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Abstract

In this paper we focus on model-based statistical signal processing and how some problems that are associated with it
can be solved using fuzzy logic. We explain how uncertainty (which is prevalent in statistical signal processing
applications) can be handled within the framework of fuzzy logic. Type-1 singleton and non-singleton fuzzy logic systems
(FLSs) are reviewed. Type-2 FLSs, which are relatively new, and are very appropriate for signal processing problems,
because they can handle linguistic and numerical uncertainties, are overviewed in some detail. The output of a type-2
FLS is a type-2 fuzzy set. Using a new operation called type-reduction, the type-2 set can be reduced to a type-1 set } the
type-reduced set } which plays the role of a con"dence interval for linguistic uncertainties. No such result can be obtained
for a type-1 FLS. We demonstrate, by means of examples, that a type-2 FLS can outperform a type-1 FLS for one-step
prediction of a Mackey}Glass chaotic time series whose measurements are corrupted by additive noise, and equalization
of a nonlinear time-varying channel. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel setzen wir den Schwerpunkt auf modellbasierte statistische Signalverarbeitung und zeigen MoK glich-
keiten zur LoK sung von Problemen dieses Umfeldes mit Hilfe der Fuzzy Logik auf. Wir erlaK utern, wie Entscheidungsun-
sicherheit (die in saK mtlichen Anwendunger der statistischen Signalverarbeitung vorherrscht) im Rahmen der Fuzzy Logik
behandelt werden kann. ZunaK chst werden Typ-1 Singleton und Nicht-Singleton Fuzzy Logik Systeme (FLS) besprochen.
Typ-2 FLS, die relativ neu sind, werden etwas detaillierter behandelt. Sie eignen sich sehr zur LoK sung von Signalverar-
beitungsproblemen, da sie linguistische und numerische Unsicherheit handhaben koK nnen. Die Ausgabe eines Typ-2 FLS
stellt die Typ-2 Fuzzy-Menge dar. Mit Hilfe einer neuen, als Typ-Reduktion bezeichneten Operation, kann die Typ-2
Menge auf eine Typ-1 Menge } die Typ-reduzierte Menge } uK berfuK hrt werden. Sie entspricht einem Kon"denzintervall fuK r
linguistische Unsicherheit. Kein derartiges Resultat kann fuK r eine Typ-1 FLS abgeleitet werden. Anhand von Beispielen
zeigen wir, da{ eine Typ-2 FLS eiher Typ-1 FLS zum einen als Einschritt-PraK diktion uK berlegen sein kann, wenn, sie auf
eine chaotische Mackey}Glass Zeitreihe angwandt wird, deren Me{werte durch additives Rauschen gestoK rt sind oder
wenn sie zum anderen bei der Entzerrung eines nichtlinearen zeitvarianten Kanals angewandt wird. ( 2000 Elsevier
Science B.V. All rights reserved.

Re2 sume2

Dans cet article, nous nous concentrons sur le traitement statisque de signaux à base de modèles et sur la fac7 on dont
certains problèmes qui lui sont associeH s peuvent e( tre reH solus en utilisant de la logique #oue. Nous expliquons comment
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l'incertitude (qui preH vaut en traitement statistique des signaux) peut e( tre manipuleH oe dans le cadre de la logique #oue.
Nous passons en revue des systeHmes à logique #oue (SLF) à singletones de type 1 et sans singletons. Nous preH sentons avec
quelques deH tails les SLF de type 2, qui sont relativement nouveaux et treH s approprieH s pour des probleHmes de traitement de
signaux, car ils peuvent traiter des incertitudes linguistiques et numeH riques. La sortie d'un SLF de type 2 est un ensemble
#ou de type 2. En utilisant une nouvelle opeH ration appeleH e reH duction de type, l'ensemble de type 2 peut e( tre reH duit aH un
ensemble de type l, l'ensemble de type reH duit, qui joue le ro( le d'un intervalle de con"ance pour les incertitudes
linguistiques. Un tel reH sultat ne peut e( tre atteint pour un SLF de type 1, Nous deHmontrons, au moyen d'exemples, qu'une
SLF de type 2 peut deH passer un SLF de type 1 pour une preH diction d'un pas d'une seH rie temporelle chaotique de
Mackey}Glass dont les mesures sont corrompues par un bruit additif, ainsi que pour l'eH galisation d'un canal non lineH aire
variant dans le temps. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we focus on model-based statistical
signal processing and how some problems that are
associated with it can be solved using fuzzy logic.
To some readers this may sound like a contradic-
tion because model-based statistical signal pro-
cessing is formulated within the framework of
probability and random processes whereas fuzzy
logic is not based on a probability model.

Is there a shortcoming to model-based statistical
signal processing that calls its use into question?
There is } the assumed probability model, for which
model-based statistical signal processing results
will be good if the data agrees with the model, but
may not be so good if the data does not. Let me be
speci"c about this by way of an example. So as not
to pick on any one else's work, I will pick on my
own.

Starting in 1975, my students and I developed
a novel and comprehensive model-based approach
to seismic deconvolution. It was based on a widely
used convolutional model for a seismogram. One of
our contributions was to depart from the then
commonly used white-Gaussian model for the seis-
mic re#ectivity sequence. Instead we modeled the
re#ectivity sequence as a white Bernoulli}Gaussian
(product model) random sequence. This sequence
could provide strong isolated spikes indicative of
a strong re#ector, as well as lots of smaller ampli-
tude spikes, indicative of multiple re#ections; so, it
was physically motivated. The non-Gaussian
nature of this sequence meant that it should be
possible to improve upon deconvolution results

that only used second-order statistics. We then
developed maximum-likelihood deconvolution
(MLD), which involved detection and estimation.
In more realistic situations, where the seismic
source signature was not measured, and had to be
estimated, the entire MLD procedure alternated
between optimization (to estimate the parameters
in an ARMA model for the source signature and
some of the statistical parameters), detection (to
determine the time points at which signi"cant
events occurred) and estimation (to restore the am-
plitudes at the signi"cant time points). This work
led to two books [30,31] and to many journal and
conference articles (see the references in the books).
Then, in 1988 one of my students (Li-Xin Wang)
got the idea of using Hop"eld neural networks to
do what we were doing in MLD } without a prob-
ability-based model [50]. A convolutional model
was still used, and the product structure of the
Bernoulli}Gaussian product model was also used.
We developed three Hop"eld neural networks,
one each for estimating the coe$cients in the
source signature's IR, detecting where a signi-
"cant event was located, and then restoring the
amplitude of such events. When the neural network
and MLD deconvolution procedures were tested
on real data, the former signi"cantly outperformed
the latter. The reason for this was that, for the data
we used, the convolutional Bernoulli}Gaussian
model did not "t it as well as did a convolutional
model in which we did not use an a priori prob-
ability model for the re#ectivity sequence. This
work opened my eyes toward model-free signal
processing.
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Fig. 1. Type-1 fuzzy logic system.

