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In the present paper we introduce an extension of the conceptual graph model suitable to the representation
of data which are modelized using fuzzy sets. We extend the specialization relation of the conceptual graph
model to fuzzy conceptual graphs. Lastly we introduce a new way of comparing conceptual graphs, using the idea
that a graph may be compatible with another graph with a given degree d, which allows to make more flexible
comparisons of fuzzy conceptual graphs. This work takes place within a project that aims at building a tool for

the analysis of microbial risks in food products.

Keywords: Fuzzy databases, Conceptual graphs, Imprecise data, Soft querying, Microbiology.

1. INTRODUCTION

Our research project is part of a national pro-
gramme which aims at building a tool for the
analysis of microbial risks in food products. We
are concerned with the storage and the query-
ing of data that come from the bibliography of
microbiology. These data have several particu-
larities: (i) they are polymorphic information in
a field that is continuously growing; we call them
“weakly structured data”; (ii) they are often im-
precise because of the complexity of the biologi-
cal processes involved; (iii) they are not exhaus-
tive, as the bibliography does not cover all pos-
sible experimental factors and conditions. These
particularities have the following respective con-
sequences: (i) it is difficult to determine a clas-
sic database schema to store all the useful infor-
mation; (ii) it is necessary to represent imprecise
information; (iii) it is necessary to enlarge the
querying in order to provide close answers when
the exact information is missing.

The approach we chose consists in designing a
unified querying system (called UQS) that simul-
taneously scans two separate bases : a relational
database containing the structured information,
and a conceptual graph knowledge base contain-
ing the data that do not fit in the structure of
the relational database. The justification and the

structure of the unified querying system have al-
ready been presented in [2]. To retrieve informa-
tion from the conceptual graph knowledge base,
the user’s query is translated into a conceptual
graph which is used to scan the knowledge base.
In this paper, our objective is to extend the con-
ceptual graph model in order to be able to repre-
sent imprecise data - including numerical values -
and enlarged queries.

Classically the conceptual graph model allows
one to represent symbolic data [16]. A numer-
ical value cannot be represented otherwise than
symbolic data. We propose a way of introducing
a numerical domain of values within the frame-
work of the basic conceptual graph model.

Concerning enlarged querying and imprecise
information management, the bibliography in the
database framework covers two kinds of problems.
In a first category of papers, the fuzzy set frame-
work has been shown to be a sound scientific way
of modelling flexible queries [1]. In the second
category of papers, the fuzzy set framework has
also been proposed to represent imprecise values
by means of possibility distributions [14].

Besides, the introduction of the fuzzy set the-
ory into the conceptual graph model has been
studied by Morton [10] and extended by several
works such as [17,3]. Compared to the previous
approaches, we propose a more homogeneous and



integrated way of combining conceptual graphs
and fuzzy sets: (i) we propose a homogeneous
representation of fuzzy types' and fuzzy mark-
ers'; (ii) the domain of these fuzzy sets is built in
accordance with the support!.

Combining a knowledge representation model
and a way of introducing imprecision has been
proposed in other previous works. In particular,
we can cite formalisms that describe ontologies
like the object model [7], or information retrieval
using terminological logics [15]. The latter are
part of the “knowledge representation” subfield of
artificial intelligence and more specifically seman-
tic networks, just as the conceptual graph model.

The original contribution of this paper is thus
mainly to provide an extension of the conceptual
graph model suitable to the representation of im-
precise data and enlarged queries, by using the
fuzzy set framework and by proposing a mecha-
nism allowing a flexible comparison of conceptual
graphs; and secondly to propose a natural way
of representing numerical values within the basic
conceptual graph model.

Section 2 briefly presents the representation
models that we use, i.e. what we use fuzzy sets
for, and what the conceptual graph model is. Sec-
tion 3 describes our choice for the representa-
tion of numerical values in the conceptual graph
model, and the extension that we propose for the
representation of fuzzy values. In section 4 we
extend the specialization relation in order to al-
low comparisons of conceptual graphs that con-
tain fuzzy concepts.

2. PRELIMINARY NOTIONS

2.1. Fuzzy sets
In our application we need firstly to be able to
represent imprecise data, secondly to use enlarged

querying. To perform this we use the fuzzy set
theory [18].

Definition 1 A fuzzy set A on a domain X is
defined by a membership function pus from X to
[0, 1] that associates with each element x of X
the degree to which x belongs to A.

IThese notions are explained in Section 2

The domain X may be continuous or discrete.
These two cases are illustrated by the examples
given in Figure 1. The fuzzy set MyMilkProduct-
Preferences is also noted :
1/Full milk + 0.5/Half-skimmed milk.

