
E L S E V I E R  Fuzzy Sets and Systems 101 (1999) 87-108 

FUZZY 
sets and systems 

Theoretical analysis of a fuzzy-logic controller with unequally 
spaced triangular membership functions 1 

C h e n g - L i a n g  C h e n * ,  S h e n g - N a n  W a n g ,  C h u n g - T y a n  H s i e h ,  F e n g - Y u a n  C h a n g  

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC 

Received May 1996; received in revised form January 1997 

Abstract 

The mathematical analysis concerning the explicit input/output relation of the fuzzy logic controller (FLC) is addressed 
in this article. Under the assumption of simple rule mapping and the use of arbitrarily located triangular fuzzy partitions 
as the membership functions, the inferred output of the FLC can be decomposed into two terms: the global multilevel 
relay and the local nonlinear compensator. The ultimate control behavior of this FLC and the equivalence to nonlinear 
proportional-integral (PI) controller, as the number of linguistic terms are approaching to infinity, are also investigated. The 
local stability criteria for PI-type FLCs are derived and the global stability properties for PD-type FLCs are established. 
This analysis is a generalization to previous related research works where the FLC is characterized by equally spaced 
triangular fuzzy partitions on the universal sets. © 1999 Elsevier Science B.V. All rights reserved. 
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i .  Introduction 

It has been two decades since the first paper on fuzzy control was published in 1974 [8]. A lot of  fuzzy 
logic controllers (FLCs) in different areas have been reported in the literature and the fuzzy techniques have 
been widely used in home appliances. 

However,  one of  the fundamental problems in fuzzy control technology is that there lacks a rigorous design 
theory on FLCs [18]. Until recently, many fuzzy logic controllers are constructed, instead of  systematically 
designed, case by case by using the trial-and-error method guided by field operators'  experiences on process 
operation. Such a condition sometimes leads to the FLC a black box that performs only the input/output 
mapping. 

In order to make the behavior of  the FLC more clear, Siler and Ying [10] propose a method to analyze 
the input/output parametric relationship of  the simplest possible FLC. Since then, Ying [19, 15-17] and some 
other authors such as [3] extend the analysis from the simplest FLC to the more complex FLCs and some 
useful results have been obtained. 
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However, the membership functions used in the series of the above-mentioned analyses are all of  equally 
spaced triangular/trapezoidal fuzzy partitions (ESMFs for short). It has been shown that the performance of 
such FLCs with ESMFs (designated as ESMFs-FLC) is on the same level as that of the linear PI controllers [3]. 

Recently, the authors propose a systematic design method of the FLCs [2]. This method uses a factor called 
shrinking factor to construct the membership functions called shrinking-span membership functions (SSMFs) 
of the linguistic variable. By only altering the shrinking factor, various unevenly spaced membership functions 
can be acquired and various nonlinear control actions could be obtained to cope with different control processes, 
either linear or nonlinear. Satisfactory simulation results of the FLC with SSMFs (SSMFs-FLC) for a wide 
variety of linear and nonlinear processes can be found in [2]. 

In this article, the authors like to extend the SSMFs-FLC to a more general case where the series of 
triangular fuzzy partitions could be arbitrarily distributed in an unequally spaced manner (USMFs-FLC for 
short) over the universal set, and the inner characteristics of the USMFs-FLC would be analyzed to elucidate 
the explicit input/output relation of this controller. Notably, the SSMFs-FLC and the ESMFs-FLC are two 
simplified varieties of the USMFs-FLC. Thus, this analysis is a generalization of previous related works 
[19,15-17,3]. 

This paper is organized as follows: the basic structure of the FLC and the definition of USMFs (including 
SSMFs and ESMFs) are briefly reviewed in Section 2. Section 3 states the main results which include the 
input/output parametric relationship of the USMFs-FLC, the connection of the USMFs-FLC to the three mode 
(Proportional-Integral-Derivative, PID) controller, and the stability criteria of PI-type and PD-type FLCs, and 
finally, Section 4 concludes the main results. 

2. Structure of the USMFs-FLC 

As noted in [7], a fuzzy logic controller (FLC) comprises four principal components: afuzzification intetface 
(FI), a knowledge base (KB), decision-making logic (DML), and a defuzzification interface (DFI). Some 
complete and thorough description of the design procedures of the FLC have been presented (see [4, 13]); 
therefore, only the essential material will be reviewed here as a fundamental work. Readers should refer to 
the literatures listed above for details. 

2.1. Components o f  the USMFs-FLC 

In most of the applications of the FLC, the input linguistic variables are usually error (e) and change 
in error (r) of the process output, and the output linguistic variable is the change in controller output (u). 
Without loss of generality, it is assumed that the inputs (e, r)  have been scaled from the measurements and the 
output (u) would be scaled before being applied to the processes. Thus, the associative universe of discourse of 
e, r, u are confined within ± 1, i.e., Ue = Ur = U, = [ -1 ,  1 ]. Furthermore, each of the three term-sets (T e, Tr, T~) 
individually has the same number of linguistic members on both positive/negative sides: 

Te = {E-m . . . . . .  E-1,Eo,E1 . . . . .  Eme} = {E, l i E In,,}, 

T r = {R_m,. . . . . .  R _ I , R o , R  I . . . . .  Rm,. } = {Rj IJ clm,.}, (1) 

Tu ={U . . . . . . . .  , U - 1 , U o ,  U 1 , . . . , U m , , } =  {Uk Ik C Im,}. 

Here Ira,, = { - m e , . . . , - 1 , 0 ,  1 . . . .  ,me} is the index set with Me =2me + 1 terms for linguistic variable e. That 
is, the universe of discourse Ue of linguistic variable e is partitioned into Me sections and each section is 
associated with a linguistic term El, i E Imp,, and is characterized by the membership function El(e). mr, m,, 
Mr, Mu, lm,, and Ira,, are defined similarly. 
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In this article, the simple control rule mapping [12] in the rule base is used: 

Rid: IF e isEi  AND r i sRj  THEN u is Uk=i+j. (2) 

The simple rule base implies rnu = me + mr. In order to make the FLC easier to implement, it can be further 
assumed that T~ and Tr have the same number of elements, that is, m~ = mr--m and therefore m~ = m~ + 
m,-= 2m. Notably, this assumption results in a bi-symmetric FLC, i.e., the output of rule Rid equals to the 
output of R~,~ if i + j  = u  + v. This is, of course, not a natural property of most FLCs in practice. However, 
such assumption is rational for initial design and we adopt it to simplify the subsequent mathematical analysis. 