Today, the two major approaches to model-free
signal processing are arti"cial neural networks and
fuzzy logic. In this paper, I focus on the latter,
and how uncertainty can be handled within the
framework of fuzzy logic. Note though that I
will not abandon our traditional ideas about
noisy measurements, i.e., measurement " signal
# noise. What I will abandon (at least in this
paper) is the frequently made assumption of a priori
knowledge of a probability model (i.e., a probabil-
ity density function) for either the signal or the
noise.

Four applications to which we have applied
fuzzy logic are identi"cation of non-linear non-
dynamic systems, forecasting of time series, digital
modulation classi"cation, and equalization of non-
linear time-varying channels. Uncertainties can oc-
cur in the: identi"cation application if only noisy
training data is available; time-series forecasting
application if the training data is perfect but the
later measurements are noisy, or if both the train-
ing data and the later measurements are noisy;
modulation classi"cation application if the modu-
lation constellations drift or if measurement noise is
present; and, equalization application due to un-
known time variations of the channels, especially in
a mobile communication environment.

Type-1 fuzzy logic systems, which are widely
prevalent in the fuzzy logic literature, are reviewed
in Section 2, with emphasis on what sources of
uncertainty can be accommodated by them. Type-2
fuzzy logic systems, which are not widely known,
are described in Section 3, because they are poten-
tially very applicable in signal processing and
digital communications applications of fuzzy logic.
Two examples are given in Section 4. Conclusions
are drawn in Section 5.

2. Type-1 fuzzy logic systems

Fig. 1 depicts a type-1 fuzzy logic system (FLS)
(e.g., [32]) that is widely used in fuzzy logic control-
lers and signal processing applications (because
later we describe type-2 FLSs, we must distinguish
between them and existing FLSs; hence, we refer to
the latter as type-1 FLSs). According to Jang [10]
a type-1 FLS is also known as a fuzzy inference

system, fuzzy rule-based system, fuzzy model, fuzzy
associative memory, or a fuzzy controller when it is
used as a controller. A type-1 FLS maps crisp
inputs into crisp outputs. It contains four compo-
nents: rules, fuzzi"er, inference engine, and de-
fuzzi"er. Once the rules have been established, the
type-1 FLS can be viewed as a mapping from
inputs to outputs (the solid path in Fig. 1, from
Crisp Inputs to Crisp Outputs), and this mapping
can be expressed quantitatively as y"f (x).

Fuzzy sets can be interpreted as membership
functions k

X
that associate with each element x of

the universe of discourse, ;, a number k
X
(x) in the

interval [0,1]:

k
X

:;P[0,1]. (1)

The fuzzi"er maps a crisp point x3; into a fuzzy
set X3;. In the case of a singleton fuzzi"er (which
is useful when input measurements are perfect), the
crisp point x3; is mapped into a fuzzy set X with
support x

i
, where k

X
(x

i
)"1 for x"x

i
and

k
X
(x

i
)"0 for xOx

i
, i.e., the single point in the

support of X with non-zero membership function
value is x"x

i
. In the case of a non-singleton fuzzi-

"er (which is useful when input measurements are
corrupted by noise), the point X3; is mapped into
a fuzzy set X with support x

i
, where k

X
achieves

maximum value at x"x
i
and decreases while mov-

ing away from x"x
i
. A non-singleton fuzzi"er

treats the point X3; as a fuzzy number. We as-
sume that fuzzy set X is normalized so that
k
X
(x

i
)"1.

The most widely used fuzzi"er is the singleton
fuzzi"er, mainly because of its simplicity and lower
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computational requirements; however, this kind of
fuzzi"er may not always be adequate, especially in
cases where noise is present in the measurements
that are later processed by the system. A di!erent
approach is necessary in order to account for un-
certainty in the data, one which we describe in
Section 2.2.

2.1. Singleton type-1 FLS

Here we consider a type-1 FLS with a rule-base
of M rules; let the lth rule be denoted by

Rl: IF u
1

is Fl
1

and u
2

is Fl
2

and2
u
p

is Fl
p

THEN v is G,

where u
k
, k"1,2,2, p, and v are the input and

output linguistic variables, respectively, Fl
k
L;

k
,

and GlL<. Each rule can be viewed as a fuzzy
relation Rl [55] from a set ; to a set <, where; is
the Cartesian product space ;";

1
];

2
]2

];
p
. Rl itself is a subset of the Cartesian pro-

duct ;]<"M(x, y): x3;, y3<N, where x,
(x

1
, x

2
,2, x

p
), and x

k
and y are the points in the

universes of discourse,;
k
and<, of u

k
and v. Given

the input AL; to Rl, we can obtain the lth output
fuzzy set >lL< using the Compositional Rule of
Inference (also known as the sup-star composition),
as >l"A"Rl"supx|U

(AwRl), where w denotes
a t-norm.

Using all of this as the starting point, it can be
shown [32,40] that a very widely used FLS, one
with singleton fuzzi"cation, product implication,
product t-norm, and modi"ed height defuzzi"ca-
tion, can be written as a fuzzy basis function (FBF)
expansion:

f (x(t))"
+M

l/1
y6 l¹p

k/1
k
F

l
k
(x

k
(t))/(dl)2

+M
l/1

¹p
k/1

k
F

l
k
(x

k
(t))/(dl)2

"

M
+
l/1

y6 l/l(x(t))

(2)

where the fuzzy basis functions are given by

/l(x(t))"
¹p

k/1
k
F

l
k
(x

k
(t))/(dl)2

+M
l/1

¹p
k/1

k
F

l
k
(x

k
(t))/(dl)2

. (3)

In these equations M denotes the number of rules;
p the number of antecedents; y6 l the point of max-
imum membership of the lth consequent fuzzy set;
k
F

l
k
the kth antecedent membership function for the

lth rule; w is a t-norm (e.g., min or product); ¹p
k/1

is a sequence of p!1 t-norm operations, i.e.,
¹p

k/1
a
k
"a

1
wa

2
w2wa

p
; dl is proportional to

the uncertainty in the consequent fuzzy sets (e.g., if
the consequent membership function is triangular,
then dl could be chosen as the length of its base;
the smaller dl is then the more certain we are
that the consequent of the lth rule is Gl); and,
x(t)"col[x

1
(t),2, x

p
(t)] is the p-dimensional

input vector to the type-1 FLS.
This way for handling consequent uncertainty

(i.e., using dl) is a bit arti"cial, but appears to be the
only way we can do it within the framework of
type-1 FLSs. Eq. (2) also can be derived in a di!er-
ent way by requiring that the output of the FLS be
a weighted linear combination of each "red rule's
fuzzy set followed by centroid defuzzi"cation. This
result is called the standard additive model, and was
developed, for example, in [23], but just for a prod-
uct t-norm.

