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Abstract

This paper generalizes the concept of rough membership functions in pattern classi$cation tasks to rough–fuzzy membership
functions and rough–fuzzy ownership functions. Unlike the rough membership value of a pattern, which is sensitive only
towards the rough uncertainty associated with the pattern, the rough–fuzzy membership (or ownership) value of the pattern
signi$es the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. In this paper, various set theoretic
properties of the rough–fuzzy functions are exploited to characterize the concept of rough–fuzzy sets. These properties are
also used to measure the rough–fuzzy uncertainty associated with the given output class. Finally, a few possible applications
of the rough–fuzzy functions are mentioned. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In any classi$cation task the aim is to form various
classes where each class contains the objects that are
not noticeably di9erent [1]. These indiscernible or in-
distinguishable objects can be viewed as basic build-
ing blocks (concepts) used to build up a knowledge
base about the real world. For example, if the ob-
jects are classi$ed according to color (red, black) and
shape (triangle, square and circle), then the classes
are red triangles, black squares, red circles, etc. Thus,
these two attributes make a partition in the set of ob-
jects, and the universe becomes coarse. Now, if two
red triangles with di9erent areas belong to di9erent
classes, then it is impossible for anyone to correctly
classify these two red triangles using the given two at-
tributes. This kind of uncertainty is referred to as rough
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uncertainty [10,19,23,24,26,27,32]. The rough un-
certainty is formulated in terms of rough sets [20].
Obviously, the rough uncertainty can be completely
avoided if we can successfully extract the essential
features so that distinct feature vectors are used to
represent di9erent objects. But, it may not be possible
to guarantee since our knowledge about the system
generating the data is limited [30]. Therefore, rough
sets are essential to deal with a classi$cation system
where we do not have complete knowledge of the
system.

Fuzzy sets, a generalization of the classical sets,
are considered as mathematical tools to model the
vagueness present in the human classi$cation mecha-
nism. In the classical set theory, the belongingness of
an element to the given universe is crisp: It is either
yes (in the set) or no (not in the set). In fuzzy sets,
the belongingness of the element can be anything in
between yes or no; for example, a set of tall persons.
We cannot classify a person as tall using yes=no
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category, since there is no well-de$ned boundary for
the set tall. The concept of fuzzy sets is important
in pattern classi$cation, because the psycho-
physiological process involved in the human rea-
soning does not employ any precise mathematical
formulation [18].

Although probabilistic, fuzzy and rough uncertain-
ties are di9erent facets of uncertainty, they are often
confused. The fuzziness deals with the vagueness be-
tween the overlapping sets [2,4,11], while the concept
of probability concerns the likelihood of randomness
of a phenomenon [14]. On the other hand, rough sets
deal with coarse non-overlapping concepts [5,6]. Both
roughness and fuzziness do not depend on the occur-
rence of the event, whereas probability does. Fuzziness
lies in the subsets de$ned by the linguistic variables
like tall, big, whereas indiscernibility is a property of
the referential itself as perceived by some observers,
not of its subsets [6]. In fuzzy sets, each granule of
knowledge can have only one membership value into
a particular class. However, rough sets assert that all
the members of the same granule may not have the
same membership values into a particular class. Fuzzy
sets deal with overlapping classes and 3ne concepts,
whereas rough sets deal with nonoverlapping classes
and coarse concepts.

In a classi$cation task, both roughness and fuzzi-
ness can co-exist [7,8,9]. In some kinds of problems,
the indiscernibility relation partitions the input pattern
set to form several equivalence classes. These equiva-
lence classes act like granules. In other kinds of prob-
lems, the input pattern set is transformed into a set of
granules after imposing certain constrains on the in-
terpretation of the structure of the data. In both kinds
of problems, the granules try to approximate the given
output class. When this approximation is not proper,
the roughness appears. In addition, the concepts or the
output classes may have ill-de$ned boundaries. Thus,
both roughness and fuzziness appear here due to the
indiscernibility relation in the input pattern set and the
vagueness in the output class, respectively. To model
this type of situation, where both vagueness and ap-
proximation are present, the concept of rough–fuzzy
set [5] is introduced. The resultant model is expected
to be more powerful than both rough sets and fuzzy
sets.

In the classical set theory, one of the fundamental
notions is characteristic function. When one consid-

ers subsets of a given universe based on the available
partial information, it is possible to apply the charac-
teristic function to determine whether a given element
belongs to a particular set. Following this direction,
the concept of rough–fuzzy membership function
and rough–fuzzy ownership function are proposed in
this paper. The rough–fuzzy membership function at-
tempts to quantify the roughness that appears mainly
due to the limitation of the representation; in contrast,
the rough–fuzzy ownership function measures the
roughness that arises primarily due to our interpreta-
tion of the structure of the input set. In absence of the
fuzziness in the output class, the rough–fuzzy mem-
bership function (rough–fuzzy ownership function)
reduces to the original rough membership function
(rough ownership function). Moreover, when the par-
tition in the input set is 3ne, i.e., each equivalence class
contains only one pattern, both rough–fuzzy mem-
bership function and rough–fuzzy ownership function
reduce to the fuzzy membership function. Similarly,
if the partitioning is 3ne and the output classes are
crisp simultaneously, the proposed functions reduce
to the characteristic function. The concepts of the
rough–fuzzy functions become particularly attractive
when we do not have complete knowledge of the hu-
man classi$cation system, but we attempt to mimic
the vagueness present in the human reasoning.

The paper is organized as follows: In Section 2 we
discuss the basics of rough sets, fuzzy sets and rough–
fuzzy sets. In Section 3, the rough–fuzzy membership
function and its properties are described. Section 4 dis-
cusses the rough–fuzzy ownership functions. Section 5
outlines how to quantify the rough–fuzzy uncertainty
using the proposed functions. Section 6 demonstrates
some possible applications of the proposed functions.

2. Background of rough and fuzzy sets

2.1. Rough sets

A binary relation R on a universal set X is an equiv-
alence relation if and only if

(1) R is re4exive, i.e., x is related to itself or xRx
where x∈X ,

(2) R is symmetric, i.e., xRy⇒ yRx where x; y∈X ,
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(3) R is transitive, i.e., xRy and yRz⇒ xRz where
x; y; z∈X .

