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Abstract

We propose an extension of the Sugeno integral for negative num-

bers, in the spirit of the symmetric extension of Choquet integral,

also called Šipoš integral. Our framework is purely ordinal, since the

Sugeno integral has its interest when the underlying structure is or-

dinal. We begin by defining negative numbers on a linearly ordered

set, and we endow this new structure with a suitable algebra, very

close to the ring of real numbers. In a second step, we introduce the

Möbius transform on this new structure. Lastly, we define the sym-

metric Sugeno integral, and show its similarity with the symmetric

Choquet integral.

Keywords: fuzzy measure, ordinal scale, Sugeno integral, Möbius trans-
form, symmetric integral

1 Introduction

In the field of fuzzy measure theory, the Sugeno integral [30] has been the
first proposed to compute an average value of some function with respect to
a fuzzy measure, and early applications of fuzzy measures in multicriteria
evaluation have used this integral. Later, Murofushi and Sugeno proposed
the use of a functional defined by Choquet [5] as a better definition of an
integral with respect to a fuzzy measure. In decision making, the pioneering
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works of Schmeidler [26, 27] brought also into light the so-called Choquet
integral, as a generalization of expected utility.

This attention focused on the Choquet integral gave rise to a rapid
progress, both on a pure mathematical point of view and in decision mak-
ing. As a consequence, the Sugeno integral has remained a little bit in the
background until recently, where it has been (re)discovered that the Sugeno
integral could have some interest in qualitative decision making, and more
generally, whenever qualitative or ordinal information is used. This is due to
the ordinal nature of its definition, which uses only min and max. See e.g.
[9] and [21] for recent results on Sugeno integral.

This paper brings new results for the Sugeno integral, essentially moti-
vated by qualitative decision making, although having their own mathemat-
ical interest. The starting point is the following: the Choquet integral can
be defined in two different ways for functions taking negative values, named
after Denneberg as symmetric and asymmetric Choquet integrals [6]. The
symmetric integral, which integrates separately positive and negative values,
is of particular interest in decision making, since it reflects well the symmetry
in behaviour of human decision making (gains and losses are treated sepa-
rately and differently). Cumulative Prospect Theory [31] precisely models
this symmetric behaviour, and is based on the symmetric Choquet integral
(see [18] for a comparative study of symmetric and asymmetric models in
decision making). However, until now, there was no proposal for defining the
Sugeno integral over functions taking negative values.

The aim of this paper is precisely to fill this gap, i.e. to define a symmetric
Sugeno integral, in a general way. A fundamental requirement here is to
keep the ordinal nature of the Sugeno integral, and our construction should
work for any function and fuzzy measure valued on a (possibly finite) totally
ordered set (ordinal scale), where no other operation than supremum and
infimum are defined. Our construction is in three steps:

• definition of the concept of negative value for an ordinal scale, leading to
a symmetric ordinal scale. Then we endow it with suitable operations
so as to build a structure close to a ring, and to mimic real numbers
with usual ring operations.

• definition of an ordinal Möbius transform. It is known that the Möbius
transform is a powerful tool for the analysis and representation of fuzzy
measures, or even more general set functions: it is a basic ingredient
for Dempster-Shafer theory [28], upper and lower probabilities [4], co-
operative game theory (where it is called dividend), and also pseudo-
Boolean functions [20]. Also, the Choquet integral has a particularly
simple form using the Möbius transform. Since fuzzy measures become
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valued on an ordinal scale, one has to redefine the Möbius transform
accordingly.

• definition of a symmetric Sugeno integral, based on the preceding two
steps.

We will make an emphasis on the third step, since the first and second steps
have been solved in a previous paper by the author [15], and we will recall
here the main results, limited to what is necessary for defining the symmetric
Sugeno integral.

Preliminary works on symmetric Sugeno integral by the author can be
found in [14].

2 Basic concepts

We provide in this section the necessary material for the sequel. Since our
results are established on ordered structures, and will be compared to the
corresponding ones in the numerical case, we present in a first part definition
in the (classical) numerical setting. Then, is a second part, we present the
definitions on ordered structures.

Let us consider a finite set N = {1, . . . , n}. A fuzzy measure or capacity
on N is a set function v : P(N) −→ [0, 1] such that v(∅) = 0, v(N) = 1, and
v(A) ≤ v(B) whenever A ⊂ B.