This two-input-one-output fuzzy feedback control system and its detailed computational steps are depicted 
as follows: 

e,,)(nT) = {.si~(t) - y(t)}tt=, r ¢ GE' dE ' 

r m ( n T ) = e m ( n T ) - e m ( n T - T ) •  [ 1 1 ] 
G R ' G R  ' 

e*=GEem(n)C[-1,1], r*--GRrm(n)•[-1,1],  

Ei(e*)=~(e*,Ei)~[O,l], iEIm,,, Rj(r*)=[~(r*,Ri)E[O, 1], je lm, ,  

Oi,j = l:(Ei(e* ), Ri(r* ) ) •  [0, 1], 

u~+/(u) = a(0~..j, u~+j(u)), 

u* - ~ ( U ( u ) ) •  [ - 1 ,  1], 

U(u)  ~ ' = U i v ( u ) ,  
Vi, j C 1,,, 

um(nT) = G U u *  E [ -GU,  GU], 

CO(nT) = CO(nT - T) + Um(nT) for PI-type FLC, 

CO(t)--CO(nT) for tC[nT, nT + T]. 

Here T is the sampling interval; ~p(t), CO(t), and y(t) denote set-point, process input, and process output, 
respectively; em(nT), rm(nT), and Um(nT) (em, rm, Um for short) are measured error, change in error, and final 
crisp output without scaling, respectively; GE, GR, and GU are scalars, which keep the scaled crisp values 
e*, r*, and u* within numerical range of [ -1 ,  1]; Ei(e*) and Rj(r*) are the membership grade for e and r, 
respectively; Uk(u)'s are membership functions for u; U[(u)'s are fuzzy outputs of individual rules; M, F, 1, 
~ ,  and I) are a series of operators performing the decision making in the FLC with their specific functions [2]: 
Operator ~ maps a crisp input value to a membership degree subjected to a specific membership function; 
I: is used to calculate the firing level of each of the rules in the rule base; 1 decides the output fuzzy set of 
each rule; ~ aggregates the individual fuzzy outputs to form the overall output fuzzy set U(u); finally, 13 
converts the fuzzy output U(u) into a single crisp value u* for implement/on. 

Ying [15] has showed that applying Zadeh's standard fuzzy intersection (m/n) for F and I to calculate 
the firing level qSi,j and individual fuzzy output U,~+j(u), using a crisp value ui+i in place of the fuzzy 
output set, employing Lukasiewicz's fuzzy union for & to get the combined output membership function, 
and finally the center-of-gravity method for [D, then the final crisp output can be obtained by the following 
equation: 

Um= GU x u* = GU x ~ + ' ' 4 °  qSid tTi+j 
~,.,#o Oi, j 

(3) 
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Thus, the remaining problem in obtaining the explicit input/output relation, u m = f(e*, r*), is to find out the 
firing level of each rule, and to assign a crisp output representative, ffi+j, for each rule for given input pattern 
(e*, r*) within the universal domain Ue × Ur. In this article, we use the centroid of a membership function 
as its representative crisp value. As for the membership functions, three kinds of triangular fuzzy partitions 
will be discussed in the next subsection. 

2.2. Unequally spaced triangular membership functions ( USMFs) 

In the real applications of FLCs, the membership functions are usually constructed by assembling knowledge 
of the domain experts and then modified by laboriously surveying the control response of the process. In most 
of the control cases, the FLCs cannot be effective without carefully arranging the membership functions. 

In the theoretical analysis of the FLC, however, the selection of membership functions does not get much 
attention in the majority of researches. Most researchers choose isosceles triangles with equal spans throughout 
the whole universe of discourse as membership functions for their FLCs [8, 10, 19, 12]. The main advantage 
of choosing this type of membership functions is that equal span isosceles triangular membership functions 
ease the difficulties in analyzing the structure of the FLC. However, most practical applications of FLCs adopt 
nonequal-span membership functions to cope with the real control problems such as the water purification 
process [14], the truck backer-upper system [6], and the neutralization processes [1], etc. Instinctively, the 
closer the control response to the set point (or normal condition), the narrower ranges of membership functions 
should be to increase the sensitivity of the FLC to small input variations around set point (for example, see 
[4, p. 203; 6, p. 341]). For some highly nonlinear processes, such as the inverted pendulum system or the 
neutralization process, an FLC with equal span triangular membership functions is not adequate to achieve 
good control result [1]. 

In order to accomplish a better performance and to devise a more rational FLC, a successively distributed 
triangular fuzzy partitions would be used as the membership functions. Let E*'s, i E Im~, be a series of principal 
values (cores) for e which are successively distributed on Ue with unequal spacings. Then the unequally spaced 
triangular membership functions (USMFs for short) for e, Ei(e)'s, are defined such that Ei(e) is in triangular 
shape with principal value at E/*, i.e., Ei (e* =E/*)= 1, and its support set is restricted within [Ei*_l,Ei*+l] CUe 
for all iEIm~: 

Ei(e* ) =  A(e*; Ei*_ ,,E*, Ei*+l ) = { 

e *  - E i *  I 
for ET_l <~ e* <~ E ~ 

E* - U ? _  1 

E/*+I - e *  
for E* <<. e* <. ET+ l 

E;+, -E* 
0 others 

(for i E/me), 
(4) 

where -1  =E*_meO < .. .  < E*_ I < E~ < E~ < "" < g?~  e = 1. 
In order to comply with the representation above, let E*_me_ 1 =E 'me  = - 1 and Eme+l ----E* ~- 1. 

Notably when these E/*'s are ordered in a more specific way such that E/* = (i/me)S~ ne-lip, where Se C (0, 1] 
is the shrinking factor for linguistic variable e, the USMFs would be reduced into a series of shrinking- 
span membership functions (SSMFs for short) [2]. The SSMFs could be further reduced into equally-spaced 
membership functions (ESMFs for short) if it has unity shrinking factor (Se = 1), and in such case the spacing 
would become (1~me). Fig. 1 gives typical USMFs, SSMFs, and ESMFs for e. The definitions for Rj(r)'s 
and Uk(U)'S can be established in the same way. 