For an equivalence relation R on a set X , the set of
the elements of X that are related to x∈X , is called
the equivalence class of x, and it is denoted by [x]R.
Moreover, let X=R denote the family of all equiva-
lence classes induced on X by R. For any output class
C⊆X , we can de$ne the lower R(C) and upper GR(C)
approximations, which approach C as closely as pos-
sible from the inside and outside, respectively [12].
Here,

R(C) =
⋂

{[x]R | [x]R ⊆ C and x ∈ X } (1)

is the union of all equivalence classes in X=R that are
contained in C and

GR(C) =
⋃

{[x]R | [x]R ∩ C �= ∅ and x ∈ X } (2)

is the union of all equivalence classes in X=R that
overlap with C. The rough set R(C)=〈R(C); GR(C)〉
is a representation of the given set C by R(C) and
GR(C). The set GR(C) − R(C) is a rough description
of the boundary of C by the equivalence classes of
X=R. The approximation is rough uncertainty free if
GR(C)=R(C). Thus, when all the patterns from an
equivalence class do not carry the same output class
label, the rough uncertainty is generated as a mani-
festation of the one-to-many relationship between that
equivalence class and the output class labels.

Two examples of rough sets are shown in Fig. 1.
In the $rst example (Fig. 1(a)), X is a closed interval
of real numbers, and X=R partitions X into ten semi-
closed intervals. The output class Cc, which is to be
approximated by the elements of X=R, is shown as
the closed interval. We use the subscript c to indicate
the cth output class. The rough set approximation of
Cc consists of the two semiclosed intervals R(Cc) and
GR(Cc). In the second example (Fig. 1(b)), the univer-
sal set is X =X1 ×X2, and the equivalence relation R
partitions X1 ×X2 into 100 small squares.

The rough membership function rCc(x) :X → [0; 1]
of a pattern x∈X in the output class Cc is de$ned in
[22,31] by

rCc(x) =
‖[x]R ∩ Cc‖

‖[x]R‖ ; (3)

Fig. 1. (a) Rough sets in one-dimensional domain. The equiva-
lence relation R partitions the universal set X into ten intervals.
The output class Cc is approximated by R(Cc) and GR(Cc). (b)
Rough sets in two-dimensional domain. The equivalence relation
R partitions the universal set X1 ×X2 into 100 small squares. In
both the cases, the uncertainty is generated in the intervals=squares
that are covered by GR(Cc) but not by R(Cc).

where ‖[x]R‖ denotes the cardinality of the crisp
set Cc.

2.2. Fuzzy sets

In traditional two-state classi$ers, where a class C
is de$ned as a subset of the universal set X , any in-
put pattern x∈X can either be a member or not be a
member of the given class C. This property of whether
or not a pattern x of the universal set belongs to the
class C can be de$ned by a characteristic function
�C :X →{0; 1} as follows [12]: �C(x)=1 i6 x∈C,
�C(x)=0 otherwise. In real life situations, bound-
aries between the classes may be overlapping (Fig. 2).
Hence, it is uncertain whether an input pattern belongs
totally to the class C. To consider such situations, in
fuzzy sets the concept of the characteristic function
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Fig. 2. The fuzzy membership function for the fuzzy set tall.
There is no single point c on the X-axis such that a person with
height¿c can be called tall and a person with height¡c can be
called not tall.

has been modi$ed to the fuzzy membership function
�C :X → [0; 1].

2.3. Rough–fuzzy sets

The rough–fuzzy set is the generalization of the
rough set in the sense that here the output class is
fuzzy. Let X be a set, R be an equivalence relation de-
$ned on X , and the output class C⊆X be a fuzzy set.
The rough–fuzzy set is a tuple 〈R(C); GR(C)〉, where
the lower approximation R(C) and the upper approx-
imation GR(C) are fuzzy sets of X=R, with membership
functions de$ned in [5,6] by

�R(C)([x]R) = inf{�C(x) | x ∈ [x]R} ∀x ∈ X (4)

and

� GR(C)([x]R) = sup{�C(x) | x ∈ [x]R} ∀x ∈ X: (5)

Here, �R(C)(x) and � GR(C)(x) are the membership val-
ues of [x]R in R(C) and GR(C), respectively.

3. Rough–fuzzy membership functions

3.1. De3nition of rough–fuzzy membership
functions

The rough–fuzzy membership function of a pattern
x∈X for the fuzzy output class Cc⊆X is de$ned as


Cc(x) =
‖F ∩ Cc‖

‖F‖ ; (6)

where F=[x]R, and ‖Cc‖ implies the cardinality of
the fuzzy set Cc. One possible way to determine

the cardinality [34] is to use ‖Cc‖=
∑

x∈X �Cc(x).
For the ‘∩’ (intersection) operation, we can use
�A∩B(x)= min{�A(x); �B(x)} ∀x∈X .

In Fig. 3, the idea of the rough–fuzzy membership
function is depicted. The parallelepiped contains all
the patterns from the equivalence class [xi] i.e., the
parallelepiped contains the patterns that look like [xi].
But, some of these patterns may have di9erent fuzzy
memberships into the class Cc. It creates the rough
uncertainty. If the fuzzy membership surface is Lat
when it passes through the parallelepiped, then the
fuzzy memberships into Cc for all the patterns inside
the parallelepiped are same. Hence, in this case, there
is no rough uncertainty. However, there will be certain
amount of fuzziness if the fuzzy membership values
inside the parallelepiped lie in (0; 1). Intuitively, the
rough–fuzzy membership value of [xi] is the volume
occupied by the overlapped space in the parallelepiped
divided by the volume of the complete parallelepiped.
The volume of the overlapped space is approximated
by the weighted number of patterns in the space, where
the weight of each pattern is quanti$ed by its fuzzy
membership value.

3.2. Properties of rough–fuzzy membership
functions

Following are a few important properties of the
rough–fuzzy membership functions that can be ex-
ploited in a classi$cation task.

Property 1. 06�Cc(x)61.

Proof. Since ∅⊆F∩Cc⊆F , the proof is trivial.

The above property is obvious from Fig. 3 because
the rough–fuzzy membership function achieves the
maximum value when the overlapped space covers the
whole parallelepiped. Similarly, the minimum value
is achieved when the overlapped space does not exist.

Property 2. 
Cc(x)=1 and 0 if and only if no rough–
fuzzy uncertainty is associated with the pattern x.

