
Fuzzy Sets and Systems 118 (2001) 235–255
www.elsevier.com/locate/fss

Hybridizing genetic algorithms with sharing scheme and evolution
strategies for designing approximate fuzzy rule-based systems 1

O. Cord�on ∗, F. Herrera
Department of Computer Science and Arti�cial Intelligence, E.T.S. de Ingenier �ia Inform�atica, University of Granada,

18071 – Granada, Spain

Received September 1997; received in revised form July 1998

Abstract

Genetic algorithms and evolution strategies are combined in order to build a multi-stage hybrid evolutionary algorithm for
learning constrained approximate Mamdani-type knowledge bases from examples. The genetic algorithm niche concept is
used in two of the three stages composing the learning process with the purpose of improving the accuracy of the designed
fuzzy rule-based systems. The proposed genetic fuzzy rule-based system is used to solve an electrical engineering problem
and the results obtained are compared with other methods presenting di�erent characteristics. c© 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Fuzzy rule-based systems; Approximate Mamdani-type knowledge bases; Genetic fuzzy rule-based systems;
Genetic algorithms; Evolution strategies; Niching; Inductive learning

1. Introduction

Nowadays Fuzzy rule-based systems (FRBSs) have
been succesfully applied to a wide range of real-world
problems from di�erent areas [3,31,37,44]. In order to
design an intelligent system of this kind for a concrete
application, several tasks have to be performed. One of
the most important and di�cult ones is the derivation
of the fuzzy rule base (FRB), which will contain the
information needed to solve the problem in the form
of fuzzy rules.
There exist two di�erent kinds of FRBSs in

the literature, Mamdani and TSK ones, according to
the expression of the consequent of the fuzzy rules

1 This research has been supported by CICYT TIC96-0778.
∗ Corresponding author. Tel.: +34-58-246143; fax: +34-58-

243317.
E-mail address: ocordon@decsai.ugr.es (O. Cord�on).

composing the FRB. While Mamdani-type fuzzy
rules consider a linguistic variable in the consequent
[34], TSK fuzzy rules are based on representing the
consequent as a polynomial function of the inputs
[41].
Focusing on the �rst system type, the FRB is com-

posed of a collection of fuzzy rules with the following
structure:

Ri : IF x1 is Ai1 and : : : and xn is Ain THEN y is Bi

where x1; : : : ; xn and y are the input variables and the
output variable, respectively. Depending on the char-
acteristics of these fuzzy rules, we can consider two
di�erent Mamdani-type FRBSs:
• On the one hand, we have the usual descriptive ap-
proach [22,34] when x1; : : : ; xn and y are linguistic
variables that have associated a term set of possible
values presenting a real-world meaning. In this

0165-0114/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(98)00349 -2

236 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

way, each Aij or Bi corresponds to a linguistic term
that has associated a fuzzy set de�ning its meaning
and this mapping is uniform for all rules in the
FRB. This FRBS has been widely used and it has
obtained very good results in many di�erent ap-
plications. Anyway, it su�ers some limitations due
to the in
exibility of the concept of the linguistic
variable [4]. The homogeneous partitioning of the
input and output spaces when the input–output
mapping varies in complexity within the space is
ine�cient and does not scale to high-dimensional
spaces [8]. Therefore, its performance decreases
when dealing with complex problems in which
small changes in the input have associated strong
changes in the output [12].
• On the other hand, in the past few years a new
approach, the approximate Mamdani-type FRBS
[3,9], has been proposed to avoid these drawbacks.
It is based on working directly with fuzzy variables
in the fuzzy rules. In this case, each fuzzy rule
presents its own semantics, i.e., the variables xj and
y, respectively, take a di�erent fuzzy set Aij and
Bi as value and not a linguistic term from a global
term set. Therefore, it is said that the rules present
free semantics. According to Carse et al. [8], the
advantage of the approximate representation is its
expressive power for learning rules which present
their own speci�city in terms of the fuzzy sets
involved in them. This is likely to be of bene�t in
tackling the curse of dimensionality when scaling
to multi-dimensional systems. Anyway, its draw-
back with respect to the descriptive FRBS is the
loss of FRB readability. The approximate approach
is considered in [3,8,10–13,21,28,35].

Due to the complexity of the FRB derivation, a
large quantity of automatic techniques have been
proposed to put it into e�ect. In the last few years,
many di�erent approaches have been presented taking
Evolutionary Algorithms (EAs) [1], usually Genetic
Algorithms (GAs), as a base, to automatically de-
sign fuzzy systems, constituting the so-called genetic
fuzzy systems (GFSs) [9]. In particular, the promising
results obtained by the EAs in the learning or tuning
of the FRB have extended the use of these algorithms
in the design of FRBSs. These kind of GFSs, genetic
fuzzy rule-based systems (GFRBSs) [9,30], are con-
sidered nowadays as an important branch of the soft
computing area [7] in view of the large number of

contributions developed in the last few years (see [15,
Section 3.13; 16, Section 13]).
In this paper we present a multi-stage hybrid GA-

evolution strategy (GA-ES) process for designing ap-
proximate Mamdani-type FRBSs from examples. This
GFRBS will allow us to derive the whole FRB, that is,
the de�nition of the fuzzy rules themselves and of the
membership function shapes considered in them. It is
based on the iterative rule learning (IRL) approach
[24] and is composed of three di�erent stages, an
evolutionary generation process, a genetic multi-
simpli�cation process, and a genetic tuning process,
following the structure presented in [18,30]. The GA
niche concept [19] (see the appendix) will play a main
role in the learning process, due to it will be used to
solve the cooperation vs. competition problem (CCP)
[6], existing when designing FRBSs by means of EAs.
The GFRBS performance will be shown by using

it to solve an electrical engineering problem and the
evolutionary learning process proposed will be com-
pared with classical methods, Neural Networks and
other GFRBSs presenting di�erent characteristics.
In order to put this into e�ect, we arrange this pa-

per as follows. The next section presents some pre-
liminaries by brie
y introducing GFRBSs, the IRL
approach and the CCP. The characteristics and the
working way of the evolutionary learning process are
discussed in Section 3. The three stages composing
the proposed GFRBS are described in Sections 4–6.
Section 7 shows the experiments developed in the
solving of the commented problem, while in Section
8 some concluding remarks are pointed out. Finally,
an appendix introducing brie
y the GAs, niching GAs
and ESs is presented.

2. Preliminaries

2.1. Genetic fuzzy rule-based systems

EAs, specially GAs, have proven to be a power-
ful tool for automating the de�nition of the FRB,
since adaptive control, learning, and self-organizative
FRBSs can be considered in a lot of cases as opti-
mization or search processes. Their advantages have
extended the use of EAs in the development of a wide
range of approaches for designing FRBSs over the
past few years. These approaches receive the general
name of GFRBSs [9,30].

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 237

EAs are applied to modify=learn the de�nition of
the membership functions shapes and=or the compo-
sition of the fuzzy rules. Therefore, it is possible to
distinguish three di�erent groups of GFRBSs depend-
ing on the FRB components included in the learning
process [9,30]:
1. Genetic de�nition of the membership functions.
2. Genetic derivation of the fuzzy rules.
3. Genetic learning of the whole FRB.
For a wider description of each family, see [9,30]

and for an extensive bibliography; see [15, Section
3.13; 16, Section 13]. Di�erent approaches may be
found in [9,29].
Carse et al. [8] divide the third family in two dif-

ferent subgroups depending on the simultaneity in the
learning of both FRB components. Therefore, they dif-
ferentiate between learning them in a single process or
in di�erent stages. We shall refer to these latter kind
of systems as multi-stage GFRBSs [24]. The process
proposed in this paper belongs to this family.

2.2. The iterative rule learning approach

The main problem that has to be solved to design
a GFRBS consists of �nding a suitable representa-
tion both capable of gathering the problem charac-
teristics and representing adequately the potential
solutions to it.
Classically, two genetic learning approaches,

adopted from the �eld of genetic based machine
learning systems, have been used: the Michigan and
Pittsburgh approaches [20]. In the past few years,
some authors have designed several GFRBSs follow-
ing a new learning model, the IRL approach [24].
In this latter model, as in the Michigan one, each

chromosome in the population represents a single
fuzzy rule, but only the best individual is consid-
ered to form part of the �nal FRB. Therefore, in this
approach the EA provides a partial solution to the
problem of learning, and, contrary to both previous
ones, it is run several times to obtain the complete
FRB. This is put into e�ect by including it into an
iterative scheme based on obtaining the best current
fuzzy rule for the system, incorporating this rule into
the �nal FRB, and penalyzing it before repeating the
process. It ends up when the FRB is able to represent
the system adequately.

This scheme is usually employed in GFRBSs based
on inductive learning, in which the penalization of
the fuzzy rules yet generated is made by removing
from the training data set all those examples that are
yet covered by the FRB obtained until this moment.
On the other hand, as the learning processes using it
do not envisage any relationship between the fuzzy
rules generated, it is usual to employ postprocessing
processes to simplify and=or adjust the FRB obtained,
so forming a multi-stage GFRBS.
The main characteristic of the IRL is that it re-

duces substantially the search space, because in each
iteration only one fuzzy rule is searched. This allows
us to obtain good solutions in GFRBSs for o�-line
learning problems.
A more complete description of the IRL and a short

comparison of the three genetic learning approaches
is to be found in [24].