HighDuration MyMilkProductPreferences
1 1 PY
05 'Y
0 0 } }
20 50 70 100  sec Fullmilk  Half skimmed milk
Figure 1. Fuzzy sets HighDuration and

MyMilkProductPreferences

A fuzzy set may be interpreted in two ways:

1. as the expression of preferences on the do-
main of a selection criterion. For example
the fuzzy set HighDuration in Figure 1 may
be interpreted as a preference concerning
the required value of the criterion Duration:
a duration between 50 and 70 seconds is
fully satisfactory, values outside this inter-
val may also be acceptable, but with smaller
preference degrees;

2. as an imprecise datum represented by a pos-
sibility distribution. For example the fuzzy
set. MyMilkProductPreferences may be in-
terpreted as an imprecise datum if the kind
of milk that was used in the experiment is
not clearly known: it is very likely to be
full milk, but half-skimmed milk is not ex-
cluded.

Of course either a continuous or a discrete do-
main can be used to express a preference as well
as an imprecise datum.

In our application, “imprecise data” refer to:

e data known with a given variability, e.g.
a concentration measure can take different



values if we make the same experiment sev-
eral times, because of the complexity of the
underlying biological processes. This mea-
sure is not to be represented by a precise
value, but by a minimum-maximum interval
of values, e.g. [49.8 U/ml, 51.1 U/ml], cor-
responding to the extrema of the obtained
results;

e data whose precision is limited by the mea-
suring techniques. For example by using
a method able to detect bacteria beyond a
given concentration threshold (e.g. 10? cells
per gramme), not detecting any bacterium
means that their concentration is below this
threshold. This imprecise value is noted “<
10% cells/g”;

e vague data, like “in products having a weak
water activity (a,), microorganisms with
spores can appear”. In this example [20]
the piece of information “weak water activ-
ity” may be represented by a fuzzy set.

The fuzzy set framework allows one to repre-
sent a precise value, an interval or a fuzzy value
using the same formalism.

2.2. The conceptual graph model

The weakly structured data of the applica-
tion are represented using the conceptual graph
model, which is a knowledge representation model
based on labelled graphs, introduced by Sowa
[16]. We use the formalization presented in [13].
In the conceptual graph model, knowledge is di-
vided into two parts: the terminological part (the
support) and the assertional part (the conceptual
graphs). In this section, we briefly and intuitively
present the conceptual graph model through the
example of our application.

The support

The support provides the ground vocabulary
used to build the knowledge base: the types of
concepts used, the instances of these types, and
the types of relations linking the concepts. It de-
scribes the hierarchical organization of these ele-
ments.

The set of concept types is partially ordered
by a kind of relation. Universal and Absurd are

respectively its greatest and lowest elements. Fig-
ure 2 presents a part of the set of concept types
used in the application.

Universal

Germ Action,

Datum

Bacteriocin  Pathogen Germ

Experimental datum Expe Result Experiment Interaction

Nisin  Listeria E.Coli

Reduction Stability,
Substrate ~ Temperature Concentration

/"\‘\ Duration
Mil Megt\ Poultry
\ ;hmk
Half

Listeria Scott A

1

CFUMI Uml  Degree

skimmed “skimmed

K
Full milk
Pasteurized '\
milk "~ Ppasteurized
fullmilk \

Figure 2. A part of the concept type set for the
microbial application

Absurd

The concepts can be linked by means of rela-
tions. The set of relation types is partially or-
dered by a kind of relation. Each relation type is
characterized by an arity, and a signature which
specifies the maximal concept types that a given
relation can link together. The set of relation
types we use contains relation types such as Agt,
which is a binary relation having (Action, Germ)
as a signature. It means that “an Action has for
agent a Germ” (for example an interaction can
have a bacterium as an agent).

The third set of the support is the set of in-
dividual markers. Each individual marker rep-
resents an instance of a concept. For example,
Celsius degree can be an instance of Degree. The
generic marker (noted ) is a particular marker
referring to an unspecified instance of a concept.

The conceptual graphs

The conceptual graphs, built upon the sup-
port, express the factual knowledge. They are
composed of two kinds of vertices: (i) the con-
cept vertices (noted in rectangles or in brackets)
which represent the entities, attributes, states,

Measure Unit

ConcM.U. Temp.M.U. Time M.U



events; (ii) the relation vertices (noted in ovals or
in parentheses) which express the nature of the
relations between concepts.

The label of a concept vertex is a pair defined by
the type of the concept and a marker (individual
or generic) of this type. The label of a relation
vertex is its relation type.

The information contained in the conceptual
graph knowledge base describes the behaviour of
pathogen germs (increase, reduction or stability
of their concentration) in food products during
different processes. For example, the conceptual
graph given in Figure 3 is a representation of the
information: “the experiment E1 carries out an
interaction I1 between Nisin and Listeria Scott A
in full milk and the result is reduction”.