An FLC equipped with USMFs (SSMFs, ESMFs) is named USMFs-FLC (SSMFs-FLC, ESMFs-FLC). No- 
tably, the SSMFs-FLC with Se = s r = s u =  1 is equivalent to an ESMFs-FLC that has been analyzed 
thoroughly [15 17]. Hence, the following analysis is a generalization of those previous related works. 
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I I I I I 

Ei(e) 1 - ~  
0 
E" 3 E* 2 E*_ 1 E~ E~ E~ E~ 

(a) 

E~(~) 1 - ~  

0 
E*_ z E*_ 2 E* 1 E; E~ E~ E I 

(b) 
i i i i i 

El(e) 1 

0 
E*_ 3 E*_ 2 E*_ 1 E~ E{ E~ E~ 

(¢) 

Fig. 1. Typical membership functions for e (m=3) :  (a) USMFs, (b) SSMFs (s=0.7) ,  and (c) ESMFs. 

3. Theoretical analysis of the USMFs-FLC 

Some interesting properties of the USMFs and the USMFs-FLC will be studied in this section. The following 
discussion, except Section 3.5, would be focused on PI-type FLCs. 

3.1. Basic properties o f  USMFs 

The following two properties can be obtained straightforwardly [9] for using the triangular fuzzy partitions 
as the membership functions. 

Property 1. Given numerical value e* E [E[,Ei*+l] CUe Jor e and r* E [R],R]+ 1] CUr Jor r where iEIm,, 
-{me} and j E l m , -  {mr}, there exist only two non-zero membership values in the USMFs for each of  the 
two input variables, that is, 

and 

J ' ¢ 0  /f i =  i, i + 1 ,  
Ei(e* E [ET,Ei+I]) 

= 0 otherwise 

Rj(r* E [R~,R)+,]) { ¢=00 otherwise.if ) = J '  j + 1, 

Due to this property, it is not necessary to calculate the membership values for all USMFs and this greatly 
reduces the computational effort in implementing USMFs in real industrial processes. 

Property 2. The two non-zero membership values in the USMFs of  Property 1 have a sum of  1 and hence 
the summation of  all membership values for e (and r) is also 1. That is, 

Ve*EU.  Rj(r*)=l Vr*EVr. 
i£l,,,,, jEI,, , ,  
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The centroids of the individual membership functions of output variable u are required in calculating the 
final USMFs-FLC output. Property 3 states that the centroid of a single membership function (local centroid) 
with the form (5) can be computed by using the principal values only. 

Property 3. For the U S M F s  Uk(u)'s  defined as 

Uk(u)- - - -A(u;U;_I ,U; ,U;+I)  f o r  kEIm,,, (5) 

let U*_m,_ 1 = U*m, = --1 and Urn,,+ 1 = U~,, = 1, and let fO,' s be the centroids o f  membership functions Uk(u)' s. 
Then 

~ k = (  U;-I+U;-p-U~*+I ) 3  f o r k C I m . , ,  (6) 

Proof. In computing the centroid value for membership function Uk(u), the widely used center o f  area (COA) 
method is adopted here to generate the result. In the case of continuous universe of discourse, this method gives 

ak = fv,, U k ( u ) u  du  

fu~, U1,(u)du (7) 

The numerator of Eq. (7) is referred as moment  and the denominator is called area of the membership 
function for convenience. 

Then, the moment, Mk, of the membership function U~(u) is 

Mk = Uk(u)udu  . . . . .  udu  + . . . . .  udu  
' I \ U ;  -- U;* 1 dO,* \U~¢*+I - V ; . ]  

1 • • • • • = ~(V;__ 1 - V ; _ l ) ( V ; _  1 --~ U; --~ U;+I).  

The area, Sk, is 

) , . .  Sk = Uk(u)du = u - U~_ l du + . . . .  d u =  
- ; -  - 7 -  . . ~ ( u ; + ~  - u i _ ~ ) .  , , \ v ;  - u ; _ ,  v ;+~  - v;, 

Therefore, the centroid of membership function Uk(u) is 

ffk - Mk 1 • • • 
Sk - - ~ ( U / _  1 + U; + U/+I).  

This completes the proof. [] 

3.2. Input -output  relation o f  the U S M F s - F L C  

For the USMFs-FLCs depicted in Section 2.1, it is obvious from Properties 1 and 2 that only four control 
rules have nonzero firing levels for specific input values (e*, r*). 

Property 4. Given numerical value e* E [ET,E~+I] C U e f o r  e and r* E [Ry, Ry+l ] C U r  f o r  r, then only the 
followin 9 four  control rules have nonzero output (where k = i - t - j ;  i , j  c I m -  {m}): 

(rl) t f e  /s Ei+l and r & Rj+I then u & Uk+2, 
(r2) /f e is Ei+l and r is Rj then u is Uk+l, 
(r3) / f e  is Ei and r is Rj+I then u is Uk+l, 
(r4) /f e is Ei and r is Rj then u is Uk. 
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Ei(e*),Ei+t(e*) 

Rj(~') 

1. 

.5 

R; 

-1  

Ei Ei+l 

Pi,j+l Pi+l,j+l 

Pi,j Pi + l,j 

U~ x U,, 

Fig. 2. The (j th-block for e and r on the domain Ue x U,-. 

For the various combinations of crisp input values e* and r* of the USMFs-FLC, the ijth-block is used 
to refer the rectangular region in which e* E [E/*,EL,] C Ue and r*E [R],R]+,] CUr. Points Pi,j=(E~,R~), 
Pi+,.j =(E[+I,R]),  Pi+i j+l -  (Ei*+I,R]+I), and Pi.j+, =(Ei*,R~+I) are used to denote the four corners of the 

ijth-block as shown in Fig. 2. All the points locate on the line Pi , jPi+l , j+l  have the same values for El(e*) 
and Rj(r*); the points below the line Pi,jPi+w+l have the characteristic that Ei(e*) < Rj(r*), and for those 
above the line Pi.jPi+w+I, El(e*)> Rj(r*). Similar relations can be obtained for the line Pi+wPi,j+I: for 
the points below the line, Ei(e*)> R/+l(r*); for those above the line, Ei(e*)<Ri+l(r*); and for those 
on the line, Ei(e*) = Rj+l (r*). Note that Ei(e*) <<. ( >~ )Rj(r*) is equivalent to Ei+l (e*) >~ ( <<. )R/+I (r*) and 
Ei(e* ) <~ ( >~ )Rj+I (r*) is the same as Ei+l (e*) >1 ( <~ )Rj(r* ). 

According to the relative magnitude of the membership values of Ei(e*), Ei+l(e*), Rj(r*), and R/+l(r*), 
four regions are partitioned to represent the four different combinations of the membership values within the 
ijth-block such as stated in the following property and shown in Fig. 2. 