Proof. If part: If no rough–fuzzy uncertainty is in-
volved, then either (a) F∩Cc⊆F , i.e., 
Cc(x)=1, or
(b) F∩Cc=∅ i.e., 
Cc(x)=0.
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Fig. 3. Intuitive view of the rough–fuzzy membership functions. The parallelepiped contains all (and only) the patterns that have the same
input representation of xi . The roughness is created in the parallelepiped when it contains more than one pattern and when the patterns
have di9erent fuzzy membership values. The fuzziness is appearing in the parallelepiped when the fuzzy membership values are in (0; 1).
The presence of both roughness and fuzziness create rough–fuzziness. Intuitively, the rough–fuzzy membership of the pattern xi is the
volume occupied by the overlapped space divided by the volume of the complete parallelepiped.

Only if part: If 
Cc(x)=0, then the numerator of (6)
is zero. It implies that F∩Cc=∅. On the other hand,
if 
Cc(x)=1, then the numerator of (6) is equal to the
denominator. It means that F∩Cc=Cc, i.e., F⊆Cc.
Both cases imply that no rough–fuzzy uncertainty is
involved.

From Fig. 3, when no roughness is involved,
the fuzzy membership surface inside the paral-
lelepiped should be Lat. In addition, to avoid the
fuzziness, the fuzzy membership values inside the
parallelepiped should be either zero or one. In that
case, the overlapped space in the parallelepiped
must be equal to zero, or the overlapped space
must cover the whole parallelepiped. Hence, the
rough–fuzzy membership value should be either
zero or one. The reverse proof is also intuitive from
Fig. 3.

Property 3. When the output class Cc is crisp, 
Cc(x)
=rCc(x).

Proof. When the output class Cc is crisp, Eq. (6) re-
duces to Eq. (3). Hence, the proof follows.

When the output class is crisp, the fuzzy member-
ship surface inside the parallelepiped can attain only
the values zero or one (Fig. 4). Although there is
no fuzziness, there may be certain amount of rough-
ness if the fuzzy membership surface inside the par-
allelepiped attains both the values zero and one. As a
result, the rough–fuzzy membership function becomes
equivalent to the rough membership function.

Property 4. When the partitioning is 3ne, 
Cc(x)=
�Cc(x). Moreover, if the partitioning is 3ne and the
output class Cc is crisp, then 
Cc(x) is equivalent to
the characteristic function.

Proof. When the partitioning is 3ne, i.e., each F con-
sists of a single pattern, 
Cc(x) = ‖1 : �Cc(x)‖=1=�Cc

(x). If �Cc(x)=0 or 1, i.e., the output class is crisp,
then 
Cc(x) becomes the characteristic function.
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When the partitioning is 3ne, only one pattern
can reside inside the parallelepiped (Fig. 3). Hence,
no one-to-many mapping can exist inside the paral-
lelepiped, and therefore, no roughness exists. How-
ever, the fuzziness may exist. The fuzziness too does
not exist if the fuzzy membership of the pattern inside
the parallelepiped is either zero or one.

This property and Property 3 show that both rough
and fuzzy membership functions become particular
cases of rough–fuzzy membership functions in the ab-
sence of the fuzziness and roughness, respectively.

Property 5. 
X−Cc(x)=1 − 
Cc(x).

Proof.


X−Cc(x) =
‖F ∩ (X − Cc)‖

‖F‖

= 1 − ‖F ∩ Cc‖
‖F‖ = 1 − 
Cc(x):

Property 6. If x and y are two patterns such that
xRy (i.e., x; y∈F), then 
Cc(x)= 
Cc(y).

Proof. It can be derived directly from Eq. (6).

Property 7. 
A∪B(x)¿max{
A(x); 
B(x)} where A; B
⊆X .

Proof.


A∪B(x) =
‖F ∪ (A ∪ B)‖

‖F‖

=
‖(F ∪ A) ∪ (F ∪ B)‖

‖F‖

¿
‖F ∪ A‖
‖F‖ = 
A(x):

Similarly, 
A∪B(x)¿
B(x).

Property 8. 
A∩B(x)6min{
A(x); 
B(x)} where A; B
⊆X .

Proof.


A∩B(x) =
‖F ∩ (A ∩ B)‖

‖F‖ =
‖(F ∩ A) ∩ (F ∩ B)‖

‖F‖

6
‖F ∩ A‖
‖F‖ = 
A(x):

Similarly, 
A∩B(x)6
B(x).

Property 9. If Z is a family of pairwise disjoint sub-
sets of X , then 
∪Z(x)=

∑
Cc∈Z 
Cc(x).

Proof.


∪Z(x) =
‖F ∩ (∪Z)‖

‖F‖ =
‖ ∪ (F ∩ Z)‖

‖F‖

=
∑
Cc∈Z


Cc(x):

Property 10. For a C-class classi3cation problem,
the rough–fuzzy membership function of a pattern be-
haves in a possibilistic way provided the fuzzy mem-
bership function of the pattern to the output classes
is possibilistic.

Proof. We show that the sum of the membership val-
ues over the output classes may or may not be equal
to one. That is

C∑
c=1


Cc(x)

=
C∑
c=1

‖F ∩ Cc‖
‖F‖

=
C∑
c=1

∑
x∈X min{�F(x); �Cc(x)}

‖F‖

=
C∑
c=1

∑
x∈F min{1; �Cc(x)}+

∑
x =∈F min{0; �Cc(x)}

‖F‖

=
C∑
c=1

∑
x∈F �Cc(x)
‖F‖

=
∑
x∈F

∑C
c=1 �Cc(x)
‖F‖ :

Therefore, for the crisp and constrained fuzzy clas-
si$cation [3], where

∑C
c=1 �Cc(x)=1, the value of
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∑C
c=1 
Cc(x) is equal to one. In case of possibilis-

tic classi$cation [3], 06
∑C

c=1 �Cc(x)61 and hence,
06

∑C
c=1 
Cc(x)6C.

This property is useful while using a classi$er. For
an input x, if

∑C
c=1 
Cc(x)≈ 0, then we are not sure

whether the input pattern belongs to any one of the out-
put classes. Surprisingly, the human brain possesses
the ability to indicate what it can classify and what
it cannot. For instance, if an observer knows only
Caucasian and Hispanic people, and if he sees some
East Indian person, then he expresses doubt about the
belongingness of the East Indian person into any of
the two classes. The classi$ers, whose outputs can
be interpreted as the rough–fuzzy membership values,
posses this interesting possibilistic classi$cation abil-
ity. In addition, when the rough–fuzzy membership
function in more than one class is close to one (say

C1 (x)≈ 1 and 
C2 (x)≈ 1), the input pattern belongs
to both the classes with high con$dence. It happens
typically in the applications where the output classes
are overlapping largely. For instance, in the colorec-
tal cancer follow-up program (see Application 2 in
Section 6), the patient can be in the following out-
put classes: Well, recurrence, metastasis and both.
The classes both and recurrence (similarly both and
metastasis) are highly overlapping. Therefore, 
Cc(x)
can distinguish between equal evidence and ignorance.