The conjugate fuzzy measure of v is defined by v̄(A) = 1− v(Ac), where
Ac denotes the complement set of A.

We present some examples of fuzzy measures which will be useful in the
sequel. A unanimity game uB is a fuzzy measure defined by:

uB(A) :=

{

1, if A ⊃ B,A 6= ∅
0, otherwise,

for any B ⊂ N . A possibility measure Π [8] is a fuzzy measure satisfying:

Π(A ∪B) = Π(A) ∨Π(B), ∀A,B ⊂ N.

Due to this property, Π can be defined unambiguously by giving its value on
singletons only. We write π(i) := Π({i}), i ∈ N , and call π the possibility
distribution associated to or generating Π.

A necessity measure N is the conjugate of a possibility measure.
We introduce now integrals with respect to fuzzy measures. Let us con-

sider a function f : N −→ R+. We write for simplicity fi := f(i), for i ∈ N .
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The Choquet integral [5] of f w.r.t v is defined by:

Cv(f) :=
n
∑

i=1

[f(i) − f(i−1)]v(A(i)), (1)

where ·(i) indicates a permutation on N so that f(1) ≤ f(2) ≤ · · · ≤ f(n), and
A(i) := {(i), . . . , (n)}. Also f(0) := 0.

We introduce now the extension of Choquet integral for real-valued func-
tions. Let us consider f : N −→ R, the two usual definitions are given
below:

Čv(f) = Cv(f
+)− Cv(f

−) (2)

Cv(f) = Cv(f
+)− Cv̄(f

−) (3)

where f+, f− are respectively the positive and the negative parts of f , that
is f+ = (f+

1 , . . . , f
+
n ), f

− = (f−
1 , . . . , f

−
n ), f

+
i = fi ∨ 0, f−

i = −fi ∨ 0.
These extensions are respectively named symmetric and asymmetric in-

tegrals by Denneberg [6]. The first one was in fact proposed by Šipoš [32],
and the second one is the usual definition of the Choquet integral for real-
valued functions (hence we keep the same symbol). The terms symmetric
and asymmetric come from the following property:

Cv(−f) = −Cv̄(f) (4)

Čv(−f) = −Čv(f), (5)

for any f in Rn. The explicit expression of Čv is:

Čµ(f) =

p−1
∑

i=1

(f(i) − f(i+1))µ({(1), . . . , (i)})

+ f(p)µ({(1), . . . , (p)})

+ f(p+1)µ({(p+ 1), . . . , (n)})

+
n
∑

i=p+2

(f(i) − f(i−1))µ({(i), . . . , (n)}) (6)

where f(1) ≤ · · · ≤ f(p) < 0 ≤ f(p+1) ≤ · · · ≤ f(n).

We turn now to the ordinal case. We consider a linearly ordered set L+,
with bottom and top elements denoted by O and 1l. A negation is a mapping
n : L+ −→ L+ such that n(n(x)) = x and x ≤ y implies n(x) ≥ n(y). Note
that if L+ is finite, then n is unique and is simply the reverse order of L+.
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A L+-valued fuzzy measure is a set function v : P(N) −→ L+, which
assigns O to the empty set and 1l to N , and satisfies monotonicity as above.

The conjugation is defined thanks to the negation by v(A) = n(v(Ac)).
The definition of unanimity game, possibility and necessity measures are left
unchanged (just replace 0,1 by O, 1l).

The corresponding integral in the ordinal case is the Sugeno integral [30].
We consider functions f : N −→ L+. The Sugeno integral of f with respect
to v is defined by:

Sv(f) :=

n
∨

i=1

[f(i) ∧ v({(i), . . . , (n)})] (7)

with same notations as above.

3 Symmetric ordered structures

We consider a linearly ordered set (L+,≤), with bottom and top elements
denoted by O and 1l. We introduce L− := {−a|a ∈ L+}, with the reversed
order, i.e. −a ≤ −b iff a ≥ b in L+. The bottom and top of L− are
respectively −1l and −O.

We denote by L the union of L+ and L−, with identification of −O with
O. Top and bottom are respectively 1l and −1l. We call L a symmetric
linearly ordered set.

We introduce some mappings on L. The reflection maps a ∈ L to −a,
and −(−a) = a for any a ∈ L. We have:

(−a) ∨ (−b) = −(a ∧ b), (−a) ∧ (−b) = −(a ∨ b).