Note that (2) has the appearance of a regression
model, where the regressors, the /l(x(t)), are non-
linear functions of the system's inputs x(t), and the
weights (regression coe$cients) are the y6 l's. Al-
though (2) looks like a regression equation, the y6 l's
are not determined by regression analysis. The
structure of (2) is a direct result of the mathematics
of fuzzy logic. There is yet another major di!erence
between (2) and a regression equation. In a stan-
dard regression model, all M of its terms are ac-
tivated for each x(t). Although it is not obvious by
the way in which (2) is written, (2) is a variable-
structure model, in the sense that all of its M terms
are not activated by each x(t). The activated terms
depend upon x(t). Each "red rule corresponds to
a fuzzy basis function in (1), and, in general only
a very small number of rules are "red for each x(t).
So, the FLS in (2) can be viewed as a collection of
localized sub-systems.

2.2. Non-singleton type-1 FLS

Non-singleton fuzzi"cation is especially useful in
cases where the input data to the FLS contains
uncertainty, such as additive noise. Conceptually,
the non-singleton fuzzi"er implies that the given
input value x is the most likely value to be the
correct one from all the values in its immediate

916 J.M. Mendel / Signal Processing 80 (2000) 913}933



neighborhood; however, because of the presence of
uncertainty, neighboring points are also likely to be
the correct value, but to a lesser degree. The shape
of the membership function k

x
can be determined

by the designer, based on an estimate of the kind
and quantity of uncertainty present. It would be the
logical choice, though, for the membership function
to be symmetric about x, since the e!ect of noise is
most likely to be equivalent on all points. Gaussian
or triangular membership functions are popular for
k
X
. In this way the measured value of x is treated as

a fuzzy number, which is di!erent from the way it
would be treated in the framework of statistical
signal processing.

A popular non-singleton FLS (NSFLS), one with
product implication, product t-norm, and modi"ed
height defuzzi"cation, can be written as a non-
singleton fuzzy basis function expansion [39,40],
i.e.,

f
/4

(x(t))"
+M

l/1
y6 l¹p

k/1
k
Q

l
k
(xl

k,.!9
(t))/(dl)2

+M
l/1

¹p
k/1

k
Q

l
k
(xl

k,.!9
(t))/(dl)2

"

M
+
l/1

y6 l/l
/4

(x(t)) (4)

where the non-singleton fuzzy basis functions are
given by

/L
/4

(x(t))"
¹p

k/1
k
Q

l
k
(xl

k,.!9
(t))/(dl)2

+M
l/1

¹p
k/1

k
Q

l
k
(xl

k,.!9
(t))/(dl)2

. (5)

In (4) and (5) the symbols that are common to (2)
and (3) have been de"ned previously, and

k
Q

l
k
,k

F
l
k
wk

Xk
(6)

where k
F

l
k

denotes the kth antecedent membership
function for the lth rule, and k

Xk
denotes the kth

input membership function. In (5) and (6) xl
k,.!9

is
the point that maximizes k

Q
l
k
. Note that the maxi-

mization of k
Q

l
k

is a direct result of the sup-star
composition and non-singleton fuzzi"cation. For
singleton fuzzi"cation no maximization is neces-
sary, which is why, perhaps, that singleton FLSs are
so popular.

When the t-norm is the product, and all member-
ship functions are Gaussian, then it is straight-
forward to carry out the maximization com-
putations in (6). In this case, the kth input fuzzy
set and the corresponding rule antecedent fuzzy

sets are assumed to have the following forms:
k
Xk

(x
k
)"expM!1/2[(x

k
!m

Xk
)/p

Xk
]2N and k

F
l
k
(x

k
)

"expM!1/2[(x
k
!m

F
l
k
)/p

F
l
k
]2N. By maximizing

the function

k
Q

l
k
(x

k
)"k

F
l
k
(x

k
)k

Xk
(x

k
) (7)

we "nd that it is maximum at

x
k,.!9

"(p2
Xk

m
F

l
k
#p2

F
l
k
m

Xk
)/(p2

Xk
#p2

F
l
k
). (8)

In the special but important case when all input
points for each input variable have the same level of
uncertainty (as in the application of stationary
time-series forecasting, when each input is a time-
delayed version of the measured time series), the
spreads of the input sets will be the same, in which
case p2

Xk
in (8) is a constant. Usually, we choose the

mean of the fuzzy input sets, m
Xk

, to be the noisy
measured input, x@

k
; hence, under these conditions,

(8) simpli"es to

x
k,.!9

"(p2
X
m

F
l
k
#p2

F
l
k
x@
k
)/(p2

X
#p2

F
l
k
). (9)

This formula can be interpreted as a pre-"ltering of
the noisy data x@

k
. A FLS, therefore, has a built-in

front-end mechanism for such pre-"ltering, namely
the fuzzi"er. Interestingly, a neural network does
not appear to have this capability.

When the uncertainty of the input becomes zero
(i.e., p2

X
"0), then (9) reduces to the singleton case,

i.e., x
k,.!9

"x@
k
, for which

k
Xk

(x
k,.!9

"x@)"expM!1/2[(x@
k
!x@

k
)/p

X
]2N"1

(k"1,2, p),

so that, from (7), k
Q

l
k
(x

k,.!9
)"k

F
l
k
(x

k,.!9
)"k

F
l
k
(x@

k
).

2.3. Designs of type-1 FLSs

Type-1 FLSs contain parameters that can either
be pre-speci"ed or can be tuned during a training
process. The parameters for a singleton FLS are:
antecedent membership function parameters (e.g.,
the mean and the variance of a Gaussian mem-
bership function; the apex point and spread of
a triangular membership function), the point of
maximum membership of the lth consequent
fuzzy set (y6 l), and the uncertainty spread of the lth
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consequent fuzzy set (dl). For a p-antecedent,
M-rule system that uses Gaussian or symmetrical
triangular membership functions, there can be a
maximum of M(2p#2) parameters. For a NS FLS,
there is at most one additional parameter for each
antecedent (the variance of the measurement's
fuzzy number representation if a Gaussian mem-
bership function is used, or the spread of that num-
ber if a triangular membership function is used). So,
there will be at most M(2p#2)#p parameters for
a NS FLS. If the variances or spread of the anteced-
ent memberships are equal, then there will be at
most M(2p#2)#1 parameters for a NS FLS.

A multitude of design methods exist for tuning
some or all of the FLS's parameters. A discussion
about this is outside of the scope of the present
paper (see, e.g., [10,11,34,28]).

3. Type-2 fuzzy logic systems

3.1. Introduction

Quite often, the knowledge that is used to con-
struct the rules in a FLS is uncertain. Three ways in
which such rule uncertainty can occur are: (1) the
words that are used in antecedents and consequents
of rules can mean di!erent things to di!erent
people [33]; (2) consequents obtained by polling
a group of experts will often be di!erent for the
same rule, because the experts will not necessarily
be in agreement; and, (3) only noisy training data is
available. Antecedent or consequent uncertainties
translate into uncertain antecedent or consequent
membership functions. Type-1 FLSs, whose mem-
bership functions are type-1 fuzzy sets, are unable
to directly handle rule uncertainties. This section,
therefore, addresses a new class of FLSs } type-2
FLSs } in which antecedent or consequent member-
ship functions are type-2 fuzzy sets whose member-
ship grades are themselves type-1 fuzzy sets. Type-2
FLSs are very useful in circumstances where it is
di$cult to determine an exact membership func-
tion for a fuzzy set; hence, they are useful for incor-
porating rule uncertainties, and, as we shall
demonstrate, they let us propagate such uncertain-
ties through them, so that we can establish their
e!ects at the output of the FLS.

