1).

�D(xP−1|uP−1)
= T{�C1 (xP−1; uP−1); : : : ;
�CK (xP−1; uP−1); �J(xP)}: (23)

Here, we use the min operator for T.
Moreover, numerical experiments show
that the minimum acceptability of in-
equality constraints may occur within
the stage. Therefore, extra checkpoints
within the stage should be included to
detect the point with minimum accept-
ability.

(d) Repeat previous steps with uP−1 =
u(tP−1; m); m=2; : : : ; M .

(e) Select the control with the maximized
feasibility, �∗D(xP−1|u∗P−1).

2. Repeat step 1 starting from other grids of the
last stage, i.e., xP−1=x(tP−1; n); n=2; : : : ; N .

3. Step back to stage P − 1, corresponding to
t ∈ [tP−2; tP−1]= [tf−2T; tf−T ]. Start from
xP−2 = x(tP−2; n=1):
(a) Integrate the system dynamic equations

from time tP−2 to tP−1 with testing con-
trol action uP−2 = u(tP−2; m=1). For
integration over t ∈ [tP−1; tP], use the
closest grid’s temporal best control ac-
tion determined previously.

(b) Calculate the acceptability, �Ck (xP−2;
uP−2); k =1; : : : ; K , and the resulting
satisfaction at tP . Notably, the accept-
ability, �Ck (xP−1; uP−1), should be cal-
culated as well since the state trajectory
may not exactly meet the state grid at
tP−1.

(c) Aggregate the acceptability and the
resulting satisfaction of objective to
determine the feasibility for each con-
trol value from tP−2 to tP .

�D(xP−2|uP−2)
=T{�C1 (xP−2; uP−2); : : : ;
�Ck (xP−2; uP−2); �

∗
D(xP−1|u∗P−1)}:

(24)

(d) Repeat previous steps with uP−2 = u
(tP−2; m); m=2; : : : ; M .

(e) Select the control action with maximal
feasibility, �∗D(xP−2|u∗P−2).

4. Repeat step 3 from other grids of the same
stage, i.e., xP−2 = x(tP−2; n); n=2; : : : ; N .

5. Repeat steps 3 and 4 until the 6rst stage.
6. Reduce the region for allowable control ac-
tions.

r(j+1) = �r(j); (25)

where j is the iteration index. Use the opti-
mal state trajectory as the mid-point for state
grid at each time stage, and use the optimal
controls from previous steps as the central
values for the allowable controls.

7. Increase the iteration index j by 1 and go
back to step 1. Continue the iteration for a
speci6c number of iterations such as 20, i.e.,
one pass, and then examine the results.
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5. Numerical illustration

Two numerical examples are used to demonstrate
the proposed algorithm, namely: (a) a plug-$ow tab-
ular reactor problem, in which the temperature state
is restricted by a $exible constraint; and (b) a nonlin-
ear mathematical problem, in which a $exible nonlin-
ear inequality constraints should be satis6ed. All of
the computations were performed in double precision
on Pentium-100 personal computer using DJGPP C++

compiler.

Example 1. A plug-1ow tubular reactor problem
Consider a plug-$ow tubular reactor adapted from

[11].

dx1
dt

= (1− x1)k1 − x1k2;

dx2
dt

= 300[(1− x1)k1 − x1k2]− u(x2 − 290);
(26)

where

k1 = 1:7536× 105 exp
(−1:1374× 104

1:9872x2

)
;

k2 = 2:4885× 1010 exp
(−2:2748× 104

1:9872x2

)
;

x1(0) = 0; x1(0) = 380;

(27)

where x1 and x2 denote the normalized exit con-
centration of the desired product and the reactor
temperature, respectively. The control variable is the
normalized coolant $ow rate u(t) which is bounded
by 06u(t)60:5. The temperature is restricted by a
$exible constraint, x2(t)645̃0. The objective is to
maximize the yield given by x1 (tf =5 min), suppose
the limiting value and the maximal tolerance for the
temperature are set as 450 and 20K, respectively, and
the linear-type function is used for membership. The
change of degree of acceptability for temperature can
be determined as

�c(x2(t)) =



1 if x2(t)¡ 450;

470− x2(t)
470− 450 if 4506 x2(t)6 470;

0 if x2(t)¿ 470:

To determine the reasonable objective region, two
subproblems are de6ned, one has the pessimistic
restriction,

x2(t)6 450 (28)

and the other one possesses the optimistic constraint,

x2(t)6 470: (29)

The optimal values determined by the IDP for the two
subproblems are J 0 = 0:6679 and J 1 = 0:6795, respec-
tively. We employ the linear-type membership func-
tion to depict the change of degree of feasibility for
the fuzzy objective,

�J(x1(tf))

=




0 if J (x1(tf))¡ 0:6679;
J (x1(tf))−0:6679
0:6795−0:6679 if 0:66796 J (x1(tf))

6 0:6795;

1 if J (x1(tf))¿ 0:6795:

(30)

Now select number of grid points N =5 and num-
ber of trial controls M =3. To show computational
details, we solve the problem with three stages, i.e.,
P=3, at 6rst. A more compact solution will be
supplied later. Suppose we have obtained temporal
optimal control inputs for the three stages, respec-
tively, such as u∗0 = 0, u

∗
1 = 0:3609, and u

∗
2 = 0:1932.