The absolute value of a ∈ L is denoted |a|, and |a| := a if a ∈ L+, and
|a| = −a otherwise. The sign function is defined by:

sign : L → L , sign x =







−1l for x < O

O for x = O

1l for x > O

.

Our aim is to endow L with operations similar to usual operations +, · on
R, so that the algebraic structure is close to a ring. However, since our aim is
to extend the Sugeno integral which is based on minimum and maximum, we
require that the restriction to L+ of these new operations are precisely mini-
mum and maximum. We call symmetric maximum and symmetric minimum
these new operations, which we denote 6 and 7 respectively.
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In [15], it is shown that, based on the above requirements, the “best”
possible definition (in the sense of being close to a ring) is given as follows:

a6 b :=







−(|a| ∨ |b|) if b 6= −a and either |a| ∨ |b| = −a or = −b

O if b = −a

|a| ∨ |b| else.
(8)

Observe that, except for the case b = −a, a6 b equals the absolutely larger
one of the two elements a and b. Figure 1 gives the constant level curves of
this operation.

1

−1

0 1

−1

a

−a

0−1 1−a a

Figure 1: Constant level curves of the symmetric maximum

The symmetric minimum is defined as follows.

a7 b :=

{

−(|a| ∧ |b|) if sign a 6= sign b
|a| ∧ |b| else.

(9)

The absolute value of a7 b equals |a| ∧ |b| and a7 b < O iff the two elements
a and b have opposite signs. Figure 2 shows the constant level curves of the
symmetric minimum. Another equivalent formulation of these two operations
is due to Marichal [22], when L is a symmetric real interval. It clearly shows
the relationship with the ring of real numbers.

a6 b = sign (a+ b)(|a| ∨ |b|) (10)

a7 b = sign (a · b)(|a| ∧ |b|). (11)

The properties of (L,6,7), which is not a ring, are summarized below.
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−1

0−1 1

0

a−a

−a

a

a

−a

Figure 2: Constant level curves of the symmetric minimum

Proposition 1 The structure (L,6,7) has the following properties.

(i) 6 is commutative.

(ii) O is the unique neutral element of 6, and the unique absorbant element
of 7.

(iii) a 6 −a = O, for all a ∈ L.

(iv) −(a 6 b) = (−a) 6 (−b).

(v) 6 is associative for any expression involving a1, . . . , an, ai ∈ L, such
that

∨n

i=1 ai 6= −
∧n

i=1 ai.

(vi) 7 is commutative.

(vii) 1l is the unique neutral element of 7, and the unique absorbant element
of 6.

(viii) 7 is associative on L.

(ix) 7 is distributive w.r.t 6 in L+ and L−.

(v) shows that 6
n
i=1 ai is unambiguously defined iff

∨n
i=1 ai 6= −

∧n
i=1 ai. If

equality occurs, we can propose several rules of computation which ensure
uniqueness, among which the following ones [15]:
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1. Put 6
n
i=1 ai = 0. This corresponds to combine separately positive and

negative values. We denote this rule by ⌊6n
i=1 ai⌋, and it is defined by:

⌊
n

6
i=1

ai⌋ :=
(

6
ai≥O

ai

)

6

(

6
ai<O

ai

)

.

2. Discard the pair(s) of opposite extremal values, successively until Con-
dition (v) is satisfied. We denote this rule by ⌈6n

i=1 ai⌉, defined formally
by:

⌈ 6
ai∈A

ai⌉ := 6
ai∈A\Ā

ai,

where A := a1, . . . , an, and Ā := ā1, . . . , ā2k is the sequence of pairs of
maximal opposite terms.

3. Discard as before pair(s) of maximal opposite terms, but with dupli-
cates, i.e. the set Ā contains in addition all duplicates of maximal
opposite terms. This rule is denoted by 〈6n

i=1 ai〉.

Taking for example L = Z and the sequence of numbers 3, 3, 3, 2, 1, 0,−2,−3,
−3, for which associativity does not hold, the result for rule ⌊·⌋ is 0, while
we have:

⌈36 36 36 26 16 06−26−36−3⌉ =36 26 16 06−2 = 3

〈36 36 36 26 16 06−26−36−3〉 =16 0 = 1.

We will use and comment on these rules in Section 6 (see also [15] for a
detailed study of their properties).

The symmetric maximum with the ⌈·⌉ rule coincides with the limit of
some family of uni-norms proposed by Mesiar and Komorniková [25]. We
refer the reader to [16] for details.