Definition 2 The knowledge base
KB ={G1,...,Gp} containing the weakly struc-
tured knowledge of our system is a set of con-
nected, possibly cyclic conceptual graphs.

2
Listeria Scott A: @ @
K 1
Experiment : E| @

— LRumik: <

Figure 3. An example of a conceptual graph

Specialization relation, projection opera-
tion

The set of conceptual graphs is partially or-
dered by the specialization relation (noted <),
which can be computed by the projection opera-
tion (a kind of graph morphism allowing a restric-
tion of the vertex labels authorized in the sup-
port): G' < G if and only if there is a projection
of G into G'. An example is given in Figure 4.

Since it allows the search for conceptual graphs
which are specializations of (which contain more
precise information than) another conceptual

graph, the projection operation is widely used
for the querying of conceptual graph knowledge
bases. We then call a “query graph” a conceptual
graph that we try to project into each graph of
the knowledge base, called “factual graphs”.

G 2 1 N 1 2
Pathogen Gen
G’ Listeria Scott A:
N 1
Experiment : Ef @

Figure 4. There is a projection from G into G’,
G' < G (G is a specialization of @)

The question of the existence of a projection of
a graph into another graph is NP-complete [11].
However there are polynomial cases, for instance
the question of the existence of a projection of an
acyclic graph into a graph. We use the polyno-
mial algorithm of [12], which means that we have
to use necessarily acyclic query graphs.

3. REPRESENTING NUMERICAL
VALUES AND FUZZY VALUES
IN THE CONCEPTUAL GRAPH
MODEL

3.1. Representing numerical values

The microbiological data stored, as well as the
user’s queries, include numerical values, like tem-
peratures, concentrations, durations. In the con-
ceptual graph model that we use [13], individual
markers are identifiers for instances: an individ-
ual marker is a symbolic datum that identifies a
given instance in a unique way. Two different
instances are necessarily noted by two different
individual markers so there is no ambiguity.

As implied by the definition of the model, two
incompatible concept types' cannot have a com-

1With the term “incompatible” we mean two types whose
greatest common subtype is Absurd



mon instance and therefore cannot share a com-
mon individual marker. For instance, let us sup-
pose that the type Full milk and the type Pas-
teurized milk have a non-absurd greatest common
subtype Pasteurized full milk. If ‘samplel’ is an
individual marker of the concept type Full milk
and also of the concept type Pasteurized milk,
then it is necessarily a marker of Pasteurized full
milk. Now let us consider the types Duration and
Temperature. As they have no greatest common
subtype different from Absurd, they cannot share
a common marker. Thus ‘30’ cannot be a marker
of both Duration and Temperature, neither can
any numerical value be a marker of several con-
cept types if these types do not have a non-absurd
greatest common subtype.

We propose to adopt another representation of
numerical values, based on a different support.
This representation is in conformity with the ba-
sic conceptual graph model.

Here are two different examples proposed by
Sowa [16] to represent numerical values. Sowa
deals with the representation of measures, where
he distinguishes the object on which the mea-
sure is made, the parameter that is measured,
the measure itself and its name. For instance the
measure of the length of a bar of 25.4 cm is rep-
resented by:
[BAR]—(CHRC)—[LENGTH]—(MEAS)—[MEASURE]—
(NAME)—[25.4 ¢cm”]
contracted to:

[BAR]—(CHRC)—[LENGTH : @25.4 cm].

The drawback of this representation is that the
measure appears as a string in which the value
and the unit are not distinguished. Besides, Sowa
[16] deals with the representation of numbers in
a different way. He proposes to distinguish the
number itself and the names assigned to it. For
example the following graph presents two possible
names for the number four:

[“IV”]«(NAME)« [NUMBER : #27018]—(NAME)—[*4”].

The use of a distinct representation for num-
bers and measures does not highlight the link be-
tween a number and a measure, although a mea-
sure can contain a number, as in the previous ex-
ample. Moreover it does not allow one to handle
typed data (strings, numerical values, ...), which
we wish to introduce in our application so as to

be able to perform numerical processing, in par-
ticular numerical comparisons and calculations.

Therefore in order to represent numerical val-
ues, we propose to introduce the concept type
NumericalValue into the support. It is a sub-
type of the more general type Value. We intro-
duce the relation type NumVal(Datum, Numer-
icalValue), subtype of the more general relation
type Val(Datum, Value).

Definition 3 A numerical value is a marker of
a specific concept type. The set of markers asso-
ciated with this type may be uncountable?.