We pause to distinguish between two types of
uncertainties, random and linguistic. Probability
theory is associated with the former, and, as we
shall demonstrate below, FL can be associated with
the latter. Within probability theory we begin with
a pdf which embodies total information about ran-
dom uncertainties. In most practical applications it
is impossible to know or determine the pdf; so, we
fall back on using the fact that a pdf is completely
characterized by all of its moments. For most pdf's,
an in"nite number of moments are required. Of
course, it is not possible, in practice, to determine
an in"nite number of moments; so, instead, we
compute as many moments as are necessary to
extract as much information as possible from the
data. At the very least, we use two moments } the
mean and variance; and, in some cases, we use even
moments higher than second order. To just use the
"rst-order moments would not be very useful, be-
cause random uncertainty requires an understand-
ing of dispersion about the mean, and this
information is provided by the variance. So, our
accepted probabilistic modeling of random uncer-
tainty focuses to a large extent on methods that use
at least the "rst two moments of a pdf. This is, for
example, why designs based on minimizing mean-
squared errors are so popular.

Should we expect any less of a FLS for rule
uncertainties? The defuzzi"ed output of a type-1
FLS is analogous (in spirit) to computing the mean
of a pdf. Just as variance provides a measure of
dispersion about the mean, and is used to capture
more about probabilistic uncertainty in practical
statistical-based designs, FLSs also need some
measure of dispersion to capture more about rule
uncertainties than just a single number } the tradi-
tional defuzzi"ed output. Type-2 FL provides this
measure of dispersion.

In a FLS, rule uncertainties occur due to linguis-
tic or numerical uncertainties about the knowledge
used to construct the rules. These uncertainties can
be handled by using type-2 fuzzy sets. Because
knowledge about type-2 fuzzy sets and FLSs is not
widespread, we provide a much more extensive
discussion about them in this section than we did
for type-1 FLSs.

The concept of a type-2 fuzzy set was introduced
by Zadeh [56] as an extension of the concept of an
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Fig. 2. (a) An interval type-2 set. Since all the secondary mem-
bership functions are unity, the shading is uniform all over. The
domain of the membership grade at x"0.65 is also shown. The
secondary memberships in this type-1 set are shown in (b), and
are all equal to 1, i.e., the membership grade is an interval type-1
set.

ordinary fuzzy set (henceforth called a type-1 fuzzy
set). A type-2 fuzzy set is characterized by a fuzzy
membership function, i.e., the membership value (or
membership grade) for each element of this set is
a fuzzy set in [0,1], unlike a type-1 set where the
membership grade is a crisp number in [0,1]. Such
sets are useful in circumstances where it is di$cult
to determine the exact membership function
for a fuzzy set, and have been studied by only a
relatively small number of people, including:
Mizumoto and Tanaka [35,36], Nieminen [41],
Dubois and Prade [5,6], Turksen [48], Gorzal-
czany [9], Wagenknecht and Hartmann [49], and,
more recently, by Karnik and Mendel [13,15,18].

Fig. 2 shows a type-2 set, where the membership
grade for every point is a crisp set, the domain of
which is an interval contained in [0,1]. We call such
type-2 sets `interval type-2 setsa and their member-
ship grades `interval type-1 setsa. Since all the
memberships in an interval type-1 set are unity, in

the sequel we represent such a set just by its domain
interval, which can be represented in terms of its
left and right end points as [l, r], or in terms of
its center and spread as [m!s, m#s], where
m"(l#r)/2 and s"(r!l)/2. Interval type-2 sets
are the simplest kind of type-2 sets, and we have
developed fast algorithms to compute the output of
an `intervala type-2 FLS, i.e., a type-2 FLS which
uses interval type-2 sets. Gaussian and triangular
type-2 sets are described in [13,19]. Note, however,
that although our discussions here focus on interval
type-2 sets, type-2 FLSs are in no way limited to such
sets.

The shaded area in Fig. 2a is a footprint of uncer-
tainty for a Gaussian membership function whose
mean value is uncertain but is known to lie in the
interval [m

1
,m

2
]. The footprint of uncertainty rep-

resents the domain for the secondary membership
functions. Regardless of the origin of the footprint
of uncertainty (e.g., a Gaussian membership func-
tion whose standard deviation is uncertain but is
known to lie in an interval; or, a triangular mem-
bership function whose vertices are uncertain but
are known to lie in intervals), when the secondaries
are intervals (Gaussians, triangles, etc.) the type-2
fuzzy set is called an interval (Gaussian, triangle,
etc.) type-2 fuzzy set.

3.2. Notation and terminology

We must now introduce notation that lets us
distinguish between type-1 and type-2 sets and their
associated membership functions. We will use the
earlier well-established and widely used notation
for type-1 sets, i.e., a type-1 fuzzy set A in X is
written as A. The membership grade (a synonym
for the degree of membership) of x3X in A is k

A
(x),

which is a crisp number in [0,1]. If X is a con-
tinuum, we represent A as A":

x|X
k
A
(x)/x, where

the integral denotes logical union. If X is discrete,
we replace the integral by a summation. A type-2
fuzzy set in X is AI , and the membership grade of
x3X in AI is k

AI
(x), which is a type-1 fuzzy set in

[0,1]. The elements of the domain of k
AI
(x) (e.g., the

vertical axis in Fig. 2a and the horizontal axis in
Fig. 2b) are called primary memberships of x in
AI and the memberships of the primary member-
ships in k

AI
(x) (e.g., the vertical axis in Fig. 2b) are
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called secondary memberships of x in AI . If all the
membership grades of AI are such that, for every
x3X, only one primary membership has a second-
ary membership equal to 1 (e.g., triangles), then we
call the set of all such primary memberships the
principal membership function of AI . The member-
ship grade of any x3X in AI can be represented as
k
AI
(x)":

u|*0,1+
f
x
(u)/u. The membership function of

a type-2 fuzzy set can be thought of as a fuzzy-
valued function which assigns to every x3X
a type-1 fuzzy membership grade. It is in this sense
that we call X the domain of the type-2 fuzzy set.

3.3. Operations on type-2 sets

We have just seen that the membership grades of
type-2 sets are type-1 sets; therefore, in order to
perform operations like union and intersection on
type-2 sets (which are needed to implement a type-2
FLS), we need to be able to perform t-conorm and
t-norm operations between type-1 sets. This is done
using Zadeh's Extension Principle (e.g., [56,7,13]).
As is well known [22], a binary operation * be-
tween two crisp numbers can be extended to two
type-1 sets F":

v
f (v)/v and G":

w
g(w)/w, as (as

above, the integrals denote logical unions)

F*G"P
v
P
w

[ f (v)wg(w)]/(v*w) (10)

where w denotes the chosen t-norm. We will gener-
ally use product or minimum t-norm and max-
imum t-conorm. For example, the extension of the
t-conorm operation to type-1 sets is

F\GP
v
P
w

[ f (v)wg(w)]/(vsw). (11)

This is called the join operation and \ denotes the
join operation [35]. Similarly, the extension of the
t-norm operation to type-1 sets, which is known as
the meet operation [35], is

F]GP
v
P
w

[ f (v)wg(w)]/(v'w) (12)

where ] denotes the meet operation.