4 The Möbius transform on symmetric or-

dered structures

Let us recall briefly some facts on the classical Möbius transform (see e.g.
[1, 2]). Let (X,≤) be a locally finite (i.e. any segment [u, v] := {x ∈ X|u ≤
x ≤ v} is finite) partially ordered set (poset for short) possessing a unique
minimal element, denoted 0, and consider f, g two real-valued functions on
X such that

g(x) =
∑

y≤x

f(y). (12)
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A fundamental question in combinatorics is to solve this equation, i.e. to
recover f from g. The solution is given through the Möbius function µ(x, y)
by

f(x) =
∑

y≤x

µ(y, x)g(y) (13)

where µ is defined inductively by

µ(x, y) =







1, if x = y

−
∑

x≤t<y µ(x, t), if x < y

0, otherwise.

Taking for X the Boolean lattice of subsets of a finite set N , f and g

are now set functions. In this case, for any A ⊂ B ⊂ N we have µ(A,B) =
(−1)|B\A|, and denoting set functions by v,m, formulas (12) and (13) become

v(A) =
∑

B⊂A

m(B) (14)

m(A) =
∑

B⊂A

(−1)|A\B|v(B). (15)

The set function m is called the Möbius transform of v. When necessary, we
write mv to stress the fact it is the Möbius transform of v.

It is well known that the Möbius transform is the coordinate vector of
the set function in the basis of unanimity games:

v(A) =
∑

B⊂N

mv(B)uB(A), ∀A ⊂ N. (16)

Considering conjugate fuzzy measures v, we can obtain a decomposition with
respect to uA [19]:

v(A) =
∑

B⊂N

mv(B)uB(A), ∀A ⊂ N. (17)

Noting that uB(A) = 1 if A ∩B 6= ∅ and 0 otherwise, we obtain

v(A) =
∑

B|A∩B 6=∅

mv(B) = 1−
∑

B|A∩B=∅

mv(B). (18)

The second expression comes from the fact that v(N) = 1 =
∑

B⊂N m(B).
The first expression is well known in Dempster-Shafer theory [28], which
deals with fuzzy measures having non negative Möbius transforms, called
belief functions, whose conjugate are called plausibility.
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Lastly, we recall the expressions of symmetric and asymmetric Choquet
integrals in terms of the Möbius transform [4, 19].

Cv(f) =
∑

A⊂N

mv(A)
∧

i∈A

fi (19)

Čv(f) =
∑

A⊂N

mv(A)

[

∧

i∈A

f+
i −

∧

i∈A

f−
i

]

, (20)

for any f ∈ Rn.

We turn now to our ordinal framework. Let (L,≥) be a symmetric linearly
ordered set. The successor of any x ∈ L is an element y ∈ L such that y > x

and there is no z such that x < z < y. We write y ≻ x. We consider two
L-valued functions f, g on X satisfying the equation:

g(x) = 6
y≤x

f(y). (21)

Note that the above expression is well defined only if we use some rule of
computation, as the three rules proposed above. The study of the existence
of solutions to this equation is a difficult topic, partly solved in [15]. We just
mention here that if |g| is isotone (i.e. x ≤ y implies |g(x)| ≤ |g(y)|) and if
either the ⌊·⌋ or the 〈·〉 rule is used, then there exists many solutions, among
which the canonical one, which is defined as follows: the canonical ordinal
Möbius function is defined by:

µ(x, y) :=







1l, if x = y

−1l, if x ≺ y

O, otherwise.
(22)

which leads to the canonical ordinal Möbius transform of g, defined by:

mg(x) := g(x)6

[

− 6
y≺x

g(y)
]

,

where in this expression the same computation rule used in (21) has to be
applied.

This result is no more true for the ⌈·⌉ rule, which has no solution in many
cases.

It is possible to get the whole set of non negative solutions when f, g are
valued on L+ (so that computation rules become useless), and g is isotone
(fuzzy measures correspond to this case, hence its interest).
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Proposition 2 [15] For any non negative isotone function g, any non neg-
ative solution of the equation (21) lays in the interval [m∗, m

∗], defined by:

m∗(x) =g(x), ∀x ∈ X

m∗(x) = mg(x) =

{

g(x), if g(x) > g(y), ∀y ≺ x

O, otherwise
, ∀x ∈ X.