This concept type is called NumericalValue in
our application. Such a marker is represented by
an integer or a real number in a conceptual graph.
In the following, the set of markers associated
with the type NumericalValue is assumed to be
IR.

The designation of these types, as well as the
signatures of the relation types introduced, are
given as an example and can be modified and
adapted to other applications. Other subtypes
of the concept type Value and the relation type
Val may also be considered and organized into a
hierarchy, such as strings, real numbers, integers
and so on.

The conceptual graph of Figure 5 extends Fig-
ure 3 with additional information, including nu-
merical values represented on the basis of the new
support. It can be interpreted as “the experiment
E1 carries out an interaction I1 between Nisin at
a concentration of 50 U/ml and Listeria Scott A
in skimmed milk during 2 hours at a temperature
of 37 degrees and the result is reduction” [9].

Let us note that the specialization relation re-
mains unchanged by the introduction of numeri-
cal markers: * is more general than all the indi-
vidual markers - including numerical ones - which
are not comparable.

3.2. Representing fuzzy values

We propose to introduce the representation of
fuzzy values concerning both concept types and
markers.

2This is an exception to the definition of the support as
established by the definition of [13]
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Figure 5. An example of a conceptual graph rep-
resenting numerical values

Information of the application stored in con-
ceptual graphs (factual graphs or query graphs)
may be represented in two ways: (i) as individual
markers; for instance this is the case for numerical
values (30, 50, etc.); (ii) as concept types; for in-
stance this is the case for substrates (Milk, Beef,
etc.). In both cases, we must be able to represent
them as fuzzy information, as explained in Sec-
tion 2. It is thus necessary to define both fuzzy
types and fuzzy markers.

Morton [10] firstly introduced fuzziness in the
conceptual graph model. He distinguished per-
ceptual, propositional and linguistic fuzziness, re-
spectively concerning entity, attribute, and infor-
mation concepts. Perceptual fuzziness represents
the compatibility between an individual marker
and its type within an entity concept vertex. It
is materialized by a compatibility degree, for in-
stance [GIRL : Sue | 0.6] expresses a doubt about
Sue being a girl. Propositional fuzziness is rep-
resented by a truth degree or a fuzzy truth value
associated with one or several conceptual graphs
defining a statement. Linguistic fuzziness con-
cerns metric attributes, which can have either a
precise measure or a label that stands for a crisp
or fuzzy subset of what is called the “universe of
discourse”.

In [17], linguistic fuzziness is proposed for non-
metric attributes, and fuzzy relation concepts are
introduced, by associating a certainty degree to
relations. For example: [GIRL:Sue | 0.6]«(AGNT |
0.5)¢[EAT:#80]—(0BJ)—(PIE) means, according to
the authors, that it is not certain whether it is a
girl (probably called Sue) who performs the eat-

ing. The interpretation of such fuzzy propositions
seams unclear and different cases are hard to dis-
tinguish, for instance “it is not certain that Sue is
a girl” should be different from “it is not certain
that the girl in question is Sue”, from “it is not
certain that it is a girl”, from “it is not certain
that she is eating”, from it is not certain that she
is doing something” and so on.

In our work, the semantics of fuzzy markers is
that of Morton’s linguistic fuzziness. Metric and
non-metric concepts are not distinguished as they
are treated homogeneously, and the “universe of
discourse” is clearly defined as part of the set of
individual markers defined in the support of the
conceptual graph model. We do not handle fuzzy
relations, as in our context fuzziness concerns the
data and not the way they are linked. We fo-
cus on a homogeneous approach of both concept
types and markers. In both cases, fuzziness is
represented in the same way, by means of a nor-
malized fuzzy set.

In [3], the notion of conjonctive fuzzy type is
proposed, which is a conjonction of types associ-
ated with the same individual marker with dif-
ferent fuzzy truth values), e.g. {(Tall.man, true),
(Young_man, very false)}.

In our approach, using fuzzy types, we do not
question the unicity of an individual marker’s
type: in our representation a fuzzy type repre-
sents a disjunction of possible types (with dif-
ferent possibility degrees), e.g. (1/Full milk
+ 0.5/Half skimmed milk), associated with the
generic marker, which is different from a conjonc-
tive fuzzy type as proposed in [3].

Definition 4 The reference domain Ref(t) as-
sociated with the concept type t is the set of indi-
vidual markers that conform to t.

Vt € To, Ref(t) = {m € I | r(m) < t}

where Tc is the set of concept types defined
in the support, I is the set of individual markers
and T an application from I to Tc that associates
a minimum concept type with each individual
marker.