2.3. The cooperation vs. competition problem

One of the most interesting features of an FRBS is
the interpolative reasoning it develops. This character-
istic plays a key role in the high performance of FRBSs
and is a consequence of the cooperation among the
fuzzy rules composing the FRB. As it is known, the
output obtained from an FRBS is not usually due to
a single fuzzy rule but to the cooperative action of
several fuzzy rules that have been �red because they
matched the input to the system to any degree. On the
other hand, the main feature of an EA is the competi-
tion among members of the population representing
possible solutions to the problem under solving. In
this case, this characteristic is due to the mechanisms
of the natural selection in which the EA is based.
Therefore, since a GFRBS combines both com-

mented features, it works by inducing competition to
get the best possible cooperation. This seems to be a
very interesting way to solve the problem of designing
an FRBS, because the di�erent members of the popu-
lation compete among them to provide a �nal solution
presenting the best cooperation among the fuzzy rules
composing it. The problem is to obtain the best pos-
sible way to put this working way into e�ect. This is
referred to as CCP [6].
The di�culty of solving the introduced problem de-

pends directly on the genetic learning approach fol-
lowed by the GFRBS. Multi-stage GFRBSs based on

238 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

the IRL approach try to solve adequately the CCP at
the same time that reduce the search space by encoding
a single fuzzy rule in each chromosome. To put this
into e�ect, these processes divide the genetic learning
process in, at least, two stages. Therefore, the CCP is
solved in two steps acting at two di�erent levels, pre-
dominating the competition among rules in the �rst
one, the genetic generation stage, and the cooperation
among these generated fuzzy rules in the second one,
the postprocessing stage. Hence:
• the genetic generation stage forces the competition
among fuzzy rules, as the genetic learning processes
based on the Michigan approach, to obtain an FRB
composed of the best possible fuzzy rules, and
the cooperation among them is only smoothly ad-
dressed by means of the rule penalization criterion.
• the postprocessing stage forces the cooperation
among the fuzzy rules generated in the previous
stage by re�ning or eliminating the redundant or
unnecessary fuzzy rules from the previously gener-
ated fuzzy rule set to obtain the best possible FRB.
As it can be observed, the iterative operation mode

followed by the genetic generation stage in multi-stage
GFRBSs based on the IRL induces the formation of
niches and reduces substantially the dimension of the
search space. The postprocessing stage deals with a
simple search space as well because it only works on
the FRB obtained from the previous stage.
An analysis on the way in which the CCP is solved

by the other genetic learning approaches is to be found
in [24].

3. On the evolutionary learning process

In this section we are going to introduce the basis
followed by the proposed GFRBS by analyzing the
following aspects in-depth.

3.1. Type of fuzzy rule-based system and
generation process

There exist two di�erent variants to generate an ap-
proximate Mamdani-type FRBS, the constrained and
unconstrained ones [13]:
• The fuzzy rules present a constrained free se-
mantics when they are generated with a free
semantics but based on an initial domain fuzzy

Fig. 1. Graphical representation of a possible fuzzy partition.

partition that determines the intervals in which
each point de�ning the membership functions may
take value.

• On the other hand, when the only restriction im-
posed on the membership function locations and
shapes is to lie in a concrete interval, the fuzzy
rules present a unconstrained free semantics. The
most extreme case is when the interval associated
to each fuzzy set corresponds to the whole domain
of the system variable.
Both approximate approaches perform better than

the descriptive one when working with complex prob-
lems, but the constrained free semantics will have
better behavior than the unconstrained one when the
complexity of the problem is intermediate. The un-
constrained approximate FRBS is the most adequate
for dealing with very hard problems.
In [13,28] is presented an unconstrained approxi-

mate GFRBS based on generating the fuzzy sets in-
volved in each fuzzy rule by searching in the whole
variable domain, while in [11,12] the intervals con-
sidered are obtained from initial fuzzy partitions of
these domains. A preliminar version of the constrained
approximate GFRBS presented in this paper is to be
found in [10,13].
In this paper, we shall work with the constrained

approximate approach, considering every fuzzy set
associated to a normalized triangular membership
function. We take into account a computational way
to characterize it by using a parametric representa-
tion achieved by means of the 3-tuple (aij; bij; cij),
(ai; bi; ci), j=1; : : : ; n:
Hence, due to the constrained free semantics nature

of the GFRBS proposed, we need initial fuzzy parti-
tions as the one shown in Fig. 1 for each one of the
process fuzzy variables. Making use of them, an inter-
val of performance, de�ned as follows, is associated

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 239

Fig. 2. Membership function and intervals of performance for the
generating process.

to each one of the three points de�ning the member-
ship functions At(·), (at ; bt ; ct):

[alt ; a
r
t] =

[
at − bt − at2

; at +
bt − at
2

]
;

[blt ; b
r
t] =

[
bt − bt − at2

; bt +
ct − bt
2

]
;

[clt ; c
r
t] =

[
ct − ct − bt2

; ct +
ct − bt
2

]

for locally adjusting their parameters during the gen-
erating process. Fig. 2 shows the intervals of perfor-
mance associated to each one of the parameters.
Therefore, the generated fuzzy rules will have their

semantic within the performance interval established
by the fuzzy partition membership functions, so main-
taining a constrained free semantics.

3.2. Properties required to the generated fuzzy rule
base

Several important statical properties have to be ver-
i�ed by the FRB in order to obtain an FRBS present-
ing good behavior [22,34]. As in [12], two of them
are going to be considered in our learning process, the
completeness and consistency. Since we consider an
inductive approach for designing GFRBSs, both prop-
erties will be based on the existence of a training data
set, Ep, composed of p numerical input-output prob-
lem variable pairs. These examples will present the

following structure:

el=(exl1; : : : ; ex
l
n; ey

l); l=1; : : : ; p:

A brief description of the said properties can
be found below. For a wider description, refer to
[12].

3.2.1. Completeness of a fuzzy rule base
It is clear that an FRBS should always be able to

infer a proper output for every possible system input.
This property is called completeness and may be math-
ematically formulated using two real values � and �
by means of the following expressions:

CR(el)=
⋃
i=1::T

Ri(el)¿�; l=1; : : : ; p;

Ri(el)= ∗ (Ai1(exl1); : : : ; Ain(exln); Bi(eyl));
where ∗ is a t-norm, and Ri(el) is the compatibility
degree between the rule Ri and the example el.
Given an FRB composed of T fuzzy rules Ri, the

covering value of an example el ∈ Ep is de�ned as

CVR(el)=
T∑
i=1

Ri(el);

and we require the following condition:

CVR(el)¿�; l=1; : : : ; p:

A good FRB must satisfy both the conditions pre-
sented above, to verify the completeness property and
to have an adequate �nal covering value.

3.2.2. Consistency of a fuzzy rule base
A generic set of if–then rules is consistent if it does

not contain contradictions. There is a need to relax the
consistency property for considering it in FRBs. We
do this by means of the positive and negative example
concepts [25,28]. An example is considered positive
for a fuzzy rule when it matches with its antecedent
and consequent, and it will be considered a negative
example when it matches with its antecedent and not
with its consequent.
Let E+(Ri)= {el ∈Ep |Ri(el)¿0} and E−(Ri)=

{el ∈Ep |Ri(el)= 0 and Ai(exl)¿0} be, respectively,
the positive and negative example set for the rule

240 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

Ri. Let n+Ri = |E+(Ri)| and n−Ri = |E−(Ri)|. Given a
parameter k ∈ [0; 1], it is said that
Ri is k-consistent when n−Ri6k · n+Ri :
Hence, the way to incorporate the satisfaction of

this property in the proposed GFRBS is to encourage
the generation of k-consistent rules. Those rules not
veri�ng this property will be penalized to not allow
them to be in the �nally generated FRB.

3.3. Tackling the cooperation vs. competition
problem

The usual way of solving the CCP associ-
ated to the evolutionary learning processes based
on the IRL approach, introduced in Section 2.3,
will be extended in the multi-stage GFRBS pre-
sented in this paper by considering the follow-
ing three aspects. As it may be seen, the GA
niching concept [19] (see the appendix) will
play a main role in the multi-stage GFRBS pro-
posed:
Considering fuzzy rule cooperation in the �rst

stage: We shall improve the fuzzy rule generation
process by using a criterion allowing us to generate
the best possible fuzzy rule in each iteration taking
into account both the goodness of this rule and the
goodness of its cooperation with the previous ones
generated.
To put this criterion into e�ect, we shall induce a

second type of niching in the generating method, apart
from the one induced by the IRL operation mode. It
will be based on a phenotypic niching scheme [19] and
will penalize the excessive proximity of the fuzzy rule
being generated to the previously obtained ones, so
obtaining a better cooperation level in the rule set. In
[10–13] we presented a niche sharing function work-
ing in this way, the Low Niche Interaction Rate,
which showed good results. This will be the one con-
sidered in this paper.
Tackling both re�nement possibilities in the post-

processing stage: The postprocessing stage usually
forces the cooperation among the fuzzy rules gener-
ated by re�ning them or eliminating the redundant or
unnecessary ones. In the multi-stage GFRBS proposed
in this paper, we shall consider both tasks in order to
improve the performance of the �nal FRBS designed.
Following this idea and the purpose of dealing with

a more simple search space, we shall divide the post-
processing stage into two di�erent processes [18,30],
each one developing each task:
• First, a genetic simpli�cation process will simplify
the previous rule set by removing the fuzzy rules
not cooperating adequately with the others, but not
modifying the membership function de�nitions. It
will allow us to obtain the best possible FRB com-
posed of the best combination of the fuzzy rules
generated in the �rst stage.