Example 1 (Karnik and Mendel [13]). Let F and
G be two interval type-1 sets with domains [l

f
, r

f
]

and [l
g
, r

g
], respectively (we drop the tilde, since the

sets are crisp). Using (12), the meet between F and
G, under product t-norm, can be obtained as
F]G:

v|F
:
w|G

(1]1)/vw. Observe that: (a) each term
in F]G is equal to the product vw for some v3F
and w3G, the smallest term being l

f
l
g

and the
largest r

f
r
g
; and, (b) since both F and G have

continuous domains, F]G also has a conti-
nuous domain; consequently, F]G is an interval
type-1 set with domain [l

f
l
g
, r

f
r
g
], i.e.,

F]G":
u|*lf lg ,rfrg +

1/u. In a similar manner, the meet
_n

i/1
F
i
of n interval type-1 sets F

1
,2,F

n
, having

domains [l
1
, r

1
],2,[l

n
, r

n
], respectively, under

product t-norm, is an interval set with domain
[_n

i/1
l
i
, _n

i/1
r
i
]. Note that Kaufman and Gupta

[20] give a similar result for the multiplication of
fuzzy numbers.

We have developed fast algorithms for comput-
ing join and meet of type-1 fuzzy sets for some cases
where the sets involved are not interval type-1 sets
(see [13,15] for details; see, also [5]).

Algebraic operations between type-1 sets are also
de"ned using (10), e.g., the algebraic sum of F and
G can be de"ned as

F#G"P
v
P
w

[ f (v)wg(w)]/(v#w). (13)

Example 2 (Karnik and Mendel [13]). Using the
same reasoning as in Example 1, it can be shown
that when F and G are interval type-1 sets with
domains [l

f
, r

f
] and [l

g
, r

g
], respectively, their al-

gebraic sum is also an interval type-1 set with
domain [l

f
#l

g
, r

f
#r

g
] (see [20] for a similar

result). More generally, we have proved [13,15] the
following result for interval type-1 sets: Given n
interval type-1 sets F

1
,F

2
,2, F

n
with means

m
1
, m

2
,2,m

n
and spreads s

1
, s

2
,2, s

n
, their a$ne

combination +n
i/1

a
i
F
i
#b, where a

i
(i"1,2, n)

and b are crisp constants, is also an interval
type-1 set with mean +n

i/1
a
i
m

i
#b and spread

+n
i/1

Da
i
Ds
i
.

Observe, from (10) and (12), that, when using
product t-norm, the product of F and G is the same
as the meet of F and G; hence, all our earlier
discussions about the meet operation under
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Fig. 3. (a) The interval type-2 set shown in Fig. 2a. Two embed-
ded type-1 sets are also shown, one with a thick dashed line and
the other with a thick solid line. (b) Centroid of the type-2 set in
Fig. 3a.

product t-norm apply to the multiplication of
type-1 sets under product t-norm.

Using the Extension Principle, an n-ary opera-
tion f (h

1
,2,h

n
) on crisp numbers can be extended

to n type-1 fuzzy sets F
1
,2, F

n
as [35]

f (F
1
,2,F

n
)

"Ph1 2Phn k
F1

(h
1
)w2wk

Fn
(h

n
)/f (h

1
,2,h

n
)

(14)

where all the integrals denote logical union, and
h
i
3F

i
for i"1,2, n.

Next, we de"ne the concept of the `centroida of
a type-2 set using (14) [13,18]. This concept is
required in a type-2 FLS, as we explain below in
Section 3.4. Recall that the centroid of a type-1 set
A, whose domain is discretized into N points, is
given as

C
A
"

N
+
i/1

x
i
k
A
(x

i
)N

N
+
i/1

k
A
(x

i
). (15)

Similarly, the centroid of a type-2 set AI , whose
domain is discretized into N points, can be de"ned
using (14) as follows. If we let D

i
"k

AI
(x

i
), then

C
AI
"Ph12PhN k

D1
(h

1
)w2wk

DN
(h

N
)N

C
N
+
i/1

x
i
h
iN

N
+
i/1

h
iD (16)

where h
i
3D

i
, and all the integrals denote logical

union. Because of the importance of (16) to a type-2
FLS, we shall elaborate on its meaning and compu-
tation.

Every combination, Mh
1
,2,h

N
N(h

i
3D

i
), con-

sidered when computing C
AI
, can be thought to

form the membership function of some type-1 set A@
which has the same domain as AI . We call A@ an
embedded type-1 set in AI (see Fig. 3a for two exam-
ples of embedded type-1 sets). Every embedded
type-1 set also has a weight associated with it,
which is calculated as the t-norm of the secondary
memberships corresponding to Mh

1
,2,h

N
N that

make up that embedded set. The type-2 set AI can,
therefore, be thought of as a large collection of
embedded type-1 sets, each having a weight asso-
ciated with it, and, its centroid C

AI
can be thought

of as a type-1 set whose elements are the centroids

[computed via (15) by using h
i
in place of k

AI
(x

i
)] of

all the embedded type-1 sets in AI , and their mem-
berships are the weights associated with the corre-
sponding embedded sets. If the domain of AI and/or
k
AI
(x

i
) (x3AI ) is continuous, the domain of C

AI
is

also continuous. The number of all the embedded
type-1 sets in AI , in this case, is uncountable; there-
fore the domains of AI and each k

AI
(x

i
) (x3AI ) have

to be discretized for the calculation of C
AI
. We

assume discretization.

Example 3 (Karnik and Mendel [13,18]). If AI
is an interval type-2 set, (16) simpli"es to
C

AI
":h12:hN 1 /[+N

i/1
x
i
h
i
/+N

i/1
h
i
] where each

h
i
belongs to some interval in [0,1]. Consider the

interval type-2 set in Fig. 3a. Using the simple
computational procedure described in [13,18], we
"nd that C

AI
is an interval type-1 set with domain

[0.39855,0.60145]. As explained in [13,18], only
two sets of computations are needed to obtain C

AI
,
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Fig. 4. The structure of a type-2 FLS. Note that output processing consists of type reduction followed by defuzzi"cation.

one each for its left and right end-points, and, each
of these computations requires at most N iter-
ations, where N is the number of points that the
domain of AI has been discretized into.

See [13,18] for more discussions about the cen-
troid of a type-2 set, including how it can be com-
puted for general type-2 sets.