The reference domain associated with a con-
cept type is thus a subset of I. It may be fi-
nite or infinite, continuous or discrete. For ex-



ample, if the markers that conform to the con-
cept type Numerical Value are the real numbers,
then Ref(NumericalValue)=IR is continuous and
infinite. If there are two individual markers T'1
and T2 that conform to the concept type Tem-
perature, then Ref(Temperature) = {T1, T2} is
discontinuous and discrete.

Definition 5 A fuzzy marker my of concept
type t is a fuzzy set defined on Ref(t).

It represents a disjunction of individual mark-
ers of type t modified by a coefficient between 0
and 1.

Remark 1 A “classic” individual marker m of
type t can be considered as a particular fuzzy
marker: its membership function associates the
value 1 with m, and the value 0 with the rest of
the domain Ref(t). The generic marker * can be
considered as a particular fuzzy marker of type
t: its membership function associates the value 1
with any element of Ref(t).

Definition 6 A concept with a fuzzy marker
is a concept vertex whose label is a pair (t,my),
where t is an element of Tc and my is a fuzzy
marker of the concept type t.

The conceptual graph represented in Figure 6
includes a concept with a fuzzy marker, of type
Numerical Value.

Temperature : %

NumericalValue : T

45 60 70 85

Figure 6. An example of a concept with a fuzzy
marker

Definition 7 A fuzzy type ty is a fuzzy set de-
fined on a subset Dy, of incomparable® concept
types of Tc.

For example the fuzzy set MyMilkProductPref-
erences represented in Figure 1 is a fuzzy type
defined on a subset of the concept types given in
Figure 2.

Remark 2 A “classic” concept type t can be con-
sidered as a particular fuzzy type. Its membership
function is defined on one element {t} and takes
the value 1 for this element.

Definition 8 Let t; be a fuzzy type defined on
Dy, . The reference domain Ref(ty) associated
with the fuzzy type ty is the union of the reference
domains of the elements of Dy, :

Ref(t;) = | Ref(t)

tEth

For example the reference domain of the fuzzy
type MyMilkProductPreferences is the set of
markers that conform to the type Full milk or
to the type Half-skimmed milk.

Definition 9 A concept with a fuzzy type
is a concept vertex whose label is a pair (ty,m),
where ty is a fuzzy type and m is the generic
marker *.

Remark 3 The generic marker * can once again
be considered as the fuzzy marker defined on
Ref(ts) whose membership function associates the
value 1 with any element of Ref(ts).

For instance, let us suppose that the user’s pref-
erences concerning the substrate are MyMilkPro-
ductPreferences represented in Figure 1. In con-
ceptual graph terms, this substrate is the con-
cept [Full milk : *] with the degree 1, or the con-
cept [Half-skimmed milk : *] with the degree 0.5,
which is represented by the concept with a fuzzy
type of Figure 7.

The use of fuzzy types does not question the
unicity of an individual marker’s type: in our
representation a fuzzy type represents a weighted

3within the meaning of the specialization relation
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Figure 7. An example of a concept with a fuzzy
type

disjunction of possible types, associated with the
generic marker, e.g. [(1/Full milk + 0.5/Half-
skimmed milk) : *]. This is different from a
conjunctive fuzzy type as proposed in [3], which
is a conjunction of types (with different fuzzy
truth values) associated with the same individ-
ual marker, e.g. {(Tall.man, true), (Young man,

very false)}.

4. COMPARISON OF FUZZY CON-
CEPTS, THE SPECIALIZATION RE-
LATION

The specialization relation of the conceptual
graph model, presented in Section 2, allows one
to perform comparisons of conceptual graphs. Af-
ter having extended the model to represent fuzzy
concepts (concepts with a fuzzy marker or with
a fuzzy type), the next step is to be able to or-
der conceptual graphs that include fuzzy concepts
(called “fuzzy graphs”), and in particular to be
able to compare a fuzzy query graph with fuzzy
factual graphs. To perform this comparison, we
extend the specialization relation to fuzzy con-
cepts, then we propose to relax this comparison,
which is an all-or-nothing process, by introduc-
ing a more flexible comparison that effects fuzzy

querying.

4.1. The notion of specialization for fuzzy
sets

The notion of specialization for fuzzy sets is

based on the inclusion relation: A is a specializa-

tion of B if and only if A is included in B. An
example is given in Figure 8 on a continuous do-
main. This definition applies to both discrete and
continuous domains.

Definition 10 Let A and B be two fuzzy sets de-
fined on a domain X. A is included in B (noted
A C B) if and only if their membership functions
na and up satisfy the condition:
Vo € X, pa(z) < pp(z).