• Then, once an FRB with the optimal number of
rules have been obtained from the previous two
stages, a genetic tuning stage will adjust the def-
initions of the membership functions with the aim
of obtaining a better cooperation among its fuzzy
rules. In this case, the search process works only
over the membership function parameter space and
not over the fuzzy rule one.
Generating di�erent FRB de�nitions: The other ex-

isting type of niching, the genotypic sharing scheme
[19], will be considered to obtain not only a single
FRB de�nition as output from the process but di�er-
ent ones presenting the best possible behavior, i.e., the
best possible cooperation among the fuzzy rules com-
posing them. In this way, we shall extend the genetic
simpli�cation process presented in [28] by inducing
a genotypic niching in it by means of the sequential
niche technique [5]. This process is a multimodal opti-
mization method based on iterating a GA to �nd a so-
lution at each run, and on penalizing the search space
zone in which this solution is located for subsequent
runs. The new genetic multisimpli�cation process so
developed iterates the genetic simpli�cation process
commented and modi�es the �tness landscape each
time an FRB is obtained from it, allowing us to obtain
di�erent FRBs representing the system known knowl-
edge existing in the training data set.
The idea of using the niche concept in this stage

is based on the genetic learning process presented by
Satyadas and Krishnakumar in [33]. The authors make
use of a GAwith a phenotypic sharing scheme for gen-
erating di�erent optimal FRBSs for a concrete prob-
lem. Then they apply a clustering method in order to
select the best FRBS from the set of candidates.
Since in our multi-stage GFRBs, the genetic tuning

process will be applied on the di�erent FRBs obtained
from the multisimpli�cation process, and the most
accurate will be the one given as output, we solve

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 241

Fig. 3. Multi-stage GFRBS structure and operation mode.

the problem of the choice of the best FRBS existing
in [33].

3.4. Composition of the multi-stage genetic fuzzy
rule-based system

Therefore, the multi-stage GFRBS based on the IRL
proposed will consist of the following three stages:
1. An evolutionary generation process for generat-
ing fuzzy rules with constrained free semantics.
The process has two components: a fuzzy rule
generating method composed of a hybrid GA-ES
process which uses a phenotypic niche criterion
to obtain the best possible cooperation among the
fuzzy rules generated, and an iterative covering
method of the system behaviour example set, which
penalizes each rule generated by the fuzzy rule
generating method by considering its covering over
the examples in the training set and removes the
ones yet covered from it. This process allows us
to obtain a set of fuzzy rules with constrained free
semantics covering the training set in an adequate
form.

2. A genetic multisimpli�cation process for selecting
rules, based on a binary coded GA with a genotypic

sharing function and a measure of the FRBS per-
formance. It will remove the redundant rules gen-
erated by the previous component with the aim of
obtaining di�erent simpli�ed FRBs presenting the
best possible cooperation among the fuzzy rules
composing them.

3. A genetic tuning process, based on a real coded
GA and a measure of the FRBS performance. It
will give the �nal FRB as output by adjusting the
membership functions for each fuzzy rule in each
possible FRB derived from the genetic multisimpli-
�cation process. The more accurate FRB obtained
in this stage will constitute the �nal output of the
whole evolutionary learning process.
These processes will be analyzed in Sections 4, 5,

and 6, respectively. Fig. 3 illustrates the introduced
GFRBS structure.

4. The evolutionary generation process

As has been said, the �rst stage consists of two pro-
cesses, a generating method of desirable fuzzy rules
from examples and a covering method of the set of
examples.

242 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

1. The fuzzy rule generating method is developed by
means of a special GA encoding a single fuzzy rule
in each chromosome. The GA �nds the best rule
in every run over the set of examples according
to the features included in the �tness function. A
sharing function implemented as a �tness function
criterion, which induces a phenotypic niching in
the GA population, allows us to obtain a suitable
cooperation among the generated fuzzy rules. An
ES is used for locally tuning the best fuzzy rules
obtained in the genetic search iterations.

2. The covering method allows a set of fuzzy rules to
be obtained covering the set of examples. It is de-
veloped as an iterative process. In each iteration, it
runs the generating method choosing the best fuzzy
rule, considers the relative covering value that this
rule provokes over the example set and removes
the examples with a covering value greater than a
value � provided by the FRBS designer.

The following subsections present both methods in-
depth.

4.1. The fuzzy rule generating method

The structure of the generating method for fuzzy
rules was presented in [10]. It is developed by means
of a special GA, where a chromosome encodes a fuzzy
rule and an ES locally tunes the fuzzy rules. We de-
scribe the hybrid EA components below.

4.1.1. Representation
A chromosome C encoding a candidate rule is com-

posed of two di�erent parts, C1 and C2, each one cor-
responding to each one of the FRB components. The
�rst part of the chromosome encodes the composition
of the fuzzy rule and the second one the membership
functions involved in it.
In order to represent the �rst part there is a need

to number the primary fuzzy sets belonging to each
one of the variable fuzzy partitions considered. A
fuzzy variable xi taking values in a primary set
T (xi)= {L1(xi); : : : ; Lni(xi)} has associated the or-
dered set T ′(xi)= {1; : : : ; ni}.
On the other hand, the second part has the repre-

sentation introduced in Section 3.1. Each one of the
triangular membership functions composing the rule,
Li(xj), is encoded by means of its associated 3-tuple
(aLi(xj); bLi(xj); cLi(xj)).

Hence, the following fuzzy rule,

IF x1 is Li1 (x1) : : : and xn is Lin(xn)

THEN y is Lin+1(y)

is encoded into a chromosome C with the form

C1 = (i1; : : : ; in; in+1);

C2 = (aLi1 (x1); bLi1 (x1); cLi1 (x1); : : : ; aLin (xn);

bLin (xn); cLin (xn); aLin+1 (y); bLin+1 (y); cLin+1 (y));

C = C1C2:

Now, the fundamental underlying mechanisms of a
GA, formation of an initial gene pool, �tness function,
and genetic operators are developed.

4.1.2. Initial gene pool
A third of the initial gene pool is created making use

of the examples contained in the training set, Ep, and
other third is initiated totally at random. The initial-
ization of the individuals belonging to the remaining
third takes common characteristics of the other two.
The �rst part of them is initiated from the examples,
and the second one at random.
With M being the GA population size and

t= min{|Ep|; M=3}, let t examples be selected at ran-
dom from Ep. Then, the initial population generation
process is performed in three steps as follows:
1. Making use of the existing linguistic variable pri-
mary fuzzy partitions, generate t individuals by tak-
ing the rule best covering each one of the t randomly
obtained examples. Initiate C1 and C2 by coding,
respectively, the rule primary fuzzy sets and their
meaning in the said way.

2. Generate another t individuals initiating C1 in the
same way that in the previous step, and computing
the values of C2 at random, each gene varying in
its respective interval.

3. Generate the remaining M − 2 · t individuals by
computing at random the values of the �rst part,
C1, and making use of these for randomly generat-
ing the C2 part, each gene varying in its respective
interval.

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 243

4.1.3. Evaluation of individual �tness
The �tness function measuring the adaptation of

each rule of the population is a multiobjective function
based on the following criteria:
High-frequency value [28]: The frequency of a

fuzzy rule, Ri, through the set of examples, Ep, is
de�ned as

	Ep(Ri)=
∑p

l=1 Ri(el)
p

:

High average covering degree over positive exam-
ples [28]: The set of positive examples to Ri with a
compatibility degree greater than or equal to ! is de-
�ned as

E+! (Ri)= {el ∈ Ep |Ri(el)¿!}
with n+!(Ri) being equal to |E+! (Ri)|. The average cov-
ering degree on E+! (Ri) can be de�ned as

G!(Ri)=
∑

el∈E+! (Ri)
Ri(el) | n+!(Ri):

Penalization associated to the no satisfaction of
the k-consistency property [14]: This last criterion pe-
nalizes those fuzzy rules with many negative exam-
ples with respect to the number of positive examples
with a compatibility degree greater than or equal to
!. In this way, it penalizes the no satisfaction of the
k-consistency property. The penalty function on the
negative examples set of the rule Ri will be

gn(Ri−)

=



1 if n−Ri6k ·n+!(Ri);

1
n−Ri − kn+!(Ri) + exp(1)

otherwise:

We should note that the negative example set is always
computed over the whole training data set Ep.
Low niche interaction rate [10]: With Ni=(Nix;

Niy) being the centers of the rules (niches) deter-
mined until now (i=1; : : : ; d, where d is the number
of generating process runs developed), and C being
the individual encoding the fuzzy rule being adapted,
Ri, the low niche interaction rate penalizes the �tness
associated to C in the following way:

LNIR(Ri)= 1−NIR(Ri)
NIR(Ri)=Maxi{hi}

hi= ∗ (A(Nix); B(Niy)); i=1; : : : ; d

A(Nix)= ∗ (A1(Nix1); : : : ; An(Nixn))
C ∼Ri: IF x1 is A1 and : : : and xn is An
THEN y is B:

Hence LNIR(C) penalizes the excessive interac-
tion among the fuzzy rules, which leads to a bad co-
operation among them. It is de�ned in [0; 1] and gives
the maximum value (no penalization) when Ri does
not interact with any of the rules generated until now.
The minimum value (maximum penalization) is ob-
tained when this rule is equal to one of those generated
previously.
These four criteria are combined into a �tness func-

tion using any aggregation function increasing in the
four variables. In this paper, we work with the product
in the following way:

F(Ri)=	Ep(Ri) ·G!(Ri) · gn(Ri−) ·LNIR(Ri):

Rules obtaining higher values in this function will
be more accurate.