3.4. Type-2 fuzzy logic systems

Fig. 4 depicts the structure of a type-2FLS
[12,13,19]; it is quite similar to a type-1 FLS, the
only di!erence being that the antecedent and/or
consequent sets in a type-2 FLS are type-2, so that
each rule output set is type-2. Extended versions of
type-1 defuzzi"cation methods [obtained using
(14)] yield a type-1 set from the type-2 rule output
sets. We call this process type reduction [14] rather
than defuzzi"cation, and the resulting type-1 set,
the type-reduced set. The type-reduced set can then
be defuzzi"ed to obtain a crisp output. We call the
combination of type reduction and defuzzi"cation
output processing. An example of output processing
is depicted in Fig. 5. The type-reduced set of
a type-2 FLS shows the possible variation in the
crisp output of the FLS due to uncertain natures of
the antecedents and/or consequents. It establishes

a band of values around a crisp output value in
much the same way that a con"dence interval es-
tablishes a band about a point estimate when
stochastic uncertainty is present; but, it does this
for linguistic uncertainties.

The fundamental design requirement in our work
is that a type-2 FLS must reduce to a type-1 FLS
when all rule uncertainties disappear, in which case,
output processing reduces just to defuzzi"cation.

Just as a type-2 set can be thought of as a collec-
tion of a large number of embedded type-1 sets,
a type-2 FLS can be thought of as a collection of
a large number of embedded type-1 FLSs (see Fig.
6), each of which has a certain weight associated
with it. Consequently, as shown in Fig. 6, each
point and its membership function in the type-re-
duced set of a type-2 FLS can be thought of as,
respectively, the output and the weight associated
with an embedded type-1 FLS. When interval type-2
sets are used, as in this paper, then a type-2 FLS is
a combination of just two type-1 FLSs, one for the
left-end of the type-reduced set (y

L
) and the other for

the right-end of the type-reduced set (y
R
). This repres-

ents a huge savings in computation for an interval
type-2 FLS over other type-2 FLSs.

Consider a type-2 FLS having p inputs,
x
1
3X

1
,2, x

p
3X

p
, and one output y3>. Let us

suppose that it has M rules, where the lth rule has
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Fig. 5. Pictorial representation of output processing. First, the individual rule output sets are combined in some manner to obtain
type-2 fuzzy set BI (Fig. a); then, type reduction is applied to BI to obtain the type-1 set > (Fig. b); "nally, > is defuzzi"ed to produce the
crisp output y

0
(Fig. c).

Fig. 6. Interpretation of a type-2 FLS as a collection of type-1 FLSs. This "gure is drawn assuming that membership grades have been
discretized, as would be done in practice, so that there are a "nite number of type-1 FLSs.

the form:

Rl: IF x
1

is FI l
1

and x
2

is FI l
2

and 2

and x
p

is FI l
p
, THEN y is GI l,

l"1,2, M. This rule represents a fuzzy relation
between the input space X

1
]2]X

p
and the

output space > of the FLS. We denote the
membership function of this type-2 relation as
k
FI

l
1C2CFI

l
p?GI

l (x, y) where FI l
1
]2]FI l

p
denotes

the Cartesian product of FI l
1
,2,FI l

p
[9], and

x"col(x
1
,2,x

p
). When an input x@ is applied, the

composition of the fuzzy set XI @, to which x@ belongs

and the rule Rl is found by using the extended
sup-star composition that is derived in [13,15],

kXI {"FI l1C2CFI
l
p?GI

l(y)"^

x|XI {

[kXI {
(x)]k

FI
l
1C2CFI

l
p?GI

l(x,y)].

(17)

This extended sup-star composition uses the join
and meet operations instead of the sup and t-norm
operations that are used in the sup-star composi-
tion of type-1 FL (which helps explain why we
spent time describing how to compute the join and
meet operations).

When we use singleton fuzzi"cation, the fuzzy set
XI @ is such that it has a membership grade of unity
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corresponding to x"x@ and zero membership
grades for all other inputs (as a type-2 set, this
means that its secondary membership function at
x"x@ is 1/1); therefore, (17) reduces to

kXI {"FI l1C2CFI
l
p?GI

l (y)"k
FI

l
1C2CFI

l
p?GI

l (x@, y). (18)

We denote XI @"FI l
1
]2]FI l

p
PGI l as BI l, the output

set corresponding to the lth rule. The right-hand
side of (18) is computed using an implication mem-
bership function (for an interesting discussion
about rule-based versus implication-based member-
ship functions, see [54]). Since we generally use
product or minimum implication (corresponding to
the meet operation with product or minimum
t-norm in the type-2 case), (18) can be written as

k
BI

l(y)"k
FI

l
1C2CFI

l
p
(x@)]k

GI
l (y). (19)

The membership function for the Cartesian prod-
uct of type-2 fuzzy sets is given by the meet of the
associated type-1 membership functions at each x@
[13,15]; hence, (19) can be rewritten as

k
BI

l(y)"k
FI

l
1
(x

1
)]2]k

FI
l
p
(x

p
)]k

GI
l (y)

"k
GI

l(y)]C
p
_

i/1

k
FI

l
i
(x

i
)D (20)

where we have used the fact that type-2 member-
ship functions commute for minimum or product
t-norms [13,15]. Note that the degree of xring cor-
responding to the lth rule is _p

i/1
k
FI

l
i
(x

i
).

As mentioned above, type-reduction methods in
a type-2 FLS are extended versions of type-1 de-
fuzzi"cation methods. We have developed the
following type reducers [13,14,19]: centroid, center-
of-sums, height, modi"ed height, and center-of sets.
Here, by way of illustration, we only describe
center-of-sets type reduction. We introduced this
method to overcome some shortcomings of height
type reduction. In the type-1 case, the two defuzzi"-
cation methods are quite similar, and, when all
consequent sets are convex, normal and symmetri-
cal, they give the same answer. In the type-2 case,
however, the two methods di!er. For example,
when only one rule is "red, the height type reducer
(surprisingly) gives a single point value instead of
an interval; so, it loses its ability to account for the
rule's uncertainties. A center-of-sets type reducer,
however, gives an interval; so, it is able to account

for the rule's uncertainties (although it only ac-
counts for the uncertainty in the consequent).

The center-of-sets type reducer requires the cen-
troid of each rule consequent C

GI
l (e.g., see Example

3). Once all the consequent centroids are computed
(which can be done ahead of time), the center-of-
sets type-reduced set is computed by using
[13,14,19]:

>
#04

(x@)"P
c1

2P
cM
P
e1

2

P
eM

¹M
l/1

k
C

l(c
l
)w¹M

l/1
k
E

l (e
l
)NC

M
+
l/1

c
l
e
lN

M
+
l/1

e
lD

(21)

where ¹ and w indicate the chosen t-norm;
c
l
3Cl"C

GI
l ; and, e

l
3El"_p

i/1
k
F

l
i
(x@

i
). A crisp

output for the FLS is obtained by "nding the cen-
troid of>

#04
(x@). This is the defuzzi"er step shown in

Fig. 4.
For an interval type-2 FLS, i.e., when all the

antecedents and consequents in a FLS are interval
type-2 sets, (21) reduces to

>
#04

(x@)"P
c1

2P
cM
P
e1

2P
eM

1NC
M
+
l/1

c
l
e
lN

M
+
l/1

e
lD

(22)

where each c
l

and e
l

belongs to some interval in
[0,1]. Eq. (22) can be computed using the computa-
tional procedure presented in [13,18]. The defuzzi-
"ed ouput of an interval type-2 FLS is simply the
average value of the left- and right-end points of its
type-reduced set, i.e., y"(y

L
#y

R
)/2.