Property 11. For the crisp output classes R(Cc)={x
∈X |
Cc(x)=1}, GR(Cc)={x∈X |
Cc(x)¿0}, BN(Cc)
= GR(Cc) − R(Cc)={x∈X |1¿
Cc(x)¿0}.

Proof. For the crisp output classes, the above results
can be derived directly from Eqs. (4) and (5).

Following are a few trivial but interesting de$ni-
tions based on the above properties.

1. A C-class classi$cation problem for a set of in-
put patterns X ={x1; x2; : : : ; xn} is an assignment
of the rough–fuzzy membership value 
Cc(xi) on
each xi∈Cc ∀c=1; 2; : : : ; C and ∀i=1; 2; : : : ; n. In
the rough–fuzzy context, C partitions of X are the
set of values {
Cc(xi)} that can conveniently be ar-
ranged on a C × n matrix [
Cc(xi)]. Based on the
characteristic of [
Cc(xi)], the classi$cation can be
of the following three types [3]:

(a) Crisp classi3cation:

Bhc =

{

Cc(x) ∈ RCn |
Cc(xi) ∈ {0; 1} ∀c∀i;

C∑
c=1


Cc(xi) = 1;

06
n∑

i=1


Cc(xi)6n ∀c
}
:

(b) Constrained rough–fuzzy classi3cation:

Bfc =

{

Cc(x) ∈ RCn |
Cc(xi) ∈ [0; 1] ∀c∀i;

C∑
c=1


Cc(xi) = 1;

06
n∑

i=1


Cc(xi)6n ∀c
}
:

(c) Possibilistic rough–fuzzy classi3cation:

Bpc =

{

Cc(x) ∈ RCn |
Cc(xi) ∈ [0; 1] ∀c∀i;

06
n∑

i=1


Cc(xi)6n ∀c
}
:

It is obvious that Bhc⊆Bfc⊆Bpc.
2. To make the de$nition of rough approximation

loose, the model of variable precision rough set
model is proposed by Ziarko [35]. The idea of the
variable precision model can further be general-
ized by de$ning the following approximation for
�∈[0; 0:5]:

R�(Cc) = {x ∈ X | 
Cc(x)¿1 − �};
GR�(Cc) = {x ∈ X | 
Cc(x)¿�}:
When �=0, we obtain Eqs. (4) and (5). Similarly,
for �∈[0:5; 1],

R�(Cc) = {x ∈ X | 
Cc(x)¿�};
GR�(Cc) = {x ∈ X | 
Cc(x)¿1 − �}:
When �=1, we obtain Eqs. (4) and (5).
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Fig. 4. When the output class is crisp, the fuzzy membership function is either 0 or 1. The roughness exists in the parallelepiped because
some patterns from the parallelepiped do or do not belong to the output class Cc. Thus, the input–output relationship becomes one-to-many,
and the rough–fuzzy membership function becomes equal to the rough membership function.

3. The 
-rough–fuzzy inclusion of A⊆X into B⊆X
can be de$ned as A⊆
 B i6 
A(x)6
B(x) ∀x∈X
If the output classes A and B are crisp and A⊆
 B,
then from Property 11 it can be shown that
R(A)⊆R(B) and GR(A)⊆ GR(B). However, when the
output classes are not crisp, the above relationship
may or may not hold.

4. From the de$nition of the rough–fuzzy member-
ship functions, we can group the rough–fuzzy sets
into the following four categories:

(a) X is partially R-unobservable in a rough–
fuzzy manner, if ∃x |
Cc(x)=0 and ∃y |
Cc(y)
=1. It implies that for some elements of X ,
we can decide whether they belong to Cc

or not.
(b) X is internally R-unobservable in a rough–

fuzzymanner, if ∃x |
Cc(x)=0 and !∃y |
Cc(y)
=1. It implies that for certain element of X ,
we can decide that it does not belong to Cc;
however, for all elements of X , we cannot de-
cide whether they belong to Cc or not.

(c) X is externally R-observable in a rough–fuzzy
manner, if !∃x |
Cc(x)=0 and ∃y |
Cc(y)=1.
It implies that for all elements of X , we can-
not decide that they do not belong to Cc; how-
ever, for certain element of X , we can decide
whether it belongs to Cc.

(d) X is totally R-unobservable in a rough–fuzzy
manner, if !∃x |
Cc(x)=0 and !∃y |
Cc(y)=1.
It implies that for all elements of X , we cannot
decide whether they belong to Cc or not.

These groups are in fact the generalization of the
groups reported in [21].

4. Rough–fuzzy ownership functions

Till now we have discussed the roughness that ap-
pears when we ignore some of the features or attributes
of the input pattern. Now we will describe the rough-
ness that appears when we impose some restrictions in
the structure of the set of input patterns. For instance,
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while using the conventional K-nearest neighbors al-
gorithm [15], we consider a region or structure W
around the test pattern consisting of K-nearest train-
ing patterns. The test pattern is classi$ed to class Cc if
most of the training patterns that reside in W belong
to Cc. Note that this structure is not naturally owned
by the data; rather it is arti$cial. (In contrast, when we
cluster a set of data, we obtain a natural structure. In a
cluster, two members are close or similar to each other
based on some criterion.) In the K-nearest neighbors
algorithm, we assume that the neighbors and the test
pattern are similar. In fact, here we assume some arti-
$cial neighborhood around the test pattern, and hence
we expect that the neighbors and the test pattern should
have similar class labels. In other words, in this case
we call a training pattern neighbor just because it is
closer to the test pattern relative to some other training
patterns, although from the spatial distance and dis-
tribution point of views they may not be close. When
two such patterns are arti$cially treated as similar, al-
though their class assignments are quite di9erent, a
one-to-many relationship is created between the spa-
tial similarity and the class labels. Consequently, the
roughness emerges.

Similar phenomena are also observed in other $elds.
For example, we construct a crisp window around each
data point of a time series while smoothing the time
series. Here also it is assumed that the magnitude of a
point in the time series is inLuenced by its neighbors.
This assumption is usually valid for a damped phys-
ical system. It is because the response of a physical
system does not have sudden jumps as long as (a) the
damping is present and (b) the suOcient number of
features are used to represent the input of the system.
When the suOcient number of features are not used to
represent the input–output response in form of a time
series, sudden jumps appear in the time series (e.g.,
spikes in ECG signals). The magnitudes of the time
series at these jumps are not similar to that of their
neighbors; hence, the use of windows in such posi-
tions creates one-to-many relationships, and thus the
rough uncertainty appears.