Property 5. For a specific ijth-block in the domain of  U~ × Ur,/our regions are partitioned with the jollowing 
relations: 
• Region I: Ei(e*)<~Rj(r*)andEi(e*)<~Rj+l(r*) (or Ei(e*)<~Rj(r*),R/+j(r*)<~Ei+l(e*)). 
• Region II: El(e*) ~Rj(r*) and El(e*) <~ Rj+l (r*) (or Rj(r*) <<. El(e*), Ei+l(e*) <~ Rj+l (r*)). 
• Region III: Ei(e*)~Rj(r*) and Ei(e*)>~R/+l(r*) (or Ei(e*)>~Rj(r*),Rj+l(r*)~Ei+l(e*)). 
• Region IV: Ei(e*)<~Rj(r*) and Ei(e*)~Ri+l(r* ) (or R/(r*)>~Ei(e*),Ei+l(e*)>~Rj+t(r*)). 

The relative magnitude of concerned membership values are used in calculating the firing levels of the 
control rules. For crisp input value (e*, r*) locating within the ijth-block, the firing levels of the four rules 
listed in Property 4 in the four regions are shown in Table 1 (see [15]). In obtaining the firing levels, the 
Zadeh's standard fuzzy intersection (m/n) is applied. 

Applying the results of Table 1 and Property 3 to Eq. (3), the final crisp output GU × u* of the USMFs-FLC 
could be expressed as the sum of a global part, GU × uS, and a local part, GU × u~. The value of the global 
part of the crisp output is decided by specific ijth-block in which (e*,r*) locates and is a constant across the 
four regions within the ijth-block. The value of local part, on the other hand, varies with the values e* and 
r* as stated in the following property. 
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Table 1 
Firing levels of  the four rules fired for the four regions in the ijth-block 

Region ~bi+l,j+ 1 ( r l )  qSi+l,j (r2) ~i,j+l (r3) q6i, j (r4) 

I Rj+I (r*) R/(r* ) El(e* ) El(e* ) 
II Ei+l (e* ) Rj(r* ) Ei(e* ) Rg(r* ) 
llI Ei+j(e*) Ei+l(e*) Rj+l(r*) Rj(r*) 
IV Ri+ l ( r* )  Ei+l(e*) Rj+l(r*) El(e*) 

Property  6. The crisp output of the USMFs-FLC on the ijth-block, Urn = GU x u*, is the sum of a global 
two-dimensional multilevel relay, GU x u~, and a local nonlinear compensator, GU x u~ : 

U m = GU x u* = GU x (u~ + u~ ) = u G -7 UL, 

+ V;+l + U2* 
--~-2 (k = i +  j ) ,  ,1¢ UG z 

3 

NI, IV 

1 .7 2(ELI - e* )/(Ei*+l - E* ) 
Nil, llI 

• 1 + 2(ej+ 1 - r*)/(Rj+ l - R ; )  
UL ~- Nil,  III 

1 + 2 ( e *  - - E ; )  

NI, IV 

1 + 2(r* - R])/(R)*+, - R j )  

for region I, 

for region II, 

for region III, 

for region IV, 

(8) 

where 

NtlV = ( r*_--R]_ ~ ( U £ + T U ~ )  _ (Ei+*l z e 2 )  (U£+e-U/~*I) 
' \ R ; +  I - R j  } \Ei*+, - E* 3 ' 

NIlII1 = ( e*_-E* ) (U/~+3 ? U~) { R j + , - r * )  (U~+2-U~c*_,) 
' \Ei*+, - E* - \ R ; +  I ~ R ~  X " 

Proof. Without loss of  generality, suppose the scaled input pattern (e*, r*) locates in region III of  the ijth- 
block. Then (let k -- i + j )  

U* = ~-](oi, i#O (gi, J bli+j 

ZOi,/7~ 0 ~)i,j 

EEl(e* )710,R i(r  * )=rio min { E i( e * ), R j( r * )} U i + j 

~-~Ei(e* )7~O, Ri(r * )7~0 min { Ei( e* ), Rj( r* )} 

Ei+l( e* )ui+j+2 + (Ei+l(e*) + Rj+l(r* )) /~i+j+l + Rj(r* )ffi+j 
Ei+l(e*)+Ei+l(e*).7Rj+l(r*).TRj(r*) 

e*--E: "~(U~+,+Uk+2+U~+3~ .7 ( e*--E; r*--R; (U2+ (R,;,--r*~ ~ ] , 3 I ,ET+I --E 7 -~- Rj+I * ) U~+I+U£+2 .7 ~,R~+I--R ~ J ( U£*-I+U~+U~+l 

2(e* - E[)/(Ei*+I - E[)+ 1 
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Note that 

( e* -E~  r*-R~_ ~ (2  e * - E ~  + 1 ) (  e*--_E[ ) +  ( r*_-_R] ) 
e=+, + , ,  - R *  , = * * - 1 • "j+, j it V Ei+l -- Ei ~Ei; 1 - E* ~R;+  l - R ;  

(2 e*--E* ) (  e*~-__E7 ) ( R ; + l - r *  ) 
5 7  - - , - - -  . ", ~i+' i ~ Ei*+l -- E* ~ Rj+ 1 - R; 

Thus, 

Uk+2 U* = Uk* + U~%1 -}- * 

* * (Rl+l--r* ~ * • U*+t 

+ 2(e* --ET)/(Ei*+I - E~')+ 1 

e;  + v;+, + e;+2 
( ~ ~ ( Uk+3 ~ U~ ) --(R~+t--r* ~ ( U~+23 U~-, 

E;,-E7 ] - / kR +,-RT ] + 
2(e* - E[)/(Ei+ 1 - E*) + 1 

U* * [] G+UL. 

From Property 6, one can find that within a specific ijth-block the output of the USMFs-FLC consists 
of two parts [15]: the global term is a constant which is determined by location of the ijth-block and is 
independent of the values of e* and r* within the block; the local part is a nonlinear relation of values of 
e* and r*. The USMFs-FLC discussed above thus can be viewed as the combination of a two-dimensional 
multilevel relay (the global term) and a nonlinear compensator (the local term), and the latter will be further 
discussed in the subsequent subsection. 

The effects of distributions of principal values for e, r, and u, on final control response, including global and 
local parts, respectively, can be investigated furthermore. Without loss of generality, such discussions would 
be illustrated for SSMFs-FLC and ESMFs-FLC only. According to the definition of the principal values Ei*'s, 
RT's' and Uk*'s in the SSMFs, the effects of the shrinking factors can be addressed in two respects. 