Example 4 (Karnik and Mendel [13]). Here we
present a function approximation example of
a type-2 FLS which uses center-of-sets-type reduc-
tion. For simplicity, only the consequent sets are
assumed to be type-2. The function to be approxi-
mated is y"100!x2 for x3[!10,10]. Given are
10 realizations, each with 9 (x, y) pairs. Each of these
pairs include values of y corrupted by additive
noise which is uniformly distributed in [!10,10].
For each applied input xl (l"1,2,9) we "nd the
minimum (yl

.*/
) and the maximum (yl

.!9
) of the 10

y values. For example, 3 of the 9 (xl,[yl
.*/

, yl
.!9

])
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Fig. 7. The solid line shows the crisp output of the type-2 FLS
and the dashed lines indicate the upper and lower bounds
obtained from type reduction. The true function value is shown
by the thick dash-dotted line.

pairs are:

(x1, [y1
.*/

, y1
.!9

])"(!10,[!7.79,6.49]),

(x5, [y5
.*/

, y5
.!9

])"(0,[93.09,109.95]),

(x8, [y8
.*/

, y8
.!9

])"(7.5,[34.14,50.85]).

The FLS forms one rule from each pair. The rules
are of the form IF x is A THEN y is BI . Since only
the y

i
are uncertain in the given input}output pairs,

we choose the antecedents as type-1 sets and the
consequents as type-2 sets. In this example, the
antecedent sets are chosen to be type-1 Gaussian
and the type-2 consequent sets are described as
type-1 Gaussian fuzzy sets with uncertain means
(as in Fig. 2). For the lth rule, the mean of the
consequent Gaussian is perturbed in the range
[yl

.*/
, yl

.!9
]. The FLS uses singleton fuzzi"cation,

max t-conorm, product t-norm and product infer-
ence. The details of this example can be found in
[13]. Results are depicted in Fig. 7, which compares
the true function values with the crisp output of the
type-2 FLS and also shows upper and lower
bounds which are the results of type reduction.
They give a measure of the uncertainty in the ap-
proximation caused by the noisy training values,
something that cannot be obtained using just
a type-1 FLS approximation.

One may argue that, in a type-1 FLS, the output
set before defuzzi"cation can be used in place of the
type-reduced set, so we do not need type-2 FLSs;
but to do so is incorrect. The output of a type-1
FLS just represents a combination of all the rule
outputs of a single type-1 FLS, whereas the type-
reduced set for a type-2 FLS represents a collection
of outputs of a large number of type-1 FLSs, each
having a level of uncertainty associated with it
equal to the membership in the type-reduced set.
Rule uncertainties #ow through a type-2 FLS in
a very natural manner, whereas they do not #ow
through a type-1 FLS at all.

Other applications of type-2 FLSs can be found
in [16,17,19].

3.5. Fuzzy basis functions in a type-2 FLS

We have seen, in Sections 2.1 and 2.2, that the
defuzzi"ed output of a type-1 FLS can be described
as a fuzzy basis function expansion. Unfortunately,
this does not carry over to general type-2 FLSs.
Karnik and Mendel [13] and Karnik et al. [19]
explain that even though each term to the right of
the slash in (21) can be interpreted as a valid FBF
expansion, the defuzzifed value that is obtained as
the center of gravity of this center of sets type-
reduced set is not a FBF expansion. Interestingly
enough, the terms to the right of the slash in the
other type reducers that have been considered in
[13,14] and [19] cannot even be interpreted as
a valid FBF expansion. So, the concept of a FBF
expansion does not seem to be of utility in general
type-2 FLSs; however, it is still useful for a type-2
interval-set FLS, because, as we have stated above,
each output of such a FLS can be represented as
y"(y

L
#y

R
)/2, and y

L
and y

R
each can be repre-

sented as a fuzzy basis function expansion.

4. Examples

4.1. Signal processing example

In this example we demonstrate how available
information about the training data can be incorp-
orated into a type-2 FLS to obtain more informa-
tion about its output than can be obtained using
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a type-1 FLS, and also a lower mean-squared error
(MSE) than for a comparably designed type-1 FLS.
We consider the following problem. A FLS is
trained with noisy data; if we know the noise
strength, how can we obtain bounds on the output
of the FLS within which the true value of the
output is likely to lie? We demonstrate this for
a 3 input}1 output one-step predictor of the
Mackey}Glass chaotic time series [29]. If
x(k) (k"1,2,2) is the time series, given
x(k!2), x(k!1) and x(k), we predict x(k#1). Pre-
diction for this time series has been very widely
studied in the neural network and fuzzy logic litera-
tures (e.g., [24,37,38,4,45,51,10,11]); but, for all
prior studies (to the best knowledge of this author)
perfect training and testing data were used. The
present study, in which only noisy measured values
are available both for training and testing, is more
in the spirit of the types of problems that signal
processors deal with.

The Mackey}Glass chaotic time series is the
solution to the following non-linear time-delay dif-
ferential equation:

dx(t)

dt
"

0.2x(t!q)
1#x10(t!q)

!0.1x(t). (23)

It is known that when q'17 this time series is
chaotic. We chose q"30. To simulate (23) we used
Euler's method [44]. Letting

h(x, k)"
0.2x(k!q)

1#x10(k!q)
!0.1x(k),

we computed x(k#1)"x(k)#gh(x, k) where g is
a small number (we chose g"1), and the initial
values of x(k), k)q were set randomly.

To keep things really simple, we only used three
fuzzy sets (F

1
,F

2
, and F

3
) to describe x(k); so, there

are a total of 33"27 three-antecedent rules. Each
antecedent fuzzy set was initially characterized by
a type-1 Gaussian membership function, with mean
m and standard deviation p, where initially:
m

F2
"average value of the training data, p

F2
"p

(training data), m
F1

"m
F2
!2p

F2
, m

F3
"m

F2
#2

p
F2

, and p
F1
"p

F3
"2p

F2
. The centers of the con-

sequent fuzzy sets were initially chosen as random.
Both our type-1 and type-2 FLSs used singleton
fuzzi"cation, product t-norm and product infer-

ence. Each of the type-1 27 rules has 7 parameters
associated with it: the means and standard devi-
ations of the three fuzzy sets and the center of the
consequent fuzzy set. So, the entire type-1 rule base
is described by 189 parameters.