4.1.4. Genetic operators
Due to the special nature of the chromosomes in-

volved in this generation process, the design of the
genetic operators able to deal with it become a main
task. As there exists a strong relationship between both
chromosome parts, operators working cooperatively
in C1 and C2 are required in order to make best use
of the representation used.
It can be clearly observed that the existing rela-

tionship will present several problems if not handled
adequately. For example, modi�cations in the �rst
chromosome part have to be automatically re
ected
in the second one. It makes no sense to modify
the primary fuzzy set and continue working with
the previous membership function. On the other
hand, there is a need to develop the recombination
in a correct way in order to obtain meaningful o�-
springs.
Taking into account these aspects, the following

operators are going to be considered:

Mutation: Two di�erent operators are used, each
one of them acting on a di�erent chromosome part.

244 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

A short description of them is given below:
• Mutation on C1: The mutation operator selected
for C1 is similar to the one proposed by Thrift
in [42]. When a mutation on a gene belonging
to the �rst part of the chromosome is going to
be performed, a local modi�cation is developed
by changing the current primary fuzzy set to the
immediately preceding or subsequent one (the
decision is made at random). When the primary
fuzzy set to be changed is the �rst or last one
in the primary fuzzy partition, the only possible
change is developed. As it has been commented,
a mutation in C1 provokes a change in C2. When
a fuzzy variable changes its value from one pri-
mary fuzzy set to another, the membership func-
tion associated to it is automatically updated in
the second chromosome part to the default val-
ues in the corresponding primary fuzzy partition.
• Mutation on C2: As C2 is based on a real-coding
scheme, Michalewicz’s non-uniform mutation
operator is employed [36].
If Ctv=(c1; : : : ; ck ; : : : ; cH) is a chromosome

and the element ck was selected for this mutation
(the domain of ck is [ckl; ckr]), the result is a vec-
tor Ct+1v =(c1; : : : ; c′k ; : : : ; cH), with k ∈ 1; : : : ; H ,
and

c′k =

{
ck +4(t; ckr − ck) if a=0;

ck −4(t; ck − ckl) if a=1;

where a is a random number that may have a
value of zero or one, and the function 4(t; y)
returns a value in the range [0; y] such that the
probability of 4(t; y) being close to 0 increases
as t increases:

4(t; y)=y(1− r(1−t=T)b);

where r is a random number in the interval [0; 1],
T is the maximum number of generations and b is
a parameter chosen by the user, which determines
the degree of dependency with the number of
iterations. This property causes this operator to
make an uniform search in the initial space when
t is small, and a very local one in later stages.

Crossover: As regards the recombination process, two
di�erent crossover operators are employed depending
on the two parents’ scope:

• Crossover when both parents encode the same
rule: If this is the case, then the genetic search
has located a promising space zone that has to be
adequatelly exploitated. This task is developed
by applying the max-min-arithmetical crossover
operator in C2 and obviously by maintaining the
parent C1 values in the o�spring. This crossover
operator is proposed in [27] and works in the
way shown below.
If Ctv=(c1; : : : ; ck ; : : : ; cH) and C

t
w =(c

′
1; : : : ;

c′k ; : : : ; c
′
H) are to be crossed, the following four

o�springs are generated:

Ct+11 = aCtw + (1− a)Ctv;
Ct+12 = aCtv + (1− a)Ctw;
Ct+13 with ct+13k =min{ck ; c′k};
Ct+14 with ct+14k =max{ck ; c′k}:
This operator can use a parameter a which is
either a constant, or a variable whose value de-
pends on the age of the population. The resulting
descendents are the two best of the four aforesaid
o�spring.

• Crossover when the parents encode di�erent
rules: In this second case, it makes no sense
to apply the previous operator because it will
provoke the obtaining of disrupted descendents.
This fact is due to the combination of two mem-
bership functions associated to di�erent primary
fuzzy sets makes the obtaining of two new fuzzy
sets not belonging to the intervals of perfor-
mance determined by the initial fuzzy partition.
This second case highly recommends the use
of the information encoded by the parents for
explorating the search space in order to discover
new promising zones. In this way, an standard
crossover operator is applied over both parts
of the chromosomes. This operator performs as
follows: a crossover point cp is randomly gener-
ated in C1 and the two parents are crossed at the
cp-th and n+ 1 + 3 · cp genes. The crossover is
developed this way in both chromosome parts,
C1 and C2, thereby producing two meaningful
descendents.
Let us look at an example in order to clarify the

standard crossover application. Since Ct =(c1;
: : : ; ccp; ccp+1; : : : ; cn+1; ac1 ; bc1 ; cc1 ; : : : ; accp ; bccp ;
cccp ; accp+1 ; bccp+1 ; cccp+1 ; : : : ; acn+1 ; bcn+1 ; ccn+1) and

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 245

C′
t =(c

′
1; : : : ; c

′
cp; c

′
cp+1; : : : ; c

′
n+1; ac′1 ; bc′1 ; cc′1 ; : : : ;

ac′cp ; bc′cp ; cc′cp ; ac′cp+1 ; bc′cp+1 ; cc′cp+1 ; : : : ; ac′n+1 ; bc′n+1 ;
cc′n+1) the individuals to be crossed at point cp,
the two resulting o�springs are

Ct+1 = (c1; : : : ; ccp; c′cp+1; : : : ; c
′
n+1; ac1 ; bc1 ; cc1 ;

: : : ; accp ; bccp ; cccp ; ac′cp+1 ; bc′cp+1 ; cc′cp+1 ; : : : ;

ac′n+1 ; bc′n+1 ; cc′n+1);

C′
t+1 = (c

′
1; : : : ; c

′
cp; ccp+1; : : : ; cn+1; ac′1 ; bc′1 ; cc′1 ;

: : : ; ac′cp ; bc′cp ; cc′cp ; accp ; bccp ; cccp ; : : : ; acn+1 ;

bcn+1 ; ccn+1):

Hence, the complete recombination process will
allow GA to follow an adequate exploration–
exploitation rate in the genetic search. The expected
behavior consists of an initial phase where a high
number of standard crossovers and a very small
number of max–min-arithmetical ones (equal to zero
in the great majority of the cases) are developed. The
genetic search will perform a wide exploration in this
�rst stage, locating the promising zones and sampling
the population individuals at them in several runs. At
this moment a new phase begins, characterized by the
increasing of the exploitation of these zones and the
decreasing of the space exploration. Therefore the
number of max–min-arithmetical crossovers rises a
lot and the application of the standard crossover de-
creases. An example of this behavior is shown in
Section 7 (Fig. 7).
Evolution strategy: The last genetic operator to be

applied consists of an (1+1)-ES. This optimization
technique has been selected and integrated into the
genetic recombination process in order to perform a
local tuning of the best population individuals (rules)
in each generation, so obtaining a genetic local search
process [45]. Each time a GA generation is performed,
the ES will be applied over a percentage � of the best
di�erent population individuals existing in the current
genetic population. In this way, it allows us to develop
again a strong exploitation over the promising
space zones found in each generation by adjusting
the C2 part values of the chromosomes located at
them.
The basis of the ES employed is brie
y presented

in the appendix. Now we are going to describe the

adaptation of this algorithm to our problem. In the
(1+1)-ES, the mutation strength depends directly on
the value of the parameter �, which determines the
standard deviation of the normally distributed random
variable zi. In our case, the step size � cannot be a sin-
gle value because each one of the membership func-
tions encoded in the second part of the chromosome
is de�ned over di�erent universes and so requires
di�erent order mutations. Therefore, an step size
�i= � · si for each component has already been used
in the (1+1)-ES. Anyway the relations of all �i were
�xed by the values si and only the common factor �
is adapted following the assumptions presented in [2].
Each parent component ci varying in the interval

of performance [c‘i ; c
r
i] will have its own associated

step size �i with si=(cri − c‘i)=4. Hence when � takes
value 1 at the �rst ES generation, the obtaining of
a large quantity of zi normal values in the interval
[−(cri − c‘i)=4; (cri − cli)=4] is ensured. All these val-
ues, as the ones remaining in the intervals [−(cri −
c‘i)=2;−(cri −c‘i)=4] and [(cri −c‘i)=4; (cri −c‘i)=2], per-
form a successful ci mutation (that is, the correspond-
ing ci+zi lies in the ci interval of performance). When
this value does not belong to the commented interval,
the mutated value c′i is equal to the interval extent, c

‘
i

or cri , closer to ci + zi.
This ES has been designed in order to maintain

the constrained free semantic approach followed by
the fuzzy rule generation process. Other variant of
the same operator, performing an unconstrained free
semantic rule generation, was used in [11,12].
Fig. 4 summarizes the application scope of the ge-

netic operators proposed.
Finally, the following algorithm summarizes the

whole process:
1. Compute the value nc of pairs of individuals be-
longing to P(t) to be crossed taking as a base the
value of the crossover rate Pc.