For input variable of the SSMFs-FLC, the values of Se and Sr influence both the location and shape of the 
ijth-block in the domain U~ × Ur. Owing to this, a specific set of (e*, r*) may locate in different ijth-block 
for different se and Sr values and thus may fire distinct control rules in obtaining the final output. As for the 
output variable u, different effects are induced for u*a and u L* by changing the shrinking factor s,. For u G,* 
the modification of s, changes its magnitude only; but for u~, both magnitude and nonlinearity are altered 
by varying the value of s~. Figs. 3-5 elucidate the effects of shrinking factors on final, global, and local 
control outputs, respectively. The effects of the shrinking factors on control performance for a wide variety 
of linear/nonlinear processes can be found elsewhere [2]. 

The following property states the upper and lower bounds of the local output and the final control actions, 
which are relevant to further discussion about ultimate control behavior as the number of linguistic terms 
becomes infinity. 
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Fig. 3. Effects of shrinking factors on final control outputs of the SSMFs-FLC (me = mr = 3). 

P r o p e r t y  7. The local output term and the f inal  crisp output o f  the U S M F s - F L C  on the i j th-block is, 
respectively, bounded by (k = i + j )  

- G U  x 
- -  G - 1  * U ; +  3 - U ;  

U£+2 ~<GU x u L = u L ~ G U  x 
3 3 

and 

G U  x U ; *  1 -~- U ;  -~- Uff+ 1 ~<GU x u* = u,, ~< G U  × 
3 

u;+, + ui*+2 + u;+3 

where the upper (lower) bound fo r  f inal output on the i j th-block is equivalent to the global output on the 
(i + 1, j ) th-block and ( i , j  + 1)th-block ((i - 1 , j ) th-block and ( i , j  - 1)th-block). 

P r o o f .  Substi tut ing lower  and upper  bounds  for e* and r* for each region on the i j th -b lock  into local output  

! [~E~" * * * * equat ions in Proper ty  6 (on region I, for example ,  it is e* E 2 ~ , q-Ei+l),Ei+l] and r* E [R) ,R)+I])  leads to 
1 * * 1 * - g ( U ~ +  2 - U~_ 1 ) ~< u~ ~< 5(U~+3 - Uk* ). The lower /uppe r  bounds  for final output are obtained by adding up 

the scope o f  local  output  wi th  global  output. [] 
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Fig. 4. Effects of  shrinking factors on global outputs of the SSMFs-FLC (m~ = m , . -  3). 

Property 6 implies that the USMFs-FLC is nonlinear in nature. The degree o f  nonlinearity o f  the USMFs- 
FLC can be measured from two aspects: the limited resolution of  the global multilevel relay and the position- 
dependent nonlinear local output. Obviously,  increasing the number of  linguistic terms would increase the 
degree of  resolution of  the multi level relay and, thus, would decrease its contribution to nonlinearity due to 
the assumption of  simple control rules that we have made to simplify the analysis. The output shrinking factor 
is another element affecting the resolution and the nonlinearity. A natural measure of  nonlinear degree can 
thus be defined as the maximum difference o f  the multilevel relay between adjacent blocks. Obviously,  the 
average value o f  differences between adjacent multilevel relays can also be used as the nonlinearity measure. 
We adopt the former definition for simplicity. Notably, the maximum magnitude o f  local output can also be 
interpreted as the degree o f  nonlinearity of  the controller, since the role o f  local output is to compensate the 
global one so as to lead to a continuous final output. This fact leads to the following property concerning the 
measure of  nonlinearity. 

P roper ty  8. The degree of nonlinearity of the USMFs-FLC, SSMFs-FLC, and ESMFs-FLC, defined as 
the maximum difference of adjacent global outputs or the maximum value of local output on U~ x Ur, are 

0 - -  m a x  
Vi,j E l,,--{m} 
i+j~ --2m+! 

U *  " ' U ~ ' " I c ( ,  + J )  - c(~ + J  - 1)1 
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Fig .  5. Effec ts  o f  s h r i n k i n g  fac to r s  on  local  ou tputs  o f  the  S S M F s - F L C  (me = mr  = 3).  

~--- m a x  
Vi,j E I.,- {m } 
i+j)  - - 2 m + l  

m a x  Ui;j+2 i Ui*+J-1 for USMFs-FLC, Vi'jClm--{m} 3 

luZ[ = 1 - (1 - 3/2m) X Su3 (m = 1) for SSMFs-FLC, 
3 s u (m>~2) 

for ESMFs-FLC. 
2m 

Proof .  The definition of  degree o f  nonlinearity leads straightforwardly to this property. [] 

From the definition o f  Q, the higher the value o f  0 the higher the degree of  nonlinearity, and 0 = 0 indicates 
the FLC a linear controller. Figs. 6 and 7 illustrate the effect o f  the number o f  linguistic terms on resolution 
of  u* and on the effective ranges o f  u~ for SSMFs-FLC and ESMFs-FLC.  The degree o f  nonlinearities are G 

also shown in these figures. Fig. 8 shows the effects o f  linguistic numbers and output shrinking factor on 
degree-of-nonlinearity for the SSMFs-FLC.  These illustrations and Property 8 implies that SSMFs-FLC would 
behave with l imited nonlinearity depending on the magnitude o f  output shrinking factor, and ESMFs-FLC 
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Fig. 6. Effects of linguistic terms on global (left) and local (right) outputs and degree-of-nonlinearity of the SSMFs-FLC 
(Se =Sr =Su = 0.6; Q(m ~ oo,su = 0.6) = 0.216). 

w o u l d  b e c o m e  a l i nea r  c o n t r o l l e r  as  m---* oo.  T h a t  is, 

m-- ,~ ~ 1 -s3,,/3 fo r  S S M F s - F L C ,  

Q I. 0 fo r  E S M F s - F L C  . 
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Fig. 7. Effects of  linguistic terms on global (left) and local (right) outputs and degree-of-nonlinearity of  the ESMFs-FLC (Q (m ~ cx~) = 0). 

The  fo l l owing  two  p roper t i e s  fu r ther  po in t  ou t  the  u l t ima te  b e h a v i o r  o f  S S M F s - F L C  and  E S M F s - F L C ,  

respec t ive ly ,  as m ~ e~. No te  tha t  the  l inear  na tu re  o f  these  F L C s  as m ---, ~ c o m e s  f rom the  a s s u m p t i o n  

o f  s imp le  cont ro l  rules.  
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Fig. 9. The ultimate distribution of  membership functions as m ~ oo for (a) SSMFs-FLC and (b) ESMFs-FLC. The shaded area is 
composed of  infinite number of  closely-spaced triangular MFs. 