Let us formulate the above situations mathemati-
cally. If in the structure or window W , which has been
constructed around the test pattern x, all the neighbors
are from a single class Cc, then there is no uncertainty
in the structure. Any pattern that resides in the struc-
ture can be assigned to Cc. However, if any pattern of

W belongs to another class Cj, j �= c, then the rough
uncertainty arises in the structure. Although the pat-
terns in W are similar from the features perspective,
they are not similar from the class label perspective.
It makes the relationship between the input represen-
tation and output class labels one-to-many. This un-
certainty can be captured using the rough ownership
function. The rough ownership function for the test
pattern x∈X into the output class Cc is de$ned by

�Cc(x) =
‖W ∩ Cc‖

‖W‖ ; (7)

where W is the neighborhood region around x. We do
not call the de$nition (7) rough membership function
because it does not signify to what extent the test pat-
tern is a member of a natural structure; rather it de-
notes to what extent the test pattern owns the arti3cial
structure.

The mathematical framework for the rough–fuzzy
ownership function is di9erent from that of the rough–
fuzzy membership function. We can observe the fol-
lowing:

• When we arti$cially form a structure W around the
pattern x∈X , we partition the whole pattern space
into two equivalence classes: W and (X − W ).
WithinW , all members are assumed to be similar to
x; however, there may be other members outside W
that are similar to x with respect to the given condi-
tion. In the rough–fuzzy ownership function we are
only concerned aboutW , rather than about (X−W ).
For instance, in the K-nearest neighbors algorithm,
all the K-closest neighbors form the structure W
around the test pattern x. If y∈W , y is similar to x
with respect to the neighborhood condition. While
$nding the neighborhood for y in the K-nearest
neighbors algorithm, we make another new parti-
tioning. It involves construction of another window
W1 around y. Eventually, x may or may not belong
to the new structure W1, i.e., x may or may not be
one among the K-closest neighbors of y. Thus it
is similar to imposing directional symmetry within
the structure W : We consider x∈W as similar to
y, but the reverse may not be true. Therefore here
the concept of symmetry is not strictly followed.

• In the K-nearest neighbors algorithm, if y is the one
of the K-closest neighbors of x, and z is one of the
K-closest neighbors of y, then z may or may not
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be treated as one of the K-closest neighbors of x.
Thus the transitivity relationship is not maintained
always.

• From these angles, the concept of rough owner-
ship function reLects some of the concepts of the
generalized de$nition of rough sets proposed in
[28]. In this paper, a generalization of the classical
rough set is proposed where the indiscernibility re-
lation may not follow the symmetry and transitivity
properties.

• The rough–fuzzy membership function attempts
to quantify the roughness that appears mainly
due to the limitation of the representation; on the
other hand, the rough–fuzzy ownership function
measures the roughness that arises primarily due
to our interpretation of the structure of the input
set.

When the neighbors belong to more than one class,
i.e., the class memberships are fuzzy, we need to mod-
ify the rough ownership function to the rough–fuzzy
ownership function. The rough–fuzzy ownership func-
tion of a pattern x∈X into the fuzzy output class Cc

is de$ned by

&Cc(x) =
‖W ∩ Cc‖

‖W‖ : (8)

Since W is crisp, �W (x)∈{0; 1}. Then

&Cc(x) =

∑
x∈X min{�W (x); �Cc(x)}

‖W‖

=
1

‖W‖
∑
x∈W

�Cc(x); (9)

where ‖W‖ is the cardinality of the window W , i.e.,
‖W‖ is the number of patterns in the window W .

All the properties, except Properties 6 and 11, hold
for the rough–fuzzy ownership function when 
Cc(x)
is substituted by &Cc(x). Since the proofs are similar
to that of the rough–fuzzy membership functions, we
are not describing them separately. In the following
discussion, we represent both rough–fuzzy member-
ship functions and rough–fuzzy ownership functions
using the same symbol 
. The context will make it
clear which one we are intending to refer.

5. Measures of rough–fuzzy uncertainty

The rough–fuzzy uncertainty plays a critical role
in many classi$cation problems since it is capable of
modeling non-statistical uncertainty. Consequently,
characterization and quanti$cation of the rough–
fuzziness are important issues, which inLuence the
management of uncertainty in many classi$er designs.
Hence, the measures of the rough–fuzziness are es-
sential to estimate the global uncertainty in an output
class in some well-de$ned sense. A measure of the
rough–fuzziness for a discrete output class Cc∈P(X )
is a mapping H :P(X )→ [0; 1] that quanti$es the
degree of the rough–fuzziness in Cc. Here, P(X ) is
the rough–fuzzy power set of X . The rough–fuzzy
uncertainty of a set must be zero when there is no
uncertainty in deciding whether an input pattern be-
longs to it or not. If the belongingness is maximally
uncertain, i.e. 
Cc(x)=0:5 ∀x, then the corresponding
measure should be maximum. When the rough–fuzzy
membership value of the input pattern approaches ei-
ther to 0 or 1, the uncertainty about the belongingness
of the pattern in the output class decreases; hence, the
measure of the rough–fuzziness of the class should
also decrease. A set C∗

c is called a less uncertain
version of Cc if both the following conditions are
satis$ed for all x:


C∗
c
(x)6
Cc(x) if 
C∗

c
(x)60:5;


C∗
c
(x)¿
Cc(x) if 
C∗

c
(x)¿0:5: (10)

For a less uncertain version, the measure of the rough–
fuzziness should decrease because the above two op-
erations reduce the uncertainty. Another intuitively
desirable property is that the measure of the rough–
fuzziness of a set and its complement should be equal.
Therefore, such a measure (i.e., H) should have the
following properties:

Certainty P1: H (Cc)=0⇔ 
Cc(x)=0 or 1 ∀x∈X .

Maximal P2: H (Cc) is maximum⇔ 
Cc(x)=0:5 ∀x
∈X .

Resolution P3: H (Cc)¿H (C∗
c ), where H (C∗

c ) is a
less uncertain version of H (Cc).