2. While (nc¿0) do
(a) Select at random the parents to be crossed.
(b) If (C1(father)=C1(mother))

then maintain C1 and perform max–min-
arithmetical crossover on C2 for obtaining
the two descendents else perform standard
crossover on C1 and C2.

(c) nc← nc − 1.
3. Compute the value nm of genes to be mutated tak-
ing as base the value of the mutation rate Pm.

246 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

Fig. 4. Generating process genetic representation and operators’ application scope.

4. While (nm¿0) do
(a) Select at random the parent and gene to be

mutated.
(b) If (the gene belongs to C1)

then perform Thrift’s mutation on it at C1
and update the corresponding C2 piece of
chromosome to represent adequately the
initial mutated gene meaning
else perform non-uniform mutation on the
C2 gene.

(c) nm← nm − 1.
5. Compute the value nes← � ·M of individuals to be
applied the ES and sort descendently the current
population, taking into account only the di�erent
chromosomes.

6. While (nes¿0) do
(a) Select the next parent to be locally tuned,

begining at the population head.
(b) Perform ES on C2.
(c) nes← nes − 1.

With regards to the selection procedure, it is
Baker’s stochastic universal sampling, in which the
number of any structure o�spring is limited by the

oor and ceiling of the expected number of o�spring,
together with the elitist selection.

4.2. The covering method

The covering method is developed as an iterative
process that allows us to obtain a set of fuzzy rules
covering the example set. In each iteration, it runs the
generating method, obtaining the best fuzzy rule ac-
cording to the current state of the training set, consid-
ers the relative covering value this rule provokes over
it, and removes from it the examples with a covering

value greater than �. The covering method is devel-
oped as follows:
1. Initialization:

(a) Introduce k; ! and �.
(b) Set the example covering degree CV [l]← 0;

l=1; : : : ; p.
(c) Initialize the �nal set of rules Bg to empty.

2. Over the set of examples Ep, apply the generating
method, obtaining as output the best fuzzy rule Rr
according to the current state of Ep.

3. Introduce Rr in Bg.
4. For every e‘ ∈Ep do

(a) CV [l]←CV [l] + Rr(e‘),
(b) If CV [l]¿� then remove it from Ep.

5. If Ep= ∅ then Stop else return to Step 2.

5. The genetic multisimpli�cation process

As commented, in this process, we follow the idea
of obtaining di�erent simpli�ed FRBs from the fuzzy
rule set generated in the previous stage presenting
the best possible cooperation among the fuzzy rules
composing them. The sequential niche technique
[5] is used to induce niches in this GFRBS stage,
with the genetic simpli�cation process proposed in
[28] being the basic optimization technique iterated
at each run of the multisimpli�cation process. Next
subsections introduce respectively the basic simpli-
�cation algorithm and the particular aspects of the
multisimpli�cation one.

5.1. The basic genetic simpli�cation process

It is based on a binary coded GA, in which the
selection of the individuals is developed using the

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 247

stochastic universal sampling procedure together with
an elitist selection scheme, and the generation of the
o�spring population is put into e�ect by using the clas-
sical binary multipoint crossover (performed at two
points) and uniform mutation operators.
The coding scheme generates �xed-length chromo-

somes. Considering the rules contained in the rule set
Bg derived from the previous step counted from 1 to
m, an m-bit string C =(c1; : : : ; cm) represents a subset
of candidate rules to form the FRB �nally obtained as
this stage output, Bs, such that,

If ci=1 then Ri ∈Bs else Ri 6∈Bs

The initial population is generated by introducing
a chromosome representing the complete previously
obtained rule set Bg, that is, with all ci=1. The re-
maining chromosomes are selected at random.
As regards the �tness funtion, E(·), it is based on the

mean square error (SE) over a training data set, ETDS ,
which is represented by the following expression:

E(Cj)=
1

2|ETDS |
∑

e‘∈ETDS
(ey‘ − S(ex‘))2

where S(ex‘) is the output value obtained from the
FRBS using the FRB coded in Cj; R(Cj), when the
input variable values are ex‘=(ex‘1 ; : : : ; ex

‘
n), and ey

‘

is the known desired value.
There is a need to keep the completeness property

considered in the previous stage. We shall ensure this
condition by forcing every example contained in the
training set to be covered by the encoded FRB to a
degree greater than or equal to �,

CR(Cj)(e‘) =
⋃
j=1::T

Rj(e‘)¿�;

∀e‘ ∈ETDS and Rj ∈R(Cj)

where � is the minimal training set completeness de-
gree accepted in the simpli�cation process. Usually,
� is less than or equal to !, the compatibility degree
used in the generation process.
Therefore, we de�ne a training set completeness

degree of R(Cj) over the set of examples ETDS as

TSCD(R(Cj); ETDS)=
⋂

e‘∈ETDS
CR(Cj)(e‘)

and the �nal �tness function penalizing the lack of the
completeness property is

F(Cj)={
E(Cj) if TSCD(R(Cj); ETDS)¿�;
1
2

∑
e‘∈ETDS

(ey‘)2 otherwise:

5.2. The genetic multisimpli�cation process

In order to induce niching in the sequential niche
algorithm, there is a need to de�ne any kind of dis-
tance metric which, given two individuals, returns a
value of how close they are [5]. We use a genotypic
sharing due to the metric considered is the Hamming
distance measured on the binary coding space. With
A=(a1; : : : ; am) and B=(b1; : : : ; bm) being two indi-
viduals, it is de�ned as follows:

H (A; B)=
m∑
i=1

|ai− bi|:

Making use of this metric, themodi�ed �tness func-
tion guiding the search on the multisimpli�cation pro-
cess is based on modifying the value associated to
an individual by the basic algorithm �tness function,
multiplying it by a derating function penalizing the
closeness of this individual to the solutions previously
obtained. Hence, the modi�ed �tness function used by
the multisimpli�cation process is the following:

F ′(Cj)=F(Cj) ·G(Cj; S);
where F is the basic genetic simpli�cation process
�tness function, S = {s1; : : : ; sk} is the set containing
the k solutions yet found, and G is a kind of derat-
ing function. We consider the following taking into
account the fact that the problem we deal with is a
minimization one:

G(Cj; S)=



∞ if d=0;

2−
(
d
r

)�
if d¡r and d 6=0;

1 if d¿r;

where d is the minimum value of the Hamming dis-
tance between Cj and the solutions si included in S,
i.e., d=Mini{H (Cj; si)}, and the penalization is con-
sidered over the most close solution, r is the niche

248 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

radius, and � is the power factor determining how
concave (�¿1) or convex (�¡1) the derating curve
is. Therefore, the penalization given by the derating
function takes its maximum value when the individ-
ual Cj encodes one of the solutions yet found. There
is no penalization when the Cj is far away from S in
a value greater than or equal to the niche radius r.
The algorithm of the genetic multisimpli�cation

process is shown below:
1. Initialization: Equate the multisimpli�cation
modi�ed �tness function to the basic simpli�ca-
tion �tness function: F ′(Cj)←F(Cj).

2. Run the basic genetic simpli�cation process, using
the modi�ed �tness function, keeping a record of
the best individual found in the run.

3. Update the modi�ed �tness function to give a de-
pression in the region near the best individual,
producing a new modi�ed �tness function.

4. If not all the simpli�ed FRBs desired have been
obtained, return to step 2.
Hence, the number of runs of the sequential algo-

rithm performed is the number of solutions that are
desired to obtain. We allow the FRBS designer to de-
cide this number as well as the values of the parame-
ters r and �.

6. The genetic tuning process

The genetic tuning process was presented in-depth
in [26]. It is based on the existence of a previous
complete FRB constituted by m fuzzy rules.
Each chromosome forming the genetic population

will encode a complete FRB de�nition and the genetic
process will adapt the membership functions of each
individual fuzzy rule.
The GA designed for the tuning process presents a

real coding issue, uses the stochastic universal sam-
pling as selection procedure and Michaelewicz’s non-
uniform mutation operator. As regards the crossover
operator, the max–min-arithmetical is employed again.
As we have said, the membership functions are

triangular-shaped. Thus, each one of them has an asso-
ciated parametric representation based on a 3-tuple of
real values. Each one of the fuzzy rules in the FRBwill
be encoded in pieces of chromosome Cri; i=1; : : : ; m,
in the following way:

Cri=(ai1; bi1; ci1; : : : ; ain; bin; cin; ai; bi; ci)

Fig. 5. Membership function and intervals of performance for the
tuning process.