P r o p e r t y  9.  The ultimate distribution of membership functions of an SSMFs-FLC with infinite number of 
linguistic terms is shown in Fig. 9(a ) .  And the crisp output of such an SSMFs-FLC on the ijth-block are 
bounded by two linear PI controllers, 

/ ( ~ )  - < " ( ; e r a )  Kp rm + e m ~ u m ,~. Kp rm 4- - -  , 

where 

/ Kp = G U  x G R  x - -  

- m + l j + l [  
Sr (s2um-li+J-'14- s2um-li+jl 4- s2um-li+J+'l ) ,  

K" = G U  x GR x - -  P 

-re+I j[ 
Sr s2um-li+j+ll- 2m-li+j+21 s2um-li+j÷3l) ~- s u 4- , 

G R  s7 m+lj+lb 
7:/i = - ' ~  sem+li+l I T, 

G R  Sr m+ljl 
Z~ - G E  Sere+Ill 

m L T .  

Proof .  From the definit ion o f  SSMFs ,  E 7 = ( i / m ) s  m-Ill , one has E~ = 1, and the second principal value from 
* * 2 and the right l imit  o f  Ue is Em_ 1 = ( ( m -  1 ) / m ) S e  ,~ Se a s  m---+ o c .  Similarly,  E m 2 = ( ( m - 2 ) / m ) s ~  ..~ Se, 
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E~_ 3 =((m 3)/m)S3e ~ 3 - ~ Se, etc. Similar derivations leads to Fig. 9(a) where the shaded area is composed of 
infinite number of closely spaced triangles. 

Suppose e* E [E*,Ei+I]. Then, (i/m)s m-liE =E* ~ e* <~ Ei*+l = ((i + 1 )/m)s m-li+ll .~ (i/m)s m-li+ll as m ~ ec. 

Thus, e*sem+[i+ll<, i/m <~ e*Se m+lil, and similarly r*s~ -m+lj+ll ~ j / m  <~ r ' s7  re+l jr. Taking definition for Uk*'s 
and the upper bound for crisp output into equation in Property 7, 

U m ~ GU x Ui*+J+l + U/+J+2 + U / ; j + 3  

3 

GU //i + j  + 1 .2m_li+j+l I x ~, - -  q - - -  
3 2m ~ 

i + j  + 2 _2m_li+j4_2l 
2m au + - -  

i + j + 3  ) 
2m s2urn-li+j+31 

GU × (S2um-li+j+ll ( 

q_ 2m-ii+j+21(e* sem+lil -[- r* srm+lJl + 2 ) + s2m-li+j+3r (e*sem+lil .k- r* srm+lJl _[_ 3 ) ) Su 

GU 
6 

(s:m--I i+j+ll ~--- Su2m--li+j+21 _~_s:m--ti+j+31) (e*s~m+lil @F*S~ -m+ljl) as  m ---+ o o  

GU x GR x S~ -m+ljl 

6 
X (S2u m-'i+j+ll ~--- S u2m-li+j+21 q-S2u m-li+j+3') (I" m [ /GRsr m+ljl T) eo) 

( l Tem) =-- Kp rm -}- - -  . 

Similar derivation can find Kp ~ and zff. [] 

Property 10 (Ying [15]). The ultimate distribution o f  membership functions o f  an ESMFs-FLC with infinite 
number o f  linguistic terms is shown in Fig. 9(b), and such an ESMFs-FLC is equivalent to a linear PI  
controller, 

G U x G R  ( T ) 
Um -- 2 rm + (GR/GE)Te,n as m ~ oc. 

Proof. The space between adjacent principal values is Ei+ 1 - E l  = 1/m ~ 0 as m ~ oc. This results in an infi- 
nite number of closely spaced triangles such as shown in the figure. Furthermore, substituting Se -- Sr = Su = 1 
into equations in Property 9 leads to the linear controller. [] 

Properties 9 and 10 imply that, under the assumption of simple rule base, increasing the number of linguistic 
terms in the USMFs-FLC will result in a quasi-linear PI controller. The control output of an USMFs-FLC is 
kept within two linear PI controllers, and it is in fact equivalent to a linear PI controller if its membership 
functions are equally spaced triangular fuzzy partitions. Obviously, these properties come from the assumption 
of simple rule mapping. Thus, one cannot conclude that the linearity of the real-world FLCs is proportional to 
the number of linguistic terms, since the assumption of simple rules is not natural in most practical applications. 
We take this assumption just because it will simplify the subsequent mathematical analysis. 
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Table 2 

Ke Kr 
GU GU 

- u *  - u ; ) / 3  ( Uk*+ 2 Uk*- 1 )/3 ( k+3 
R e g i o n  I 

1 + 2(E.*+I - e * ) / ( E ? +  l - E 7 )  1 + 2 ( E ? + ~  - e *  ) / ( E . + I  - E,* 

U* - - U k * ) / 3  * - -  ( k+3 (g/+2 U;-l)/3 
R e g i o n  II 

Region III 

Region IV 

1 + 2(R~+, - r *  )/(R~+, - R* )  

(Uk*+3 -- Uk* )/3 
1 + 2(e* - E?) / (EL ,  - E * )  

(Uk*+2 -- U;_ I )/3 
1 + 2(r* - R T ) / ( R / + ~  - R*)  

1 q- 2(R7+ I - r*)/(R~+ I -- R*) 

( U ; + 2  --  Uk*- I )/3 
1 + 2(e* - E*)/(Ei*+~ - E*) 

(Uk*+3 - Uff ) /3  

1 + 2(r* - RT)/(R;+ l - R?) 

3.3. Interpreting local output o f  the USMFs-FLC as a nonlinear compensator 

It has been shown in Property 7 that the local output in the ijth-block is limited within - ~ ( U ; +  2 1  • __ U ; _ I  ) ,  
• 1 , u L ~< 5(U;~+3 - Uk*). The role of  local part is to complement the action of  the global multilevel relay to a 

nonlinear yet continuous final crisp output. There exists at least one reference point; thus the local compensation 
becomes zero and the final crisp output equals to the global one. The amount of  compensation for u~ would 
then be proportional to relative position of  current input, (e*, r*), to the reference point. This fact is stated in 
the following property. 