Let F(X) be the set of all possible fuzzy sets
on the domain X. Inclusion is a partial order
relation in F(X).

| AN

35 50 65 80

is more specialized than

45 55 60 70

Figure 8. Example of specialization for fuzzy sets

4.2. Extension of the specialization rela-
tion to fuzzy concepts

Definition 11 Let t and t' be two fuzzy types on
the domains Dy and Dy respectively. Their char-
acteristic functions are noted x¢ and x¢. t' is a
specialization of t if and only if:

Vo' € Dy (xp(2') #0), 3z € Dy, ' <z and
xe (') < xe(x).



An example of a projection involving fuzzy
types is given in Figure 9.

[erssion: (o) ——{omw |

can be projected into :

1 [ ]
E t: E3 Interaction : 13 @

Full  Half skimmed
milk milk

Figure 9. An example of a projection involving
fuzzy types

Remark 4 If t and t' are “classic” types, this
definition is in agreement with the classic special-
ization relation: t (resp. t') is represented by the
fuzzy set defined on {t} (resp. {t’}) that asso-
ciates the value 1 with t (resp. t'). We still have:
t' is a specialization of t if and only if ' < t.

Definition 12 Let m and m' be two markers of
types t and t', defined on Ref(t) and Ref(t’) re-
spectively. m' is a specialization of m if and only
if Ref(t) is included in Ref(t’) and m' C m, where
C is the classic inclusion relation defined for fuzzy
sets.

An example of a projection involving fuzzy
markers is given in Figure 10.

Note that in Definition 12 there are four possi-
ble cases for m (resp. m'). m (resp. m') can be:
an individual marker of a simple type; a fuzzy
marker of a simple type; a generic marker of a
simple type; a generic marker of a fuzzy type.

If m and m/ are two individual markers (of the
simple types ¢ and ', ¢ < t), this definition is in
agreement with the classic specialization relation:
m (resp. m') is represented by the fuzzy set that
associates the value 1 with m (resp. m') and 0
with the rest of Ref(t) (resp. Ref(t’)). Then m'
is a specialization of m iff m'’ C m, that is iff
m' =m.

If m is the generic marker (of a simple or a
fuzzy type t) and m' an individual marker (of a

NumericalValue :

o
Temperature : *[7 @ 2

can be projected into :

Experiment : E3

NumericalValue :

45 55 60 70

Figure 10. An example of a projection involving
fuzzy markers

simple type t', ' < t), we also have the classic
specialization relation: m is represented by the
fuzzy set that associates the value 1 with any ele-
ment of Ref(t), m/' is represented by the fuzzy set
that associates the value 1 with m' and 0 with
the rest of Ref(t’). Then m' is a specialization of
m because m' C m is always true.

Let us consider two fuzzy types, t defined on
a set of n simple types, and ¢’ defined on a set of
n' simple types. The checking of the inclusion of
a concept with the fuzzy type t' in a concept with
the fuzzy type t, has a complexity in O(n' x n).
Similarly, if we consider two fuzzy markers, m
defined on a discrete domain composed of n in-
dividual markers, and m' defined on a discrete
domain composed of n' individual markers, the
checking of the inclusion of a concept with the
fuzzy marker m' in a concept with the fuzzy
marker m also has a complexity in O(n’ x n). In
the case where m and m' are defined on a con-
tinuous domain, in order to avoid a significant
increase of the complexity, we have chosen to
limit the fuzzy sets used to “trapezoidal” ones:
such a trapezoidal membership function has five
phases, limited by four abscissa values (a, b, c,
d). Tt takes the value O until a, then increases
to 1 from a to b, keeps the value 1 from b to ¢,
decreases to 0 from ¢ to d, and keeps the value 0
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from d. Checking the inclusion can then be done
in constant time.

Definition 13 Letl = (t,m) and l' = (t',m’) be
the labels of two concepts, where t and t' can be
fuzzy types, m and m' can be fuzzy markers (we
recall that a type and its marker cannot be fuzzy
simultaneously). Then l' is a specialization of | if
and only if t' is a specialization of t and m' is a
specialization of m.

Property 1 This extended projection operation
remains a partial preorder on the set of conceptual
graphs (with possibly fuzzy concepts).

Proof 1 As mentioned in Definition 10, the in-
clusion relation of fuzzy sets is a partial order in
the set of fuzzy sets defined on a same domain
X. For this reason the specialization relation,
extended to conceptual graphs that include fuzzy
concepts, preserves its reflexivity and transitivity
properties. As all the comparisons of “classic”
(non fuzzy) conceptual graphs remain unchanged,
we still do not have the antisymmetry property (it
is a preorder) and incomparable graphs still can-
not be compared (it is a partial preorder).

As we intuitively presented above, comparisons
of fuzzy concept vertices can be done in con-
stant or polynomial time depending on the cases.
Searching a projection from an acyclic graph into
a graph, using the algorithm of [12] extended
to fuzzy concepts, thus remains a problem with
polynomial complexity.