Symmetry P4: H (Cc)=H (X − Cc), where 
X−Cc(x)
=1 − 
Cc(x) ∀x∈X .
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One such possible measure that satis$es all the above
properties is index of rough–fuzziness. It is de$ned
as

HI (Cc) =
2
nk

d(Cc;Cnear
c ); (11)

where d is a distance measure, k∈R+ depends on d, n
is the number of patterns in the set X , and Cnear

c is a set
that is without the rough–fuzzy uncertainty and is the
nearest to Cc. For Cnear

c , the rough–fuzzy membership
function is de$ned as


Cnear
c

(x) =

{
1 if 
Cc(x)¿0:5;

0 otherwise:
(12)

For the Minkowski q norms, d(Cc;Cnear
c ) and HI (Cc)

appear in the following forms:

d(Cc;Cnear
c ) =

[∑
x∈X

|
Cc(x) − 
near
Cc

(x)|q
]1=q

; (13)

HI (Cc) =
2
n1=q

[∑
x∈X

|
Cc(x) − 
near
Cc

(x)|q
]1=q

; (14)

where |x| is the absolute value of x and q∈[1;∞).
For q=1, HI (Cc) is called linear index of rough–
fuzziness, and for q=2, HI (Cc) is known as quadratic
index of rough–fuzziness.

Another possible measure is rough–fuzzy entropy,
which can be de$ned as follows:

HE(Cc) =−K
∑
x∈X

[
Cc(x) log(
Cc(x))

+ (1 − 
Cc(x)) log(1 − 
Cc(x))]: (15)

The term log denotes the logarithm to any base a¿1,
and K∈R+ is a normalizing constant. Here, HE can
be normalized by adjusting K so that it satis$es P1
to P4. From Property 4, when the partitioning in
X is 3ne, HE reduces to the fuzzy entropy [17] as
follows:

HE(Cc) =−K
∑
x∈X

[�Cc(x) log(�Cc(x))

+ (1 − �Cc(x))(1 − �Cc(x))]: (16)

In the absence of the fuzziness, HE is reduced to the
rough entropy [31] as follows (see Property 3):

HE(Cc) =−K
∑
x∈X

[rCc(x) log(rCc(x))

+ (1 − rCc(x))(1 − rCc(x))]: (17)

Similarly there are other measures like multiplicative
and additivemeasures, which can be directly borrowed
from the fuzzy set theory [17]. All these measures
satisfy P1–P4.
Multiplicative measure of rough–fuzziness: Any

function HM : 2X →R+ is a multiplicative rough–
fuzzy measure if it can be written as

HM (Cc) = −K
∑
x∈X

g(
Cc(x)) K ∈ R+; (18)

where

g(t) = g̃(t) − min
06t61

{g̃(t)};

g̃(t) = f(t)f(1 − t)

and f : [0; 1]→R+ is a concave increasing function.
By taking f(t)= t exp(1 − t), it can be shown that
−K

∑
x∈X [
Cc(x) (1 − 
Cc(x))] is an example of this

kind of measure [17].
Additive measure of rough–fuzziness: Any func-

tionHA : 2X →R+ is an additive rough–fuzzy measure
provided it could be written as

HA(Cc) = −K
∑
x∈X

g(
Cc(x)) K ∈ R+; (19)

where

g(t) = g̃(t) − min
06t61

{g̃(t)};

g̃(t) = f(t) + f(1 − t)

and f : [0; 1]→R+ is an increasing function. If we
take f(t)= t exp(1− t), then one example of this kind
of measure is [17]−K

∑
x∈X [
Cc(x) exp(1−
Cc(x))+

(1 − 
Cc(x)) exp(
Cc(x)) − 1].

6. Applications

The rough–fuzzy membership or ownership func-
tions can be used where class labels are fuzzy, and the
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class labels in some cases are di9erent from what we
would have predicted by observing the features of the
pattern. Below we outline some interesting cases al-
though the implementations are generally more com-
plex in practice. Speci$cally Examples 1–3 show the
applications of rough–fuzzy membership functions,
and Examples 4 and 5 show the applications of rough–
fuzzy ownership functions.

Example 1. Document classi3cation using natu-
ral language processing: In this problem a set of
documents D={D1; D2; : : : ; Dm} are to be classi$ed
into any one of the output classes {C1;C2; : : : ;CC}.
This kind of problem arises frequently in web page
classi$cation. The problem is generally tackled in
the following two phases: Keywords generation and
classi$cation.
Keywords generation: Without losing the gener-

ality, let us consider the document D1. All words in
the document D1 are extracted in form of a list L1.
From the list L1 all stop words (i.e., words like ‘a’,
‘an’, ‘the’, ‘is’, ‘to’, etc., which do not add much
value to the meaning of the sentence) are removed.
The frequency of occurrence of each member of
L1 is counted. Thus, the words in the list L1 that
are synonymous form separate groups. Thus the set
L1 is partitioned into a set of equivalence classes
{F11; F12; : : : ; F1K} such that each equivalence class
contains the words with immediate synonyms. To $nd
the synonyms, WordNet 1 package is used. Now the
strength of each equivalence class is judged based on
the number of times their members appear in the doc-
ument. All the equivalence classes are sorted using
their strengths, and the top 5.0% equivalence classes
are selected. The members of the selected equivalence
classes are treated as the keywords of the document.
This procedure is similar to crisp clustering. Once
the keywords are extracted from a document, the
document can be related to di9erent classes.
Classi3cation: In practice, the output classes may

be overlapping like “war”, “science”, “politics”,
“economy”, etc. Some of the documents may be re-
lated partially to “war” and partially to “science”

1 WordNet, a lexical database for English, is publicly available
from http://www.cogsci.princeton.edu/∼wn. English nouns, verbs,
adjectives and adverbs are organized into synonym sets, each
representing one underlying lexical concept.

since they report some scienti$c discoveries related
to war [29]. It creates fuzziness. In addition, some
members of an equivalence class are related to “war”
and some others are related to “science”. It creates
one-to-many relationship between the equivalence
class and the output class. There is a set of terms
t={t1; t2; : : : ; tl} available from the experts, where
the fuzzy class labels for each term are obtained
from the subjective judgments of the experts. Now
we consider only the keywords that are present in
the set t, i.e., we remove the members of the equiv-
alence classes F11; F12; : : : ; F1K that are not in t. Thus
each element of the equivalence class F11 (say) has
the fuzzy class labels. The rough–fuzzy member-
ship function can be used here to $nd the class label
of the equivalence class F11. One way to $nd the
fuzzy class label of the complete document D1 is
confc(D1)=

∑K
i=1 
Cc(F1i) ∀c. The crisp class label of

the document is arg maxc{confc(D1)}.