The contracting factor is �=0:85, and the current
searching region is r=0:0681. Five control inputs
evenly distributed around the temporal optimal control
inputs are used for generating 6ve state grids at t1 and
t2, which are u(t0; n)∈{0:0681; 0:03405; 0; 0; 0} and
u(t1; n) ∈ {0:4290; 0:3950; 0:3609; 0:32685; 0:2928}.
Therein, 6ve control series are used sequentially,
such as {u(t0; n); u(t1; n)}; n=1; : : : ; 5. The states
thus generated, x(t1; n) and x(t2; n), are shown in
Table 1. Notably, there are only three state grids at
t1, since only three numerical values for u(t0; n) are
available.
Starting from x(t2; n=1)= [0:5434; 461:08]T, inte-

grating the system by using three testing control poli-
cies in sequence, u(t2; m)∈{0:1251; 0:1932; 0:2613},
results in three 6nal states, where u(t2; 1)=0:2613
gives the maximal feasibility �∗D=0:0605. Similarly,



C
.-L
.
C
hen

et
al./F

uzzy
S
ets

and
S
ystem

s
127

(2002)
165

–
176

173

Table 1
Numerical illustration for the FIDP in Example 1 (N =5; M =3)

t0 = 0 t1 t2 t3 = tf

x(t2; n) x(t3; n)

x1 x2 �C u(t2; m) x1 x2 �C �J �D
0.1251 0.6345 453.17 0.3909 0.0000 0

0.5434 461.08 0.4459 0.1932 0.6549 442.11 0.4459 0.0000 0
0.2613∗ 0.6650 429.56 0.4459 0.0605 0.0605∗

0.1251 0.6459 450.49 0.6198 0.0000 0
0.5461 454.99 0.7504 0.1932 0.6632 438.99 0.7471 0.0000 0

0.2613∗ 0.6694 425.88 0.7504 0.9548 0.7504∗

0.1251 0.6538 447.90 0.8785 0.0000 0
— — 0.5388 446.89 1.0000 0.1932 0.6662 435.63 1.0000 0.3136 0.3136

0.2613∗ 0.6666 421.57 1.0000 0.3851 0.3851∗

0.1251∗ 0.4193 399.54 1.0000 0.0000 0∗
0.3251 393.49 1.0000 0.1932 0.3996 383.85 1.0000 0.0000 0

0.2613 0.3859 371.23 1.0000 0.0000 0

0.1251∗ 0.2443 358.50 1.0000 0.0000 0∗
0.2144 364.43 1.0000 0.1932 0.2397 350.32 1.0000 0.0000 0

0.2613 0.2362 343.26 1.0000 0.0000 0

x(t1; n) x(t2; n) Nearest x(t2; n) x(t3; n)

x1 x2 �C u(t1; m) x1 x2 �C x1 x2 u∗2 x1 x2 �C �J �D
0.2928 0.5434 461.08 0.0723 0.5434 461.08 0.2613 0.6650 429.56 0.0723 0.0605 0.0605

0.1775 433.24 1.0000 0.3609∗ 0.5388 446.89 0.8191 0.5388 446.89 0.2613∗ 0.6666 421.57 0.8191 0.3851 0.3851∗
0.4290 0.4887 423.20 1.0000 0.5388 446.89 0.2613 0.6000 402.40 1.0000 0.0000 0

0.2928∗ 0.4241 434.57 1.0000 0.5388 446.89 0.2613∗ 0.6085 427.06 1.0000 0.0000 0∗
0.1438 417.19 1.0000 0.3609 0.3511 404.80 1.0000 0.3251 393.49 0.1251 0.4972 422.90 1.0000 0.0000 0

0.4290 0.3045 384.02 1.0000 0.3251 393.49 0.1251 0.3679 383.46 1.0000 0.0000 0

0.2928∗ 0.2666 394.40 1.0000 0.3251 393.49 0.1251∗ 0.3816 406.01 1.0000 0.0000 0∗
0.1200 404.61 1.0000 0.3609 0.2351 377.32 1.0000 0.2144 364.43 0.1251 0.2883 375.24 1.0000 0.0000 0

0.4290 0.2144 364.43 1.0000 0.2144 364.43 0.1251 0.2443 358.50 1.0000 0.0000 0

x(t0) x(t1; n) Nearest x(t1; n) x(t2; n) Nearest x(t2; n) x(t3; n)

x1 x2 u(t0; m) x1 x2 �C x1 x2 u∗1 x1 x2 �C x1 x2 u∗2 x1 x2 �C �J �D
0.00 380 0.0000∗ 0.1775 433.24 1.0000 0.1775 433.24 0.3609∗ 0.5338 446.89 0.8191 0.5388 446.89 0.2613∗ 0.6666 421.57 0.8191 0.3851 0.3851∗