Note that negative solutions exist. It is easy to see that

m∗(x) =

{

g(x), if g(x) > g(y), ∀y ≺ x

any e ∈ L, e ≻ −g(x), otherwise
,

∀x ∈ X is the least solution. However, negative solutions do not possess
good properties. It is to be noted that m∗ has been first proposed as the
(ordinal) Möbius transform of a fuzzy measure by Marichal [23] and Mesiar
[24] independently. See also preliminary works of the author in [13], and
related works by De Baets [3].

If there is no fear of ambiguity, we denote simply mg by m. Moreover,
since our framework is ordinal in the rest of the paper, we will omit to call it
“ordinal”, and will use the term “classical” Möbius transform when referring
to the usual definition. We denote by [m] the interval [m∗, m

∗], and with
some abuse of notation, any function in this interval.

From now on, we restrict to the case of fuzzy measures on a finite set
N = {1, . . . , n}.

The Möbius transform possesses many interesting properties, some of
which are listed below.

(i) the Möbius transform can be written in a way which is very similar to
formula (15):

m(A) :=
∨

B⊂A,|A\B|even

v(B)6



−
∨

B⊂A,|A\B|odd

v(B)



 (23)

for any A ⊂ N (see [13]).

(ii) the Möbius transform is still the coordinate vector of any fuzzy measure
in the basis of unanimity games, but with a different decomposition:

v(A) =
∨

B⊂N

(

[m](B) ∧ uB(A)
)

, ∀A ⊂ N, (24)

where [m] stands for any function in the interval [m∗, m
∗]. But since

the decomposition is not unique, we have no more a basis.
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(iii) Let π a possibility distribution defined on N , such that O < π(1) <

· · · < π(n) = 1l, and consider the associated possibility and necessity
measures Π,N. Then their Möbius transforms are given by:

mΠ(A) =

{

Π({i}), if A = {i}, i ∈ N

O, otherwise.

mN(A) =

{

n(Π({i}), if A = {i+ 1, . . . , n}, i ∈ N

O, otherwise.

If for some i, we have π(i) = π(i+ 1), then the result is unchanged for
mΠ, and for mN, we have mN({i+ 1, . . . , n}) = O.

See [15] for a more general result, giving the Möbius transform of a
conjugate fuzzy measure.

Note that the “focal elements” (i.e., in the terminology of Shafer, the
subsets where the Möbius transform is non zero) are singletons in the
case of the possibility measure, and are nested subsets for the necessity
measure. This result needs some comments. In the classical case,
the Möbius transform is non zero only on singletons if and only if
the fuzzy measure is a probability measure, i.e. an additive measure.
In our algebra based on min and max, the corresponding notion is a
“maxitive” measure, in other words, a possibility measure. This shows
the consistency of the construction. Now, it is also known that the
Möbius transform of a necessity measure, in the classical case, is non
zero only for a chain (i.e. a set of nested subsets). It is very surprising
to get the same result here, and moreover, the chains are identical.
Here there is a discrepancy with the classical case, since probability
measures are self-conjugate, and possibility measures are not.

(iv) it is possible to derive a decomposition of a fuzzy measure in terms of
the conjugate of unanimity games, as in (17). Specifically, using (24):

v(A) =n
(

6
B⊂N

([mv](B) ∧ uB(A
c))
)

=n
(

6
B⊂N

([mv](B) ∧ n(uB(A)))
)

= 7
B⊂N

[

n([mv](B)) ∨ uB(A)
]

since n(a∨b) = n(a)∧n(b) and n(a∧b) = n(a)∨n(b), for any a, b ∈ L+.
Hence we get:

v(A) = 7
B⊂N

[

n([mv](B)) ∨ uB(A)
]

. (25)
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It can be shown [15] that n([mv](B)) = mv(Bc) when [mv] ≡ v. This
shows that

v(A) = 7
B⊂N

[

v(Bc) ∨ uB(A)
]

.

Now observe that uB(A) = 1l if A ∩ B 6= ∅, and O otherwise. Thus,

v(A) = n
[

6
B∩A=∅

[mv](B)
]

(26)

which is the exact counterpart of (18).

(v) the author has proposed some time ago the notion of k-additive measure
[12], i.e. a fuzzy measure whose (classical) Möbius transform vanishes
for subsets of more than k elements. As remarked by Mesiar [24], the
concept can be extended to the ordinal Möbius transform. The author
called this k-possibility measures (k-maxitive measure in the terminol-
ogy of Mesiar), since this defines possibility distributions on subsets of
at most k elements (see [13] for some properties of k-possibility mea-
sures).