Therefore, the complete FRB de�nition is repre-
sented by a complete chromosome Cr:

Cr =Cr1 Cr2:::Crm:

The initial gene pool is created from the initial FRB.
This FRB is encoded directly into a chromosome, de-
noted as C1. The remaining individuals are generated
by associating an interval of performance, [c‘h; c

r
h] to

every gene ch in C1; h=1 : : : (n+1) ·m · 3. Each inter-
val of performance will be the interval of adjustment
for the correspondent variable, ch ∈ [c‘h; crh].
If (tmod 3)=1 then ct is the left value of the sup-

port of a fuzzy number. The fuzzy number is de�ned
by the three parameters (ct ; ct+1; ct+2) and the inter-
vals of performance are the following:

ct ∈ [c‘t ; crt]

=
[
ct − ct+1 − ct2

; ct +
ct+1 − ct

2

]
;

ct+1 ∈ [c‘t+1; crt+1]

=
[
ct+1 − ct+1 − ct2

; ct+1 +
ct+2 − ct+1

2

]
;

ct+2 ∈ [c‘t+2; crt+2]

=
[
ct+2 − ct+2 − ct+12

; ct+2 +
ct+3 − ct+2

2

]
:

Fig. 5 shows these intervals.
Therefore, we create a population of chromosomes

containing C1 as its �rst individual and the remaining

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 249

ones initiated randomly, with each gene being in its
respective interval of performance.
The �tness function used will be the same consid-

ered in the previous stage, the genetic multisimpli�-
cation process, as it is done in [12].

7. Practical application of the genetic fuzzy
rule-based system to a real-world electrical
engineering problem

In order to analyze the accuracy of the method pro-
posed, we are going to use it to solve a real-world elec-
trical engineering problem consisting on obtaining a
model relating the length of line in a rural population
with its characteristics [38,39]. We shall compare the
behaviour of our multi-stage GFRBS in the solving of
the problem with the one presented by classical meth-
ods, neural networks and other multi-stage GFRBSs
presenting di�erent characteristics.
To do so, �rst we shall introduce the commented

application in the next subsection. Then, we analyze
the use of di�erent techniques to solve it: classical re-
gression methods, neural modeling and GFRBS fuzzy
modeling will be analyzed. Finally, the results ob-
tained by them will be compared.

7.1. The electrical engineering problem considered

In Spain, electrical industries do not charge the
energy bill directly to the �nal user, but they share
the ownership of an enterprise (called REE, Red
El�ectrica de España) which gets all payments and
then distributes them according to some complex cri-
teria (amount of power generation of every company,
number of customers, etc.)
Recently, some of these companies have asked to re-

distribute the maintenance costs of the network. Since
maintenance costs depend on the total length of elec-
trical line each company owns, and on their kind (high,
medium, urban low and rural low voltage) it was nec-
essary to know the exact length of every kind of line
each company was maintaining.
High and medium voltage lines can be easily mea-

sured. But low voltage line is contained in cities and
villages, and it would be very expensive to measure
it. This kind of line uses to be very convoluted and, in
some cases, one company may serve more than 10 000

Table 1
Notation considered for the problem variables

Symbol Meaning

Ai Number of clients in population i
Ri Radius of i population in the sample
n Number of populations in the sample
li Line length, population i
l̃i Estimation of li

small nuclei. An indirect method for determining the
length of line is needed.
Therefore, there is a need to �nd a relationship be-

tween the population and size of a certain area and the
length of line in it, making use of some known data,
that may be employed to predict the real length of line
in any other village.
We shall try to solve this problem by generating

di�erent kind of models determining the unknown re-
lationship. To do so, we were provided with the mea-
sured line length, the number of inhabitants and the
mean distance from the center of the town to the three
furthest clients in a sample of 495 rural nuclei [38,39].
Our variables are named as shown in Table 1.

7.2. Application of classical methods

In order to apply classical methods, we needed to
make some hypothesis [39]. In the populations that
are being studied, electrical networks are star-shaped
and arranged in sectors. A main line passes near all
clients inside them, and clients are connected to these
main lines by small segments (see Fig. 6).
To build a theoretical simpli�ed model we have

admitted that:
• A population comprises si sectors. Each sector
covers an angle 2�i. All sectors in the same popu-
lation cover the same angle. Each sector is served
by one output of the only transformation center
in the village.

• All sectors in a population have the same radius,
Ri.
• Clients are uniformly distributed inside every
sector.

• Inside a sector, the electrical line comprises a
main nerve of length Ri and so many branches
as consumers.

250 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

Fig. 6. Models of some kind of nuclei.

If we admit that customers are uniformly dis-
tributed, we can approximate the total length by
multiplying the mean distance between one of them
and the nerve by the number of inhabitants. Let us
name this mean distance di for population i, and let
the sector be 2�i wide. Then

di=
2(1− cos �i)

3�i
Ri

so the cable length will be

l̃i= si

(
Ri +

Ai
si
di

)
= siRi + Ai

2(1− cos �i)
3�i

Ri:

7.3. Classical regression adjust

If the angles �i and the numbers si were similar
enough between them, we could regard them as con-
stants and estimate them by the parameters ��i= � and
�si= s of a least-squares linear regression

l̃i=Ri= s+ k(�)Ai

to a set of pairs (x; y)= (Ai; li=Ri).
We can get a better adjustment by allowing a certain

dependence between the number of sectors, their an-
gles and the number of inhabitants. This can be done
by dividing the sample into classes or by means of a
change of variables. Both cases were studied, and the
best adjust was obtained with the model

l̃i
Ri
= k1A

k2
i :

7.4. GFRBS fuzzy modeling

Di�erent ways of developing a fuzzy modeling of
the introduced problem are going to be compared by
using several FRBS design methods following di�er-
ent types of fuzzy models.
As regards the descriptive fuzzy model, the follow-

ing three processes are considered:
D1. A two-stage GFRBS based on obtaining a com-

plete knowledge base by deriving the rule base by
means of the Wang and Mendel’s (WM) method
[43] in the �rst stage, and de�ning the data base
by means of the descriptive genetic tuning pro-
cess presented in [12,14] in the second.

D2. A two-stage GFRBS based on obtaining a com-
plete knowledge base by deriving the rule base
by means of the Thrift’s genetic learning process
[42] in the �rst stage, and de�ning the data base
by means of the same descriptive genetic tuning
process used above.

D3. The three-stage descriptive GFRBS design
method proposed in [12,14].

On the other hand, when working with the approxi-
mate one, the following three multi-stage GFRBSs are
employed:
A1. A two-stage GFRBS based on obtaining a com-

plete FRB by generating a preliminary de�nition
by means of the weighted counting algorithm
[3], and re�ning it by adjusting the membership
function de�nitions using the aproximate genetic
tuning process used in this paper (see Section 6).

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 251

A2. The three-stage unconstrained approximate
GFRBS proposed in [11,12].

A3. The three-stage constrained approximate GFRBS
proposed in this paper.

The initial data base de�nition used in the generat-
ing processes of the descriptive GFRBS is constituted
by three primary fuzzy partitions (two correspond-
ing to the input variables and one associated to the
output one) formed by �ve fuzzy sets (as shown in
Fig. 1), and the adequate scaling factors to translate the
generic universe of discourse into the one associated
with each problem variable. The same primary fuzzy
partitions have been considered to de�ne the perfor-
mance intervals for the approximate GFRBS generat-
ing processes.
Since GFRBS D3, A2 and A3 presents the same

structure, following the assumptions presented in [18],
they share many parameters. The values considered for
these parameters are the following: � = 1:5, ! = 0:05,
k = 0:1, and � = 0:1. For the experiments developed
with GFRBSs D3 and A2, we have worked with the
parameter values giving best results in [11–14].
With respect to the remaining parameters of GFRBS

A3, the t-norm ∗ used in the fuzzy rule generation pro-
cess is the Minimum, the generating process GA runs
over 100 generations, the ES is applied until there is
no improvement in 25 generations over a percentage
� = 20% of the individuals of the population (the
parameter c of the 15 -success rule is equal to 0:9). The
genetic multisimpli�cation process generates three
di�erent FRBs for run (each time, the basic GA runs
over 500 generations), the niche radius r is equal to a
10 percent of the number of rules in the initial FRB,
and the power factor � is equal to 0:5. The genetic
tuning processes run over 1000 generations. In all
cases, the population is formed by 61 individuals, the
value of the non-uniform mutation parameter b is 5:0,
and the crossover and mutation rates are, respectively,
Pc = 0:6 and Pm = 0:1 (this last one per indiviual).
The max–min-aritmetical crossover parameter a takes
the value 0:35.
As regards GFRBSs D1, D2 and A1, the param-

eters considered in the second stage, the genetic tun-
ing process, are the same shown above. While WM
generating process does not consider any parameter,
the values associated to the Thrift one in D2 and
the weighted counting algorithm one in D3 are the
following:

• Thrift: Population size: 61, Pc = 0:6, Pm = 0:1
and number of generations: 1000.

• Weighted counting algorithm: � = 0:5.
Finally, the FRBS reasoning method used in all the

processes have been the same. We have selected the
minimum t-norm playing the role of the implication
and conjunctive operators, and the center of gravity
weighted by the matching strategy acting as the de-
fuzzi�cation operator [17].