0.0681 0.1200 404.61 1.0000 0.1200 404.61 0.2928 0.2666 394.40 1.0000 0.3251 393.49 0.1251 0.3816 406.01 1.0000 0.0000 0
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we can determine the optimal control inputs for other
four state grids at t2, such as shown in Table 1.
Stepping back to stage tP−2 = t1, we use u(t1; m)∈

{0:2928; 0:3609; 0:4290} sequentially as testing con-
trol inputs. As shown in Table 1, when starting
from x(t1; 1)= [0:1775; 433:24]T and using u(t1; 1)=
0:2928 and u(t1; 2)=0:3609, the trajectories will ex-
actly reach [0:5434; 461:08]T and [0:5388; 446:89]T,
respectively, at t2. Therefore, u∗2 = 0:2613 will be used
as the subsequent control input and that will attain
6nal states [0:6650; 429:56]T and [0:6666; 421:57]T,
and the resultant feasibilities are �D=0:06050 and
�D=0:3851, respectively. However, when u(t1; 3)=
0:4290 is used, the trajectory started from the same
state grid will be [0:4887; 423:20]T at t2 and the
closest state grid is [0:5388; 446:89]T. Therefore,
the subsequent control input for further integra-
tion is also u∗2 = 0:2613. Notably, the resultant
6nal state is [0:6000; 402:40]T with a feasibility
of �D=0. So, when starting from state grid of
x(t1; 1)= [0:1775; 433:24]T, the control series with
the highest feasibility, �∗D=0:3851, are u

∗
1 = 0:3609

and u∗2 = 0:2613. The optimal control series can
be determined similarly for other two state grids
x(t1; n); n=2; 3, such as shown in the table.
Stepping back to tP−3 = t0 and using the similar

procedure, we can 6nd the optimal control series,
u∗0 = 0:0, u

∗
1 = 0:3609, and u

∗
2 = 0:2613, with the high-

est feasibility, �∗D=0:3851. For such control series,
the objective value is 0:6666. The user can repeat the
above computational procedures, where the search
region for control will be contracted by �=0:85.
In order to obtain solution with higher numerical ac-

curacy, the time horizon is divided into P=10 stages.
The results after several passes of iterations are shown
in Figs. 6–8 for trajectories of concentration, tempera-
ture, and the controlled cooling rate, respectively. The
6nal optimal value is 0:6747.

Example 2. A mathematical system with nonlinear
inequality constraints
The next example is a modi6cation from [11]. The

mathematical system is governed by three diNerential
equations:

dx1
dt

= x2;

Fig. 6. Concentration trajectory in Example 1.

Fig. 7. Temperature trajectory in Example 1.

Fig. 8. Control trajectory in Example 1.

dx2
dt

= −x2 + u;

dx3
dt

= x21 + x
2
2 + 0:005u

2;
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x1(0) = x3(0) = 0; x2(0) = −1;

−206 u(t)6 20: (31)

The objective function to be minimized is x3(tf =1),
and the $exible constraint is

g(x) = x2 + 0:5− 8(t − 0:5)2 6 0̃: (32)

Suppose the limiting value and maximal tolerance for
the constraint are 0 and 0.15, respectively. As the
linear-type function is used, the change of degree of
acceptability can be depicted as follows:

�C(x(t)) =



1 if g(x)¡ 0;

0:15− g(x)
0:15− 0 if 0:06 g(x)6 0:15;

0 if g(x)¿ 0:15:

(33)

The optimal values for the two subproblems are
J 1 = 0:1239 for optimistic constraints and J 0 = 0:1818
for pessimistic constraints. Based on these two val-
ues, the linear-type function is applied to characterize
the degree of satisfaction.

�J(x3(tf)) =




1 if J ¡ 0:1239;

0:1818− J
0:1818− 0:1239 if 0:12396 J

6 0:1818;

0 if J ¿ 0:1818:

(34)

Here, we use Zadeh-min to perform the fuzzy inter-
section. The resulting optimal value is 0.1505. The
trajectories of x3(t) and the control pro6le are shown
in Figs. 9 and 10, respectively.

6. Conclusions

Based on the iterative dynamic programing, a so-
lution strategy for dynamic optimization problems
with $exible inequality constraints has been proposed.
The problem can be formulated as a fuzzy dynamic
optimization problem after its $exible portion is quan-
ti6ed by the fuzzy logic. Compared with the general

Fig. 9. Trajectory of x3(t) in Example 2.

Fig. 10. Trajectory of control action in Example 2.

dynamic optimization problems, the additional requi-
site of Eq. (14) in computation is to determine the
acceptability in every time stage and the satisfaction of
objective’s value at 6nal time end. This additional
computation can be easily ful6lled as IDP is used. Two
examples are supplied, demonstrating the feasibility
of proposed strategy.
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