Finally, we indicate that, contrary to the classical case, the Möbius transform
is not a “linear” operator on the set of fuzzy measures, where of course
“linear” is to be taken in the sense of “maxitive”. This is shown by the
following example:

Example 1: Let us take X to be the Boolean lattice 22 whose el-
ements are denoted ∅, {1}, {2}, {1, 2}, and consider two functions
g1, g2 defined as follows:

∅ {1} {2} {1, 2}
g1 O O O 1l
g2 O 1l 1l 1l

The computation of the Möbius transform m∗ gives

∅ {1} {2} {1, 2}
m∗[g1] O O O 1l
m∗[g2] O 1l 1l O

Clearly, g1 6 g2 = g2, but m
g1
∗ 6mg2

∗ 6= mg2
∗ .
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5 The symmetric Sugeno integral

It is possible to express the Sugeno integral with respect to the Möbius
transform. Indeed, the following can be shown.

Proposition 3 For any function f : N −→ L+ and any L+-valued fuzzy
measure v on N , the Sugeno integral of f w.r.t. v can be written as:

Sv(f) :=
∨

A⊂N

(

∧

i∈A

fi ∧ [m](A)

)

where [m] is any function in [m∗, m
∗].

Proof: It suffices to prove that the relation holds for m∗ (i) and m∗ (ii).
(i) We have, using distributivity of ∧,∨ and monotonicity of v:

∨

A⊂N

(

∧

i∈A

fi ∧ v(A)

)

=
∨

A⊂N
A∋(1)

(

f(1) ∧ v(A)
)

∨
∨

A⊂N\(1)
A∋(2)

(

f(2) ∧ v(A)
)

∨

· · · ∨ (f(n) ∧ v({(n)})

=
(

f(1) ∧
∨

A⊂N
A∋(1)

v(A)
)

∨
(

f(2) ∧
∨

A⊂N\(1)
A∋(2)

v(A)
)

∨

· · · ∨ (f(n) ∧ v({(n)})

= (f(1) ∧ v(N)) ∨ (f(2) ∧ v(N \ (1)) ∨ · · ·

∨(f(n) ∧ v({(n)})

=
n
∨

i=1

(

f(i) ∧ v({(i), . . . , (n)})
)

.

(ii) For a given non empty A ⊂ N , if it exists some j ∈ A such that v(A) =

v(A \ j), then v(A) ∧
∧

i∈A

fi ≤ v(A \ j) ∧
∧

i∈A\j

fi, hence the corresponding

term in the supremum over N (in the expression with m∗) can be deleted, or
equivalently, v(A) can be replaced by O. But m∗(A) = O if v(A) = v(A \ j)
for some j, hence the result. �

The result with m∗ is already in the original work of Sugeno [30]. Also,
Marichal has shown the above proposition using min-max Boolean functions
[21]. Note the analogy with the expression of the Choquet integral using the
Möbius transform (see (19)).
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We address now the problem of extending the definition of Sugeno integral
for functions which are L-valued, i.e. they may take “negative” values. We
focus on the symmetric definition. Following what is done in the numerical
case for the Choquet integral, we propose the following definition for the
symmetric Sugeno integral:

Šv(f) = Sv(f
+)6(−Sv(f

−)) (27)

where f+ := f ∨ O, f− := (−f) ∨ O. From the definition, it is immediate
that:

Šv(−f) = −Šv(f) (28)

which justifies the name “symmetric”.
Let us express the symmetric integral in an explicit form, using the fuzzy

measure and its Möbius transform.

Proposition 4 For any f valued in L and any fuzzy measure v on N ,

Šv(f) :=

[

p

6
i=1

(

f(i) 7 v({(1), . . . , (i)})
)

]

6

[

n

6
i=p+1

(

f(i) 7 v({(i), . . . , (n)})
)

]

, (29)

where −1l ≤ f(1) ≤ · · · ≤ f(p) < O, and O ≤ f(p+1) ≤ · · · ≤ f(n) ≤ 1l.

Šv(f) =

[

6
A⊂N+

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)

])]

6

[

6
A⊂N−

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)

])]

6

[

6
A+,A− 6=∅

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)

])]

(30)

where N+ := {i ∈ N |fi ≥ O}, N− := N \ N+, A+ := A ∩ N+, and
A− := A ∩N−.