Using this extended projection operation, the
comparison of two conceptual graphs leads to a
binary result: a graph G' can be projected into a
graph G’ or cannot, there is no intermediate solu-
tion. However a more flexible comparison of fuzzy
sets should allow one to evaluate the compatibil-
ity between a fuzzy query graph and a fuzzy fac-
tual graph. Therefore we propose to introduce a
relation of compatibility with a degree d between
two conceptual graphs.

4.3. A more flexible comparison of fuzzy
concepts

Two scalar measures are classically used to

evaluate the compatibility between a fuzzy selec-

tion criterium and a correspondent imprecise da-
tum: (i) a degree of possibility of matching [19];
(ii) a degree of necessity of matching [5]. Within
the framework of this paper, we only deal with
the former.

Definition 14 Let m and m' be two markers
of types t and t', respectively defined on Ref(t)
and Ref(t’), with characteristic functions xm, and
Xm'- Then m' is compatible with m with the pos-
sibility degree d (noted m'compgm ), where d has
the following value:

e d =0 if Ref(t)N Ref(t’) = 0;
e otherwise d = II(m ;m’).

I(m ;m'), degree of possibility of matching be-
tween m and m’', measures the maximum com-
patibility between m and m' and is defined by:

O(m ;m') = SuPzeRef(t)mRef(t’)mm(Xm(x)’Xm' (@))-

Note that this measure of the degree of pos-
sibility with which m' is compatible with m is
symmetrical.

An example is given in Figure 11.

o ﬂ 1 : m

30 35 40 45 35 42 45 50

m’ satisfies m with the degree diF(m ; m’) obtained as follows :

M(m; m), mﬂ

30 35 4042 45 50

Figure 11. Flexible comparison of two markers m
and m’ of type NumericalValue

Remark 5 For two “classic” individual markers
m and m', II(m ;m') takes the value 1 if m =
m', 0 if not. If m or m' is the generic marker,
II(m ;m') = 1.



Definition 15 Let t and t' be two fuzzy types,
respectively defined on the domains Dy and Dy .
Their characteristic functions are noted x: and
xe- Then t' is compatible with t with the possi-
bility degree d (noted t'compgt), where d is deter-
mined as follows:

Let A be the set of all pairs (z, x’) from Dy X Dy
satisfying =’ < x.

o if A=0,d=0;

e otherwised = S’U,p(w’w')eAmin(Xt(w); xe (7).

For example, the fuzzy type:

t’ = 1/Full milk + 0.5/Half-skimmed milk
is compatible with the fuzzy type:

= 0.6/Milk + 1/Beef + 0.3/Poultry
with the degree:

d = sup(min(x:(Milk), x¢ (Full milk)),
min(x:(Milk), x¢ (Half-skimmed milk)))
= sup(min(0.6,1), min(0.6,0.5))

= sup(0.6,0.5) = 0.6.

Note that this measure of the degree of possi-
bility with which ¢’ is compatible with ¢ is not
symmetrical, because it involves the specializa-
tion relation. For instance, in the previous exam-
ple, t is compatible with ¢’ with the degree 0.

Remark 6 For two “classic” types t and t',
I0(t ;t') takes the value 1 if t < t', 0 if not.

Definition 16 Let | = (t,m) and ' = (t',m') be
the labels of two concepts ¢ and ', where t and t'
can be fuzzy types, m and m' can be fuzzy markers
(we recall that the type and its marker cannot be
fuzzy simultaneously). Then ¢ is compatible with
¢ with the degree of possibility d (noted ¢’ compgc),
where d is defined as follows:

Let d1 be the degree with which t' is compatible
with t (t'compgr t). Let d2 be the degree with
which m' is compatible with m (m'compg m).
Then d = min(dl,d2).

The min operator is used for the conjunction
of the compatibility degrees, as presented in [6].
For instance, for:
¢ = [Full milk : 1/sample32 + 1/sample35] and
¢’ = [0.5/Full milk + 1/Half-skimmed milk : *],

we have:
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dl = 0.5 (Full milk has the degree 1 in ¢ and 0.5
in ¢’, Half-skimmed milk is not comparable with
Full milk),

d2 = 1 (both sample32 and sample35 have the
degree 1 in c and also in ¢’, where the generic
marker * stands for the fuzzy sets that associates
the degree one with every marker of Full milk and
Half-skimmed milk)

d =min(0.5,1) = 0.5, thus ¢'compy 5 c.