P r o p e r t y  11. The local part o f  the final crisp output o f  the USMFs-FLC on the ijth-block can be viewed 
as a local nonlinear compensator of  the form 

( e * - e °  ) ( r * - r °  ) 
, q-Kr 7- - - - ,  , G U × u L = K ~  E i + , - E [  \R~+ 1 - R j  (9) 

where 

eO _ Ei*+IA + E* rO _ R]+IA + R] A U£+2 - U£* , 
1 + A ' 1 + A ' U *+3 - 

Here, (e° , r  °) is a reference point which is the intersection o f  two zero local output contours on either 
regions I and II or regions IV and III of  the ijth-block, and thus u~ (e* = e  °, r* = r ° ) = 0 .  Ke and Kr are 
the local proportional gains of  the local nonlinear compensator of  the form listed in Table 2. 

P r o o f .  From Property 6, there exist two zero contours for local output, 

( r*_-_R; ( U ~ + 3 f U ; )  ( E * + , - e ~ _ ) ( U ~ + z - U ~ * _ , )  
NI ,  IV = 1 R  . - -  R* - * 

\ j + l  j / k, Ei+l "3 

N i l ,  Ill : ~Ei.+ 1 _ E* .] 3 \R;+ I R] 

= 0 on region I or IV, 

= 0 on region II or III. 
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Solving these two zero contour lines results in e ° and r °. The local output then becomes (for region I as an 
illustration): 

N I ,  IV 

uL = 1 + 2(E/*+1 - e*)/(E.[+ 1 - El) 

- e ° ) + ( e ° - e  * ) * , -  

1 + 2 (Ei*+l - e * ) / ( E * + ,  - E * )  

1 + 2(Ei+ 1 - e*)/(EL, - El) 

r°-RJ* ~ ( ~ )  {E'+'--e°)(U~*+23U~*-, 
R;+,-R j - \ ~ )  ) 

+ 
1 + 2(E*+1 - e*)/(Ei+ 1 - E*) 

-"o 

( U £ * + 2  - g£*_ 1 ) /3  ( e-- --e°_ ) (U~+_3 - U~) /3 ( r---- r°__ 
= 1 + 2 ( E ; , - e * ) / ( E L , - E l )  \El+ , - E [  + 1 + 2(Ei*+,- e-;)/(~;-~ - E l )  \Rj+ l - R j J "  [] 

It is noted that the farther the input pattern is from the middle point of the ijth-block the larger the two 
proportional gains. Furthermore, the ranges of these two local proportional gains can be derived by substituting 
proper e* and r* into the equations listed in Property 11 such as stated in what follows. 

Property 12. The ranges of local proportional gains of the USMFs-FLC on the ijth-block are (k = i + j)  

l ( Ke/GU ) 
for regions I, W: 5.< \ (ULT---bT_,)/3 

1 ( Ke/GU 
for regions II, IIl: ~ ~< k,(U£+3*----- U'*k )/3/I d 1; 

~< (Ui+ 3 - -~*) /3  ~< 1, 

1 (  Kr/GU ~ <.1. 
<" \(Uf~+2~ Ui~ , )/3 J 

Proof. One can find the results straightforwardly by substituting the ranges of e* and r* for each region into 
equations in Property 11. [] 

3.4. Local stability analysis for PI-type FLCs 

The feedback control system with USMFs-FLC (and SSMFs-FLC, ESMFs-FLC) as the controller is non- 
linear for either linear or nonlinear processes. Assume fuzzy feedback control system is autonomous 
(time-invariant), and let 2i's denote eigenvalues of the Jacobian matrix of the nonlinear fuzzy feedback 
system evaluated at equilibrium point (set point). By using the Lyapunov's linearization method on sta- 
bility [5, 11], the fuzzy-logic-based control system is asymptotically stable at the equilibrium point if all 
eigenvalues are negative in real part. Since the linearized fuzzy controller would be corresponding to a linear 
PI one, the inclined degrees of the tangent plane defined in both e and r, the inputs of the FLCs, direc- 
tions around the desired equilibrium point is investigated. The following properties state the local stability 
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criteria for a feedback control system with USMFs-FLC, SSMFs-FLC, and ESMFs-FLC, respectively, as the 
controller. 

Proper ty  13. For a given process, linear or nonlinear, and an U S M F s - F L C  with U~ = 0 and U*_ l = - U~, 
the .fuzzy feedback control system is asymptotically stable at the equilibrium point (set point)  i f  and only i f  

L(U* - U*_ 1 )/R~ and rl = GR/GE × - E *  1/R~ × the linear P I  control system either with Kp = GU × GR x 3 2 
1 • GR/GE × ((U2* - U * , ) / ( U ~  - U_*2))T or with K p = G U  x GR x g ( U  1 - U*2)/-R*_ j and zl = E~/-R*_ I × 

((U~ - U*_2)/(U ~ - U* t ) ) T  is asymptotically stable. 

Proof.  The process variable would reach the equilibrium point (e = r = 0) according to locus where e and r 
have opposite signs. This means the input pattern would be on region I or IV of  the ( - l , 0 ) t h - b l o c k  or on 
region II or III o f  the (0 , -1 ) th -b lock .  The global output for both cases is zero, 

+ ug + u? 
GU x u* = 0. G = G U  × 3 

Whereas for the local outputs, 

(r*/R~ ) ( (U 2 - U*_ t )/3) 4- (e*/-E*_ 1 )((U{ - U '2) /3  ) 

1 + 2(e*/E*_ 1 ) 

for (e*, r* ) C ( -  1,0)th-block 

GU × u~ = GU × (r*/-R*_ I ) ( (g~ - U '2) /3  ) + (e*/E~)((U~ - g*_ 1 )/3) 

1 4- 2(r*/R*_l) 

for (e*, r* ) E (0, - l )th-block 

GU × GR x 

( U ] - U * - I ) / 3  rm 4- \(T/GRIGE × -E*-IR~ × U~-U*-IU~ U*_ 2 T )  era) 

as (e*,r*) ~ ( 0 - , 0  +) 

(U{-U*_2)/3 ( { T / G R  E~ U{-U*_2T) em) 
_--R~__ I y m 4- ~', / ~ x -R*-I x U; U*_ 1 

as (e*,r*) ~ ( 0 + , 0 - ) .  

According to the Lyapunov ' s  indirect method [5] (Lyapunov 's  linearization method on stability [l l]), a 
nonlinear controller and its linear counterpart(s) have the same local stability at the equilibrium point. [] 

Note that the membership functions are symmetric around the equilibrium point for both SSMFs-FLC and 
ESMFs-FLC. Thus, the statements of  local stability could be further simplified. 