7.5. Comparison between methods

To compare classical methods, GFRBS fuzzy mod-
eling and neural modeling we have randomly divided
the sample into two sets comprising 396 and 99 sam-
ples. The SE values over these two sets are labeled
training and test. In this case, we de�ne SE as

1
2 · N

N∑
i=1

(l̃i − li)2:

The results obtained in the di�erent experiments
developed with the GFRBSs considered are collected
in Table 2 where #R stands for the number of rules
of the corresponding FRB, and SEtra and SEtst for the
values obtained in the SE measure computed over the
training and test data sets, respectively.
In view of the results obtained, we have to remark

the good performance of the genetic multisimpli�ca-
tion process. In the second iteration, it allows us to
generate a fuzzy model with better approximative and
predictive behavior, i.e., less value in the SE over both
data sets, than the �rst one obtained. Nevertheless, the
fuzzy model generated in the third iteration presents
worse behaviour than both previous ones.
A graphical representation of the behavior of the

crossover operators used is shown in Fig. 7. As was
commented in Section 4.1.4, the expected behavior
consists of an initial phase where a high number of
standard crossovers and a very small of max–min-
arithmetical ones are developed, and a second phase
where the number of max–min-arithmetical crossovers
rises a lot and the application of the standard crossover
decreases. The �gure, drawn making use of the data
collected in the �rst iteration of the experiment devel-
oped, shows clearly this behavior.
Once we have analyzed individually the behaviour

presented by the proposed GFRBS, we are going to

252 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

Table 2
Results obtained by the multi-stage GFRBSs in the problem being solved

Generation Multisimpli�cation Tuning
GFRBS #R SEtra SEtst #R SEtra SEtst SEtst ECprue

D1 13 298446.0 282058.1 175337.9 180102.7
D2 25 218591.9 204426.8 154314.0 199551.3
D3 47 286794.8 285869.0 22 168603.2 174246.6 143921.9 177790.0
A1 20 356434.3 311195.0 175887.2 180211.4
A2 31 431904.0 435649.5 19 226403.9 222550.9 148036.9 191339.5
A3 57 185577.6 228294.2 36 135893.7 203569.7 111250.0 177106.8

33 132738.0 194710.8 108203.1 166186.7
33 135871.8 204459.0 111742.9 185395.6

Fig. 7. Number of crossovers per generation in the �rst generation
of the experiment developed.

compare its accuracy with the remaining techniques
considered. Table 3 shows the results obtained by all
of them in the problem. To obtain them, the parameters
of the polynomial models were �tted by Levenberg–
Marquardt, while exponential and linear models were
�tted by linear least squares. The multilayer percep-
tron was trained with the QuickPropagation algo-
rithm. The number of neurons in the hidden layer was
chosen to minimize the test error.
In view of the results shown, the constrained ap-

proximate GFRBS proposed in this paper has pre-
sented the best behaviour. It outperforms the other
techniques considered by obtaining the best values
in the SE computed over both data sets, the training
and test ones. Therefore, the constrained approximate
FRBS generated is the model that best approximates

Table 3
Results obtained in the problem being solved

Method SEtra SEtst

Linear 287 775 209 656
Exponential 232 743 197 004
Second-order polynomial 235 948 203 232
Third-order polynomial 235 934 202 991
Three-layer perceptron 2-25-1 169 399 167 092
D1 175 337 180 102
D2 154 314 199 551
D3 143 921 177 790
A1 175 887 180 211
A2 148 036 191 339
A3 108 203 166 186

the real system and that presents best generalization
capabilities.
We have to note that the fuzzy model obtained is

more accurate to a high degree than the neural one,
which is the second best model in view of its general-
ization level. Although the results does not di�er too
much in this characteristic (166 186 vs. 167 092), the
value obtained by the constrained approximate FRBS
in the SE over the training data set shows a large
performance advantage for it over the neural network
(108 203 vs. 169 399).
Hence, we have been able to generate a model that

is more accurate and more interpretable at the same
time. This is due to, although approximate Mamdani-
type FRBs are less readable than descriptive ones, ap-
proximate FRBSs are more interpretable than neural
networks because of the following two main reasons:
• The approximate fuzzy model is locally inter-
pretable. We are always able to know which fuzzy

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 253

rules in the FRB are �red when the system receives
a speci�c input.
• The parameters involved in an approximate fuzzy
model have a real-world meaning understable by
a human since they de�ne membership functions.
However, it is di�cult to interpret the meaning of
the neural network weights.

8. Concluding remarks

A multi-stage GFRBS has been presented for de-
signing constrained approximate FRBSs by learning
the FRB from examples combining a hybrid GA-ES
generation process based on the iterative rule learn-
ing approach and two GA-based simpli�cation and
tuning processes. Its performance in a real-world
electrical engineering problem has been shown and
compared with classical methods, neural networks
and other descriptive and unconstrained approximate
GFRBSs. The proposed evolutionary learning process
has obtained the best results.

Acknowledgements

We would like to thank Luciano S�anchez, from
Oviedo University, for the Electrical Engineering ap-
plication from Hidroel�ectrica del Cant�abrico and for
solving it by means of classical and neural techniques.

Appendix A. Genetic algorithms and evolution
strategies

A.1. Genetic algorithms

GAs are general-purpose search algorithms that use
principles inspired by natural population genetics to
evolve solutions to problems. They were �rst proposed
by Holland [32] and are well analyzed in some books
such as [23]. GAs are theoretically and empirically
proven to provide a robust search in complex spaces,
thereby o�ering a valid approach to problems requir-
ing e�cient and e�ective searches.
Any GA starts with a population of randomly gen-

erated solutions, chromosomes, and advances toward
better solutions by applying genetic operators, mod-
eled on the genetic processes occurring in nature. In

these algorithms we maintain a population of solu-
tions for a given problem; this population undergoes
evolution in the form of natural selection. In each gen-
eration, relatively good solutions reproduce to give o�-
spring that replace the relatively bad solutions which
die. An evaluation or �tness function plays the role
of the environment to distinguish between good and
bad solutions. The process of going from the current
population to the next population constitutes one gen-
eration in the execution of a GA.

A.2. Niching genetic algorithms

GAs are known to be a powerful tool for perform-
ing search in complex spaces. Anyway, one drawback
they present is that when dealing with multimodal
functions with peaks of unequal value, simple GAs
are characterized by converging to the best peak of
the space (or to a space zone containing several of
the best peaks) and to lose an adequate individual
sampling over other peaks in other space zones. This
phenomenon is called genetic drift [19] and is not a
correct behavior for several kinds of problems in
which one may be interested in knowing the location
of other function optima.
The niche and species concepts were introduced in

order to overcome this behavior [19,23]. As the great
majority of the GA concepts, they are based on traslat-
ing natural notions to the �eld of GAs. In nature, a
niche is viewed as an organism’s task in the envi-
ronment and a species is a collection of individuals
with similar features. In this way, the formation of
stable subpopulations of organisms surrounding sepa-
rate niches by forcing similar individuals to share the
available resources is induced.
One of the most usually employed methods for

introducing niche and species in GAs is based on
the individual �tness sharing [19,23]. In this scheme,
the population is divided in di�erent subpopulations
(species) according to the similarity of the indi-
viduals. These subpopulations form niches in two
possible solution spaces: the gene and the decoded
parameter ones, genotypic and phenotypic sharing
respectively. Acting as in nature, the individuals be-
longing to each niche share the associated payo�
among them. A sharing function is de�ned to deter-
mine the neighbourhood and degree of sharing for
each string in the population.

254 O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255

A.3. Evolution strategies

ESs [2,40] were initially developed by Rechenberg
and Schwefel in 1964 with a strong focus on building
systems capable of solving di�cult real-valued pa-
rameter optimization problems. The natural represen-
tation was a vector or real-valued genes which were
manipulated primarily by mutation operators designed
to perturb the real-valued parameters in useful ways.
The �rst ES algorithm, the so-called (1 + 1)-ES,

was based on working with only two individuals per
generation, one parent and one descendent. It is based
on evolving the parent string by applying a mutation
operator to each one of its components. The mutation
strength is determined by a value �, a standard devi-
ation of a normally distributed random variable. This
parameter is associated to the parent and it is evolved
in each process step as well. If the evolution has been
performed successfully, then the descendent substi-
tutes the parent in the next generation. The individual
adaptation is measured by using a �tness function. The
process is iterated until a determined �nishing condi-
tion is satis�ed.
Themutation operatormut is composed of two com-

ponents. The �rst one, mu�, evolves the value of the
standard deviation � using Rechenberg’s 1=5-success
rule:

�′ = mu�(�) =




�
n
√
c
; if p ¿ 1

5 ;

� · n
√
c; if p ¡ 1

5 ;

�; if p = 1
5 ;

where p is the relative frequency of succesful mu-
tations and c is a constant determining the updating
amount of �.
The second one, mux, mutates each component of

the real coded string by adding normally distributed
variations with standard deviation �′ to it:

x′ = mux(x) = (x1 + z1; : : : ; xn + zn);

where zi ∼ Ni(0; �′2).

References

[1] T. B�ack, Evolutionary Algorithms in Theory and Practice,
Oxford University Press, Oxford, 1996.

[2] T. B�ack, H.-P. Schwefel, Evolution strategies I: variants
and their computational implementation, in: J. Periaux, G.

Winter, M. Gal�an, P. Cuesta (Eds.), Genetic Algorithms in
Engineering and Computer Science, Wiley, New York, 1995,
pp. 111–126.