Definition 17 Let G and G’ be two conceptual
graphs that can possibly include fuzzy concepts.
Then the graph G' is compatible with the graph G
with the degree d (noted G'compy G) if there is an
ordered pair (f,g) of mappings, [ (resp. g) from
the set of relation types (resp. concept types) of G
to the set of relation types (resp. concept types)
of G', such that:

e edges and their numbering are preserved;
e relation vertex labels may be restricted.

d is then determined as follows:

Let Cg be the set of concept vertices of G. For
each concept vertex ¢ € Cg, let d. be the degree
of possibility with which g(c) is compatible with c.
Then d = mincec,d..

Remark 7 If G can be projected into G' (G' is
a specialization of G), then G' is compatible with
G with the degree 1.

For example let us consider the graph G given
in Figure 12 and the graph G’ given in Figure 13.
G' is compatible with G with the degree of possi-
bility d = 0.5, which corresponds to the degree of
possibility with which the concept vertex [Half-
skimmed milk : *] of the graph G’ is compati-
ble with the concept vertex [1/Skimmed milk +
0.5/Half-skimmed milk : *] of the graph G, all the
other concept vertices of G being satisfied with
the degree of possibility 1 by their image in G'.

As explained in Section 4.2, searching a pro-
jection from an acyclic graph into a graph, both
possibly including fuzzy concepts, is a problem
with polynomial complexity. Calculating the de-
gree of possibility of matching is done in constant
time. The algorithm of [12] adapted to compute
if an acyclic graph is compatible with a graph
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Full milk Half skimmed milk

(o) (o) nisnoo 7 Chad—5 [ Concentation 77
1 1 @
’—24 Interaction : &—1@—2{ Stability 7] >
1 a [Numericalvalue : 5p

NumericalValue : 5

1 2
Char (Chad Half skimmed milk : %
2 2
[ Duration == | [T ] —Temperature Un>—1 Dearee :7]

1 1 1 1 2
@; Numval NumVal

2 2 2
Hour : * NumericalValue 37

NumericalValue :

1

0

15 25

Figure 13. An example of a factual graph G’

(both possibly including fuzzy concepts) with a
given possibility degree , thus remains a problem
with polynomial complexity, but it supplies more
solutions.

5. CONCLUSION AND
TIVES

PERSPEC-

Within the context of the creation of a tool for
decision-making aid in the domain of food risk
control, the specificities of the data led us to fol-
low the steps presented in this paper: in the con-
ceptual graph model, we have presented a choice
for the representation of numerical values and a
way of representing fuzzy data. In order to allow
comparisons in this extended model, we have pro-
posed an extension of the specialization relation.
Lastly we have softened this comparison by intro-

1 2 Temp. M.U. : *

ducing a relation of compatibility with a degree d
between two graphs, allowing enlarged querying.

The originality of our approach is the combina-
tion of two models that complement each other
to satisfy the purposes of the application. Indeed
the data and the queries of the project require
a flexible data structure and fit to a hierachical
classification, which is brought by the conceptual
graph model. On the other hand they include
numerical data and fuzzy data, which the con-
ceptual graph model is not designed for [13], but
which are handled by the fuzzy set theory [19].
This combined approach is also original because
it integrates fuzzy sets in the conceptual graph
model tightly; fuzzy sets are built upon the sup-
port of the conceptual graph model and provide
a homogeneous extension of the model.

A prototype of this work has been implemented
using the CoGITo platform [8] and a microbiologi-
cal knowledge base is under construction, in coop-
eration with the group of microbiologist experts
working on the project. It includes information
from three kinds of publications:

e documents that synthesize experimental re-
sults of different previous articles on a
given subject. These publications cannot
be stored as recordings in the relational
database which is dedicated to the descrip-
tion of complete and detailed experiments;

e documents that give qualitative informa-
tion only. Qualitative data are not
exploitable by querying the relational
database, where they can only be stored as
plain text; the keywords and the semantics
of the connections between them are not
highlighted.

e documents whose content is not directly
related to the relational database theme.
There are no attributes that fit to these
data in the relational database, but they
can be stored as concepts in the conceptual
graph model.

About one hundred graphs, each composed of
around fifty vertices, have been registered in the
knowledge base up to now. Nested conceptual



graphs [4] - i.e. conceptual graphs that include
concept vertices whose description itself is repre-
sented by a conceptual graph - could be used in
order to represent information at various levels of
detail.

Our very next work will be to study other com-
parison degrees (in particular the degree of neces-
sity of matching [5]) in order to refine the com-
parison of fuzzy sets. In a more distant future,
we will have to adapt our system to enable non-
specialists of the conceptual graph model to use
it. An important work on the interfacing of our
system has to be done. In particular, during the
knowledge acquisition stage, by providing concep-
tual graph patterns, that biologists could com-
plete in order to enter data in the knowledge base.
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