Proper ty  14. For a given process, linear or nonlinear, and an SSMFs-FLC,  the fuzzy  feedback control 
system is asymptotically stable at the equilibrium point (set point) i f  and only i f  the linear P I  control 
system with 

( ml 2s2m- 2 + s2m-- 1 GR Se 
Kp = GU × GR × 6s m- I and rl = - ~  x - -  T 

\ s t  / 

is asymptotically stable. 
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Property 15. For a given process, linear or nonlinear, and a ESMFs-FLC, the fuzzy feedback control system 
is asymptotically stable at the equilibrium point (set point) i f  and only if  the linear PI  control system with 
Kp = ½(GU × GR) and ~1 = (GR/GE)T is asymptotically stable. 

3.5. Global stability analysis for PD-type FLCs 

The USMFs-FLC could be functioned as a PD-type controller if its final crisp output is fed directly to the 
process for control. That is 

CO(n) = Uss + GU x u* (for PD-type FLC) 

where Uss denotes initial steady controller output. It is known that a closed-loop system is Lp stable if its two 
subsystems, the process and the controller, are both Lp stable in themselves and if the "loop gain" is less 
than one for 1 ~< p ~< oe. Assume the process under consideration is Lo~ stable. Then the subsequent work is 
to check whether the PD-type FLC is L ~  stable or not, i.e., to find if there exists an upper bound for the 
controller gain. Applying the small gain theory one can derive a stabilizing criterion for the nonlinear control 
system with the PD-type FLCs as controllers. The following properties elucidate the main results for stability 
of the PD-type fuzzy control system. 

Property 16. The PD-type USMFs-FLC is L~  stable, and its gain is always less than K PD where USMFs-FLC 

PD { K~SMFs-FLC ~ m a x  
GU 

[GE × ( U~*+2 - Uk*-' )/3 (U£*+3 - -  U; )/3" max • • + 2GR x 
kel2m-{--2m,2m-l,2m} [ Ei+ 1 - E i R)+ 1 - R] 

[GE × (U/~*+3 - U;)/3 (U£+ 2 - Uk*_ , )/3" 
kEl2.,-{--2m,2m--l,2m}max [ Ei; 1 - E[ + 2GR x R ; +  1 - R ;  

. 

Proof. Consider output of the PD-type USMFs-FLC for regions I or IV on the ijth-block, 

u*<~ u; + U;+l + ui+  q_ (r*_-R] ~ (U~+3? U~ ) _ (E*+l -e*  ) (U£*+2 - U~_I ) 
Rff*+l -- R; J ~ E i;, Z E--~ 

{GE x ( U~*+2 - Uk*- 1 )/3 
E}; 1 -El 

+ GR x (U;+*3 -- U£*)/3 "~ ( 
R~*+I - R] ] em(nT) - \ G R  

( u L 3 -  _U£*)/3 |'~ em(nT- T) 
× R;+, - R; ] 

=:~ 

gk+2 . + u ; + u L ,  + • 
3 - El+ 1 

(U£*+2 - Uk*_ , )/3 (U~+ 3 - U~* )/3 
El*+, - E* - R~+, Rj+, - R; 

=- Ci ~v 

suplu*[ ~< sup (GE x 
(U~+ 2 - U;_, )/3 

Ei*+, - E[ 
(Uk+* 3 -~Uk*!/3 ~ sup [era[ + sup ICi IVI + 2 G R  × R)*+, - R ~  j 

~-  KI, IV sup [em[ + sup ICI, wl. 
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Similarly, for input pattern on regions II or III of the ijth-block, 

sup lu*l ~ sup (GE 
x(U;*+3-U[)/3 ( U £ * + 2 - ~ l ) / 3  ) 

Ei+ 1 E[ + 2GR x --Z- sup ]eml 
* --  R j+ 1 

+sup U~* + g£*+l -I- U£*+2 . (U£+ 3 - U~)/3 . (U£*+2~__~_- U£*_1)/3 
3 - Ei+l  Ei*+l - E [  - R j + l  R / +  1 - R )  I 

KII, III sup leml + sup ICII, IH[. 

The property is proved by defining the maximum possible controller gain as 

PD 
KI~SMFs-FLC - -  m a x { K l ,  tv ,Kl t ,  lll}. [ ]  

GU 

Property 17. The PD-type SSMFs-FLC (ESMFs-FLC) is L~ stable, and its gain is always less than 
PD tKPD "~ where K~SMFs-FLC ~, ESMFs-FLC] 

PD ( 2GR'~ 2m - KSSMFs_FL C __ GE - (2m 3)s 3 
GU . ~  "~- srm--l/ 6 

PD 
KESMFs-VLC = I (GE + 2GR). 

G U  2 

Proof. Note that 

m a x  
Vk E I2,,,- {2m- l, 2m} 

U/~+3 W/~ __ V~m - V2m_ 3 
, 

- * min ,¢R~. - R; } = R~' - R~. min {E*+l E [ } = E ~ - E  o and WeI,,,-{m}" g~-' 
Viel,,,--{m} 

Substituting these facts and definitions for related principal values for SSMFs and/or ESMFs into KUSMFs-FLC 
leads to the property. [] 

Property 18. A feedback control system with PD-type USMFs-FLC (SSMFs-FLC, ESMFs-FLC) as the 
controller is L~ stable if the process gain, 7~o, is less than inverse of  the maximum possible controller gain. 

Proof.  A straightforward application of the well-known small-gain theorem. [] 

4. Conclusion 

In this article, the authors analyze the mathematical input/output relation of an FLC equipped with a 
series of unequally spaced triangular fuzzy partitions as the membership functions (USMFs-FLC for short). 
Rigorous analyses prove that an USMFs-FLC, under the assumption of simple rule mapping, can be viewed 
as the combination of a global multilevel relay and a local nonlinear compensator. Such an analysis is 
a generalization to the similar works given by Ying [15] whose FLC is characterized by equally spaced 
membership functions. The influence of the distribution of principal values used to construct the unequally 
spaced membership functions of the FLC are also elucidated. The ultimate control behaviors as the number of 
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linguistic terms for each input variable becomes infinity is illustrated. The local stability criteria for PI-type 
USMFs-FLCs are derived and the global stability properties for PD-type controllers are also established. Such 
theoretical analysis is significant for clarifying the inner characteristics of the FLCs. Obviously, the assumption 
of simple control rules might limit the control performance and thus the controller needs further adjustment 
in practical applications. The feasible procedures for adaptive tuning of relevant design parameters and the 
pragmatic strategies for self-organization of control rules of a given FLC to enhance control performance are 
currently on-going projects. 
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