[3] A. Bardossy, L. Duckstein, Fuzzy Rule-Based Modeling
with Application to Geophysical, Biological and Engineering
Systems, CRC Press, Boca Raton, FL, 1995.

[4] A. Bastian, How to handle the
exibility of linguistic
variables with applications, Internat. J. Uncertainty, Fuzziness
Knowledge-Based Systems 2 (4) (1994) 463–484.

[5] D. Beasly, D.R. Bull, R.R. Martin, A sequential niche
technique for multimodal function optimization, Evolutionary
Comput. 1 (2) (1993) 101–125.

[6] A. Bonarini, Evolutionary learning of fuzzy rules: competition
and cooperation, in: W. Pedrycz (Ed.), Fuzzy Modelling:
Paradigms and Practice, Kluwer Academic Press, Dordrecht,
1996, pp. 265–283.

[7] P.P. Bonissone, Soft computing: the convergence of emerging
reasoning technologies, Soft Computing 1 (1) (1997) 6–18.

[8] B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based
controllers using genetic algorithms, Fuzzy Sets and Systems
80 (1996) 273–294.

[9] O. Cord�on, F. Herrera, A general study on genetic fuzzy
systems, in: J. Periaux, G. Winter, M. Gal�an, P. Cuesta (Eds.),
Genetic Algorithms in Engineering and Computer Science,
Wiley, New York, 1995, pp. 33–57.

[10] O. Cord�on, F. Herrera, A hybrid genetic algorithm-evolution
strategy process for learning fuzzy logic controller knowledge
bases, in: F. Herrera, J.L. Verdegay (Eds.), Fuzzy Logic
and Soft Computing, Physica-Verlag, Wierzburg, 1996,
pp. 251–278.

[11] O. Cord�on, F. Herrera, Generating and selecting fuzzy
control rules using evolution strategies and genetic algorithms,
Proc. Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU’96), Granada, Spain,
1996, pp. 733–738.

[12] O. Cord�on, F. Herrera, A three-stage evolutionary process for
learning descriptive and approximate fuzzy logic controller
knowledge bases, Internat. J. Approx. Reasoning 17(4)
(1997) 369–407.

[13] O. Cord�on, F. Herrera, Identi�cation of linguistic fuzzy
models by means of genetic algorithms, in: D. Driankov,
H. Hellendoorn (Eds.), Fuzzy Model Identi�cation. Selected
Approaches, Springer, Berlin, 1997, pp. 215–250.

[14] O. Cord�on, F. Herrera, M. Lozano, A three-stage method for
designing genetic fuzzy systems by learning from examples,
in: H.M. Voight, W. Ebeling, E. Rechemberg, H.P. Schwefel
(Eds.), Proc. 4th Internat. Conf. on Parallel Problem Solving
from Nature (PPSN IV), Berlin, Germany, Lecture Notes
in Computer Science, vol. 1141, Springer, Berlin, 1996, pp.
720–729.

[15] O. Cord�on, F. Herrera, M. Lozano, A classi�ed review on
the combination fuzzy logic-genetic algorithms bibliography:
1989–1995, in: E. Sanchez, T. Shibata, L. Zadeh (Eds.),
Genetic Algorithms and Fuzzy Logic Systems. Soft
Computing Perspectives, World Scienti�c, Singapore, 1997,
pp. 209–241.

[16] O. Cord�on, F. Herrera, M. Lozano, On the combination of
fuzzy logic and evolutionary computation: a short review

O. Cord�on, F. Herrera / Fuzzy Sets and Systems 118 (2001) 235–255 255

and bibliography, in: W. Pedrycz (Ed.), Fuzzy Evolutionary
Computation, Kluwer Academic Press, Dordrecht, 1997, pp.
57–77.

[17] O. Cord�on, F. Herrera, A. Peregr��n, Applicability of the fuzzy
operators in the design of fuzzy logic controllers, Fuzzy Sets
and Systems 86 (1997) 15–41.

[18] O. Cord�on, M.J. del Jesus, F. Herrera, M. Lozano,
An evolutionary paradigm for designing fuzzy rule-based
systems from examples, Proc. 2nd IEE=IEEE Internat.
Conf. on Genetic Algorithms and Engineering Systems:
Innovations and Applications (GALESIA’97), Glasgow, UK,
1997, pp. 139–144.

[19] K. Deb, D.E. Goldberg, An investigation of niche and species
formation in genetic function optimization, Proc. 2nd Internat.
Conf. on Genetic Algorithms, Lawrence Erlbaum, Hillsdale,
NJ, 1989, pp. 42–50.

[20] K.A. De Jong, Learning with genetic algorithms: an overview,
Machine Learning 3 (1988) 121–138.

[21] M. Delgado, A.F. G�omez Skarmeta, F. Mart��n, A fuzzy
clustering based rapid-prototyping for fuzzy rule-based
modeling, IEEE Trans. Fuzzy Systems 5 (2) (1997)
223–233.

[22] D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction
to Fuzzy Control, Springer, Berlin, 1993.

[23] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, New York, 1989.

[24] A. Gonz�alez, F. Herrera, Multi-stage genetic fuzzy systems
based on the iterative rule learning approach, Mathware &
Soft Computing 4 (3) (1997) 233–249.

[25] A. Gonz�alez, R. P�erez, Completeness and consistency
conditions for learning fuzzy rules, Fuzzy Sets and Systems
96 (1998) 37–51.

[26] F. Herrera, M. Lozano, J.L. Verdegay, Tuning fuzzy
controllers by genetic algorithms, Internat. J. Approx.
Reasoning 12 (1995) 299–315.

[27] F. Herrera, M. Lozano, J.L. Verdegay, Fuzzy connectives
based crossover operators to model genetic algorithms
population diversity, Fuzzy Sets and Systems 92 (1) (1997)
21–30.

[28] F. Herrera, M. Lozano, J.L. Verdegay, A learning process
for fuzzy control rules using genetic algorithms Fuzzy Sets
and Systems 100 (1998) 143–158.

[29] F. Herrera, J.L. Verdegay (Eds.), Genetic Algorithms and
Soft Computing, Physica-Verlag, Wurzburg, 1996.

[30] F. Herrera, L. Magdalena, Genetic fuzzy systems, in:
R. Mesiar, B. Riecan (Eds.), Tatra Mountains Mathematical
Publications, vol. 13: “Fuzzy Structures. Current Trends”,
Lecture Notes of the Tutorial: Genetic Fuzzy

Systems, Seventh IFSA World Congress (IFSA’97), 1997,
pp. 93–121.

[31] K. Hirota (Ed.), Industrial Applications of Fuzzy Technology,
Springer, Berlin, 1993.

[32] J.H. Holland, Adaptation in Natural and Arti�cial Systems,
The University of Michigan Press, Ann Arbor: 1975; The
MIT Press, London, 1992.

[33] K. Krishnakumar, A. Satyadas, Evolving multiple fuzzy
models and its application to an aircraft control problem, in:
J. Periaux, G. Winter, M. Gal�an, P. Cuesta (Eds.), Genetic
Algorithms in Engineering and Computer Science, Wiley,
New York, 1995, pp. 305–320.

[34] C.C. Lee, Fuzzy logic in control systems: fuzzy logic
controller – parts I and II, IEEE Trans. Systems Man
Cybernet. 20 (1990) 404–435.

[35] L. Magdalena, J.R. Velasco, Fuzzy rules-based controllers
that learn by evolving its knowledge base, in: F. Herrera,
J.L. Verdegay (Eds.), Fuzzy Logic and Soft Computing,
Physica-Verlag, Wurzburg, 1996, pp. 172–201.

[36] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer, Berlin, 1996.

[37] W. Pedrycz (Ed.), Fuzzy Modelling. Paradigms and Practice,
Kluwer Academic Press, Dordrecht, 1996.

[38] L. S�anchez, Interval-valued GA-P algorithms, Technical
Report, Computer Science Departament, Oviedo University,
Oviedo, Spain, 1997.

[39] L. Sanchez, Estudio de la red asturiana de baja tensi�on rural
y urbana, Con�dential Report Hidroel�ectrica del Cant�abrico
Research and Development Department, 1997.

[40] H.-P. Schwefel, Evolution and Optimum Seeking, Sixth-
Generation Computer Technology Series, Wiley, New York,
1995.

[41] T. Takagi, M. Sugeno, Fuzzy identi�cation of systems and
its application to modeling and control, IEEE Trans. Systems
Man Cybernet. 15 (1) (1985) 116–132.

[42] P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc.
4th Internat. Conf. on Genetic Algorithms (ICGA’91), 1991,
pp. 509–513.

[43] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning
from examples, IEEE Trans. Systems Man Cybernet. 22
(1992) 1414–1427.

[44] R.R. Yager, L.A. Zadeh (Eds.), An Introduction to Fuzzy
Logic Applications in Intelligent Systems, Kluwer Academic
Press, Dordrecht, 1992.

[45] M. Yagiura, T. Ibaraki, Genetic and local search algorithms
as robust and simple optimization tools, in: I.H. Osman,
J.P. Kelly (Eds.), Meta-heuristics: Theory and Applications,
Kluwer Academic Press, Dordrecht, 1996, pp. 63–82.