Proof: Let us show the first formula. By Prop. 3, we have:

[

∨

A⊂N

(m(A) ∧
∧

i∈A

f+
i )
]

=

n
∨

i=p+1

[f(i) ∧ v({(i), . . . , (n)})]
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since f(i) = O for i < p. Similarly, since f−
(1) ≥ · · · ≥ f−

(p), we get:

−
∨

A⊂N

(

m(A) ∧
∧

i∈A

f−
i

)

= −

p
∨

i=1

(

f−
(i) ∧ v({(1), . . . , (i)})

)

=
p

6
i=1

(

− (f−
(i) ∧ v({(1), . . . , (i)}))

)

=
p

6
i=1

(

(−f−
(i))7 v({(1), . . . , (i)})

)

=
p

6
i=1

(

f(i) 7 v({(1), . . . , (i)})
)

.

Since the symmetric Sugeno integral is the “sum” of these two terms, the
result is proven.

Let us show the second formula. By definition of Šv and Prop. 3, we
have:

Šv(f) =

[

∨

A⊂N

(

m(A) ∧
∧

i∈A

f+
i

)

]

6

[

−
∨

A⊂N

(

m(A) ∧
∧

i∈A

f−
i

)

]

=

[

∨

A⊂N+

(

m(A) ∧
∧

i∈A

f+
i

)

]

6

[

−
∨

A⊂N−

(

m(A) ∧
∧

i∈A

f−
i

)

]

=

[

6
A⊂N+

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)]

)]

6

[

6
A⊂N−

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)]

)]

.

Observe that

6
A+,A− 6=∅

[

m(A)7

(

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)

)]

= O

hence this last term can be added without changing the result. �

Let us make some comments on these results.

(i) Both formulas are unambiguous with respect to possible associativity
problem, since positive terms and negative terms are separately com-
bined.

(ii) Formula (29) is very similar to (6), which is the expression of the sym-
metric Choquet integral.
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(iii) Formula (30) has in fact no computation interest, since it is more com-
plicated than necessary (see proof). Its interest lies in the fact that it
is a formula which is very close to the corresponding one (20) for the
symmetric Choquet integral. Indeed, a summation over A ⊂ N can be
partitioned into A ⊂ N+, A ⊂ N−, and A+, A− 6= ∅. However, due to
the lack of associativity, we cannot write, as it was wrongly claimed in
[14], that

Šv(f) = 6
A⊂N

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)])

.

6 Alternative definitions for the symmetric

Sugeno integral

While our definition of symmetric Sugeno integral (Eq. (27)) seems to be
natural with respect to what is done for the Choquet integral, we may think
of other definitions, provided the symmetry property (28) is preserved. We
propose the following ones, which satisfy the symmetry requirement.

Š1
v (f) =〈 6

A⊂N

(

m(A)7

[

∧

i∈A

f+
i 6

(

−
∧

i∈A

f−
i

)])

〉 (31)

Š2
v (f) =〈

[

p

6
i=1

(

f(i) 7 v({(1), . . . , (i)})
)

]

6

[

n

6
i=p+1

(

f(i) 7 v({(i), . . . , (n)})
)

]

〉. (32)

The first one is suggested by Remark (iii) in Section 5, in order to avoid
a complicated expression with the Möbius transform. The second one puts
all terms of (29) together and apply the rule of computation. The following
example shows that these formulas and the original one are indeed different.

Example 2: Let us take N = {1, 2, 3}, L = [−1,+1], v and f

defined in the following tables.

v({1}) = 0.3 v({1, 2}) = 0.4
v({2}) = 0.25 v({1, 3}) = 0.3
v({3}) = 0.2 v({2, 3}) = 0.6

f(1) = −1
f(2) = 0.3
f(3) = 1

Observe that the Möbius transform [m] is reduced to v, except
for subset {1, 3}, where [m]({1, 3}) = [0, 0.3]. Let us compute
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Sv(f
+) and Sv(f

−). We have:

Sv(f
+) =(0.3 ∧ 0.6) ∨ (1 ∧ 0.2) = 0.3 ∨ 0.2 = 0.3

Sv(f
−) =(1 ∧ 0.3) = 0.3.

Hence, according to original definition (eq. (27)), we get Šv(f) =
0. If we compute from (32), we obtain:

Š2
v (f) = 〈(−17 0.3)6(0.3 ∧ 0.6)6(1 ∧ 0.2)〉

= 〈−0.36 0.36 0.2〉 = 0.2.