Example 2. Importance of features: The rough–
fuzzy membership functions in conjugation with the
rough–fuzzy entropy can be used to measure the im-
portance of a feature in a given classi$cation task.
Here we illustrate this problem in the context of col-
orectal cancer diagnosis. In this example, we study
the association between the key prognostic factors
and the outcomes of the patients who are undergoing
the follow-up program of the colorectal cancer.

The colorectal cancer occurs frequently in the devel-
oped countries. The colorectal cancer forms initially
in the mucosa lining of the bowel. In most cases, the
$rst step in the formation of a colorectal cancer is the
appearance of polyps. When the abnormal cells within
the polyps begin to spread and invade through normal
tissue, polyps become cancer growths. If no proper
treatment is adopted, then the cancer can spread be-
yond the skin and the underlying tissues of the bowel
wall, and eventually the cancer may spread to the dis-
tant sites like liver. To express the condition of the pa-
tient, the following four possible outcomes are used:
Well, recurrence,metastasis and both (i.e., recurrence
and metastasis simultaneously). The main treatment
for the colorectal cancer is the surgical removal of the
tumor, while the survival of a patient with the col-
orectal cancer is dependent on four fundamental fac-
tors: (a) The biology of that individual’s malignancy,
(b) the immune response to the tumor, (c) the time in

http://www.cogsci.princeton.edu/$sim $wn
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the cancer patient’s life history when the diagnosis is
made, and (d) the adequacy of the treatment. About
50% patients eventually die from the local recurrence
and=or distant metastasis within 5 years after the cu-
rative resection [16]. Therefore, it is important to de-
tect or predict the recurrent or metastasis tumor in the
follow-up so that the appropriate therapy is prescribed
to increase the chance of survival.

The following 16 attributes are considered: Liver
metastasis, peritoneal metastasis, CT scan for liver,
regional lymph node, apical node status, apical node
number, adjacent structure invasion, venous invasion,
perineaural invasion, di9erentiation, ascites, carci-
noembryonic antigen, surgeon rank, site of tumor,
perioperative blood transfusion, and $x to adjacent
structure. The patient, who is in the follow up pro-
gram, may fall into any of the following states:
Metastasis, recurrence, bad and well. If the state of a
particular patient can be correctly decided, then the
state information can be utilized to choose an appro-
priate treatment. Here a patient can belong to more
than one class. A physician can subjectively judge the
belongingness of each patient in the output classes.

Each feature partitions the set of patients into some
equivalence classes. Let us consider the sth feature.
The sth feature is considered important if the compact-
ness and interclass distance of all the classes along the
sth axis is high. We attempt to exploit this criterion
to measure the importance of each feature. The com-
pactness of the classes is a9ected when the classes are
overlapping and the patterns with the same sth fea-
ture have di9erent class labels. The lower the value of
the corresponding entropy Hs

E(Cc) is, the greater is the
number of patterns having 
Cc(x)≈ 1 or 
Cc(x)≈ 0,
i.e., less is the diOculty in deciding whether the pat-
tern can be considered as a member of Cc or not. In
particular, when 
Cc(x)≈ 1, greater is the tendency of
x to form a compact class Cc along the sth axis, result-
ing in less internal scatter along the sth axis. More-
over, when 
Cc(x)≈ 0, along the sth axis x is far away
from the cth class, and hence, the interclass distance
increases along the sth axis. On the other hand, when

Cc(x)≈ 0:5, x lies in between Cc and the other classes
along the sth axis. Hence, both compactness and in-
terclass distance along the sth axis decrease. The re-
liability of a feature s, in characterizing the class Cc,
increases as the corresponding Hs

c value decreases.
Therefore, Hs

E(Cc) quanti$es the importance of the sth

input feature for the output class Cc. We introduce to-
tal rough–fuzzy entropy to quantify the importance of
the sth input feature for all the classes. It is de$ned as

Hs
E =

C∑
c=1

PcHs
E(Cc): (20)

Here Pc is the weight that has to be assigned to the
cth class. One possible choice for Pc is the a priori
probability of the cth class. Note that Hs

E lies in [0; 1].
Evidently, the more the value of Hs

E is, the less is the
importance of the sth feature. Using the above tech-
nique (with some bias corrections as given in [13]),
we have attempted to quantify the importance of the
prognostic factors.

Example 3. Rule generation: In classi$cation prob-
lems, rough sets are used to extract the rules present
in the given input data set [20]. Suppose the input data
set has only one feature, and there exist two equiva-
lence classes [x]R and [y]R generated by the partition
of the input set. If it is a 2-class problem, then the set
of extracted rules is

R1: If the input is x, then the output class is C1 with
the con3dence factor +C1 (x),

R2: If the input is x, then the output class is C2 with
the con3dence factor +C2 (x),

R3: If the input is y, then the output class is C1 with
the con3dence factor +C1 (y),

R4: If the input is y, then the output class is C2 with
the con3dence factor +C2 (y).

One problem in constructing the above rule base is
that we do not know the values of the con$dence
factors. However, the rough–fuzzy membership func-
tions can be helpful here. The con$dence factors +Cc(z)
for z=x; y and c=1; 2 can be made equal to 
Cc(z).
We can observe that two rules are assigned to the
class 1. Now we can $nd which rule is more use-
ful between the two. It may seem that the rule with
the highest true positive rate for the class 1 is the
most useful one. The true positive rate for the class 1
can be computed from tp1 =‖F∩C1‖=‖C1‖. However,
it may happen that this particular rule causes many
class 2 patterns to be classi$ed as class 1. Therefore,
the most useful rule is the one that produces the least
false positive rate and the largest true positive rate.
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BRIGHTµ =1.0
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Fig. 5. An example of a fuzzy function is showing the relationship between the pixel value and the brightness. The points a and c denote
the minimum and maximum intensity values in the given image. The point b on the abscissa, at which the membership value is 0.5, is
called the crossover point.

The false positive rate for the class 1 can be com-
puted from fp1 =‖F∩(X − C1)‖=‖(X − C1)‖. How-
ever, from Property 5, we know fp1 =1−
C1 (x). Thus,
the true positive rate and the rough–fuzzy membership
function can be used together to select the best fuzzy
rules in the rule base. Moreover, if the con$dence fac-
tor of any rule is equal to zero or very close to zero,
then we can directly remove this particular rule from
the rule base since it is useless from the classi$cation
point of view. Thus, some sort of optimization of the
rule base can be achieved by using the rough–fuzzy
membership functions.