Now, if we compute from (31), we obtain:

Š1
v (f) = 〈(0.25 ∧ 0.3)6(0.2 ∧ 1)6(0.6 ∧ 0.3)6(−17 0.3)〉

= 〈0.256 0.26 0.36−0.3〉 = 0.25.

Hence, all expressions lead to different results.

Let us comment about these formulas.

• Clearly, Š1
v is not the expression of Š2

v with the Möbius transform, as
one could have expected, and it remains difficult to interpret.

• Comparing the original formula and (32) is easier since they can be
viewed as the same expression using different rules of computation,
which are 〈 〉 and ⌊ ⌋. This suggests a third variant, using the rule
denoted by ⌈ ⌉:

Š3
v (f) =⌈

[

p

6
i=1

(

f(i) 7 v({(1), . . . , (i)})
)

]

6

[

n

6
i=p+1

(

f(i) 7 v({(i), . . . , (n)})
)

]

⌉. (33)

Šv takes separately the maximum of positive and negative values, and
then compare the results. We obtain 0 as soon as the best positive
value equals in absolute value the worst negative one. Š2

v is more dis-
criminating than Šv in the sense that many cases where Šv gives 0 are
distinguished by Š2

v , since maximal opposite values are discarded un-
til they become different, in a way which is similar to the “discrimin”
proposed by Dubois et al. [7]. This is also the case for Š3

v , except that
multiple occurrences are not removed.
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• Š2
v is not monotonic in the sense that if f ≥ f ′, it may happen that

Š2
v (f) < Š2

v (f
′), since the rule 〈〉 is not monotonic, as shown by the

following example:

Example 3: Let us consider the following values ai, bi ∈ R,
i = 1, . . . , 5.

i 1 2 3 4 5
ai -5 -5 -1 2 5
bi -5 -4 -1 2 5

Clearly ai ≤ bi, ∀i, but 〈6
5
i=1 ai〉 = 2 while 〈65

i=1 bi〉 = −4.

On the contrary Šv and Š3
v are monotonic. Since in decision making

monotonicity is a mandatory property, Š2
v cannot be used. Hence, we

recommend the use of either Šv or Š3
v .

7 Related works

We are not aware of similar attempts to build algebraic structures on sym-
metric ordered sets. We did an extension of this work in [16], where L was
restricted to [−1, 1], but the operator to be extended was any t-conorm. The
result is that an Abelian group can be built when the t-conorm is strict, but
a ring is not possible. There are connections of this result with uninorms
[33], and in a more general way, with partially ordered groups and rings (see
Fuchs [11]).

Taking the viewpoint of decision making, as explained in the introduc-
tion, the symmetric Sugeno integral may be used as the main ingredient of
an ordinal Cumulative Prospect Theory. Specifically, we aim at finding a
representation of preference over a set of alternatives or acts, when acts have
as consequence gains as well as losses, or put differently, when one can imag-
ine the symmetric of a given act. There exist some works along this line,
under the name of signed orders. We present briefly the concept of signed
order [10].

Let X be a set of alternatives (possibly multidimensional), and � a tran-
sitive complete relation on X . We consider a copy X∗ of X , whose elements
are denoted x∗ (reflection of x). The relation � extended on X ∪ X∗ is
assumed to be self-reflecting:

r � s ⇔ s∗ � r∗.

(X ∪ X∗,�) is called a self-reflecting signed order. Fishburn studies under
which conditions a numerical representation u of � can be found, i.e. such
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that r � s ⇔ u(r) ≥ u(s). It amounts that u has to be skew symmetric, i.e.
u(r) + u(r∗) = 0.

A similar attempt has been done by Suck [29], who proposed compen-
satory structures. A being a set of alternatives, a compensatory structure
is a triplet (A,L,K), where L,K are binary relations, L is complete and
transitive, K is symmetric such that there exists a′ ∈ A for each a ∈ A so
that aKa′, and if aLb, aKa′ and bKb′, then b′La′. Clearly, K is a reflection
which reverses the order, like for Fishburn’s signed order. The representation
theorem is indeed similar, and includes the case of skew symmetry.

Our approach and aim are however rather different, since we are dealing
with scores or utilities, on which we want to build some structure, and not
on the alternatives. It remains to embed the use of the symmetric Sugeno
integral in a decision making framework. We have already proposed such an
attempt for multicriteria decision making [17].
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