Example 4. Image segmentation: In the image
thresholding problems [18], the objective is to trans-
form a gray level image into a binary image. In the
gray level image, each pixel can be in between [0; 255]
where pixel value 0 represents the background or
dark, and the pixel value 255 indicates foreground or
bright intensity. In contrast, in the thresholded im-
age or segmented image each pixel can have values
only in {0; 1}, where the values 0 and 1 represent
the background and foreground, respectively. The set
of intensity values of the pixels in the gray-leveled
image can be treated as a fuzzy set BRIGHT, where
the maximum pixel value of the image indicates
complete membership into the set BRIGHT, and the
minimum pixel value indicates zero membership into
the set BRIGHT. A fuzzy membership function can
be constructed by employing the intensity value of

each pixel and by using the following membership
function (Fig. 5):

�BRIGHT(x) = 0 for x 6 a;

= 0:5
(
x − a
b− a

)2

for a6 x 6 b;

= 0:5 + 0:5
(
x − b
c − b

)2

for b6 x 6 c;

= 1 for x ¿ c:

The points a and c denote the minimum and maximum
intensity values in the given image. The point b on
the abscissa, at which the membership value is 0.5, is
called the crossover point.

One simple approach of segmentation is to trans-
form any pixel into 1 (or 0) if its intensity value
is more (or less) than the crossover point b. This
simple scheme does not work well because many
pixels are a9ected by noise, and hence after thresh-
olding the image contains numerous disjoints regions
of background or foreground. The quality of the
thresholded image can be improved by considering
a pixel bright (dark) if its neighbors are also bright
(or dark). It makes the foreground or background
continuous. Now a window W of a certain size (say
3× 3) is considered around each pixel (say x) of the
image. The average brightness within the window,
i.e., �̃BRIGHT(x)= 1

9

∑
y∈W �BRIGHT(y), is used as the

fuzzy membership of the pixel x in the class BRIGHT
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Fig. 6. For segmenting the 6× 7 image, a 3× 3 window W
is considered around the pixel x. The brightness of the pixel
x is expressed as �BRIGHT(x). For better segmentation re-
sults, the inLuence of the neighboring pixels is also consid-
ered [18]. Hence, the brightness of the pixel x is assumed to
be �̃BRIGHT(x)= 1

9

∑
y∈W �BRIGHT(y). �̃BRIGHT(x) is in fact the

rough–fuzzy ownership function.

(Fig. 6). The derived membership values �̃BRIGHT(x)
for all the pixels of the image are used to calcu-
late the fuzzy entropy corresponding to BRIGHT.
The segmented image can be highly homogeneous
when the fuzzy uncertainty of the image with respect
to BRIGHT is the least. Hence, the fuzzy entropy,
i.e.,

∑
x∈image[�̃BRIGHT(x) log(�̃BRIGHT(x)) + (1−

�̃BRIGHT(x)) log(1 − �̃BRIGHT(x))], is computed by
$xing the crossover point at all possible pixel values
in between a and c of the fuzzy membership functions.
The threshold point is chosen as the crossover point
for which the entropy is minimum. This procedure can
be looked at from the rough–fuzzy ownership function
angle. The window around x is a crisp structure, and
�̃BRIGHT(x)= 1

9

∑
y∈W �BRIGHT(y)=‖W ∩CBRIGHT‖=

‖W‖ is precisely the expression for the rough–fuzzy
ownership function of x. Then we calculate the rough–
fuzzy entropy of the output class BRIGHT, and we
seek to $x the threshold so that the rough–fuzzy en-
tropy becomes the least. Here our understanding in the
rough–fuzziness sheds light on the validity of taking
�̃BRIGHT(x) instead of �BRIGHT(x) as the membership
value of x.

Example 5. K-nearest neighbors algorithm: In clas-
si$cation problems, one well-know non-parametric
technique is K-nearest neighbors algorithm [15]. It
assigns the class label to the test pattern based on the
class labels of the K-closest (in some distance sense)
neighbors of the input. All the K-neighbors are from
the training set. In a dense region, this neighborhood
region is small since the K-nearest neighbors will be
found within a close distance. Similarly, in a sparse
region, this neighborhood occupies a larger space. It
implies that we are trying to construct a structure W
around the test pattern y. If all the neighbors are from
a single class Cc, then there is no uncertainty in the
structure. Any test pattern that resides in the structure
W can be assigned to Cc. However, if any neighbor
belongs to another class Cj, j �= c, then the rough un-
certainty arises in the structure. Although the neigh-
bors are similar from the features perspective, they are
not similar from the class label perspective. It makes
the relationship between the input representation and
the output class labels one-to-many. This uncertainty
can be captured using the rough ownership function.
This is precisely used in the K-nearest neighbors al-
gorithm. Moreover, each neighbor can belong to more
than one class, i.e., the class memberships are fuzzy.
To accommodate both fuzzy and rough uncertain-
ties in the K-nearest neighbors setting, the K-nearest
neighbors algorithm is slightly modi$ed such that its
outputs can be interpreted as the rough–fuzzy owner-
ship values. The resultant algorithm is more powerful
than the simple K-nearest neighbors counterpart [25].

7. Summary and conclusions

We have discussed some pattern classi$cation
problems where the rough and fuzzy uncertainties
together arise when some of the features are ignored
and the output classes are overlapping. Speci$cally
we have illustrated how the rough–fuzzy uncertainty
of a pattern could be quanti$ed using the rough–fuzzy
membership function. In addition, we have shown
that the rough–fuzzy uncertainty can also appear
when we arti$cially call two patterns similar although
from the pattern distribution angle they are not sim-
ilar. To characterize the rough–fuzzy uncertainty of
a set of patterns, di9erent measures are discussed. In
the application $elds, we observe that the concepts of
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rough–fuzzy membership function, rough–fuzzy own-
ership function and rough–fuzzy entropy have al-
ready been used unknowingly in many classi$cation
problems.

In many practical problems, both the equivalence
class and the arti$cial structure around the test pat-
tern can be fuzzy. Thus, the pattern set is partitioned
into fuzzy equivalence classes by the induced fuzzy
equivalence relation. Speci$cally, in this case the crisp
transitivity relationship is weakened by the fuzzy tran-
sitivity relationship. To frame this type of model, we
can borrow some of the concepts used in [28]. We
have kept this problem as a future work.
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