Our design approach was to "rst design (i.e.,
optimize) a type-1 FLS using available training
data. Then we created a type-2 FLS from this
type-1 FLS by incorporating information that is
available about the measurement noise. The design
of the type-2 FLS did not change the optimized
parameters of the type-1 FLS that also appeared in
the type-2 FLS; it only chose the new parameters of
the type-2 FLS. Because these new parameters ac-
counted for the uncertainty of the measurement
noise in the training data, if there is no noise, then
these new parameters disappeared, and the type-2
FLS reduced to an optimized type-1 FLS. This is
certainly not the only way to design a type-2 FLS
(we are presently developing other design methods
and will report on them in a future publication), but
it is consistent with our basic design requirement
that, if all uncertainty disappears, a type-2 FLS
must reduce to a type-1 FLS. Both the type-1 and
type-2 FLSs were designed using a single available
training realization, because if we are given a di!er-
ent noisy realization of the same data set, we would
normally choose a di!erent set of parameters to
obtain the best predictions.

Our training data consisted of the 500 data
points z(1), z(2),2, z(500), where z(k)"x(k)#n(k)
and n(k) is uniformly distributed noise. We con-
sidered two SNRs } 0 and 10 dB. Our testing
data consisted of the 500 data points z(501),
z(502),2, z(1,000).

4.1.1. Designing the type-1 FLS
We used center-of-sets defuzzi"cation (which, in

this case, is equivalent to height defuzzi"cation
because all the consequent fuzzy sets are symmetric
about their mean values) and optimized the 189
parameters using a steepest descent (i.e., back
propagation) algorithm to minimize the average
sum of the squared errors between the output of the
FLS and the training data. We do not provide any
of the details for doing this here because they are
very well known (e.g., [28]).
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c

Fig. 8. Prediction of Mackey}Glass chaotic time-series in the
presence of uniform noise, when SNR"0 dB. The thick solid
line in (a) and (b) indicates the true time series. In (a) the
dash-dotted line indicates the type-1 output and the dashed line
indicates the type-2 crisp output. Fig. (b) shows the upper and
lower bands of the type-reduced set for the type-2 FLS. In (c), the
heavy solid line shows the noisy data used for training and the
thick solid line shows the noise-free data.

4.1.2. Designing the type-2 FLS
We used center-of-sets-type reduction and inter-

val type-1 sets. Note that, if we had many di!erent
realizations of the training data and if we followed
the same design procedure for the type-1 FLS, as
just described, the means of the three sets would not
remain the same from realization to realization.
The means would vary in some range depending
on the strength of the noise. Because the noise is
uniform, n(k)3[!d, d] and d"J3p

n(k)
; so, we

modeled each fuzzy set in the type-2 FLS as a type-
2 set that is associated with a Gaussian type-1 set,
where the latter has an uncertain mean, as in Fig. 2.
For the type-2 antecedent membership functions,
we centered the footprint of uncertainty about the
optimized mean, as determined from the type-1
design, and arbitrarily chose the interval [m

1
,m

2
]

to equal p
n(k)

. We also assumed that the footprint of
uncertainty for the consequent set was centered
about its optimized value, as determined from the
type-1 design, and also chose its uncertainty inter-
val [m

1
, m

2
] equal to p

n(k)
. No attempt was made to

optimize the footprints of uncertainty (i.e., optimize
the values of m

1
and m

2
) for the antecedents or

consequents (although normally this would be
done), because the goal of this simple example is
merely to demonstrate that a type-2 FLS can out-
perform a type-1 FLS.

Results for SNR"0 and 10 dB are depicted in
Figs. 8 and 9, respectively. Because it is di$cult to
tell the di!erence between the type-1 output and
the defuzzi"ed output of the type-2 FLS, we sum-
marize RMSEs for the two designs in Table 1.
Observe that even without any optimization of the
type-2 parameters, the RMSEs of the type-2 FLSs
are always lower than those of the type-1 FLSs.
Observe, also, from part (b) of the "gures, that at
low SNRs, the noise-free time series almost always
lies within the upper and lower curves of the type-

reduced set; but, that at higher values of SNR the
noise-free time series does not always lie within
those curves. We conjecture that these results can
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Fig. 9. As in Fig. 8, except for SNR"10 dB.

Table 1
RMSEs for type-1 and type-2 FLS forecasters

SNR (dB) Type-1 FLS Type-2 FLS

0 0.1517 0.1429
10 0.0953 0.0838

be improved by optimizing the parameters of the
type-2 FLSs to further minimize MSE.

It is important to again point out that the results
that we have presented are for a single realization.
A more complete study would repeat the type-1
and type-2 designs for a Monte-Carlo of say 50
realizations, and then provide a table like Table 1,
but for the 50 realizations. We are presently doing
this type of Monte Carlo simulation study for de-
signs in which parameters of the type-1 and type-2
FLSs are all optimized, and will report on them in
a future publication.

These results demonstrate that one can indeed
obtain better forecasts using a type-2 FLS } a FLS
that accounts for measurement noise uncertainties.

4.2. Digital communication example

Wang and Mendel [52] applied a type-1 FLS to
equalization of a time-invariant non-linear channel,
and demonstrated that the bit error rates (BER) of
their fuzzy equalizer were close to that of the opti-
mal equalizer. Sarwal and Srinath [46] observed
that a transversal "lter requires a much larger
training set to achieve the same BERs as compared
to a FL equalizer. Lee [25] proposed a complex
fuzzy adaptive "lter for QAM constellation channel
equalization. Patra and Mulgrew [42] used a fuzzy
adaptive "lter to implement a Bayesian equalizer,
and also used it to eliminate co-channel interfer-
ence [43]. All of these fuzzy approaches to adaptive
equalization focus on time-invariant channels. In
today's communication world, such as in mobile
communication, channels are time varying and
non-linear. Observing this, we apply our type-2
FLS to such channels.

In a baseband communication system subject to
inter-symbol interference (ISI) and additive Gaus-
sian noise (AGN), the measured channel output,

928 J.M. Mendel / Signal Processing 80 (2000) 913}933



r(k), can be represented as:

r(k)"r( (k)#e(k)"
n
+
i/0

a
i
(k)s(k!i)#e(k) (24)

where r( (k) is the noise-free signal, e(k) is AGN, s(k) is
the symbol to be transmitted, a

i
(k) (i"0,1,2, n)

are the time-varying channel coe$cients (taps), and
n is the order of the channel (there are n#1 taps).
Here we assume that s(k) is binary, either #1 or
!1 with equal probability. Our channel equaliza-
tion goal is to recover the input sequence s(k)
(k"1,2,2) based on a sequence of r(k) values
without knowing or estimating the channel coe$-
cients.

In a FL-based equalizer (such as in [52]) the rule
antecedents are r(k), r(k!1),2, r(k!p#1),
where p is the equalizer order (number of taps in the
equalizer). r( (k)"[r( (k),2, r( (k!p#1)]T is called
the channel state [1], and there are n

s
"2n`p chan-

nel states [1].
Patra and Mulgrew [42] developed a normalized

Bayesian equalizer whose output is given by
sgn[ f (r(k))], where r(k)"[r(k),2, r(k!p#1)]T,
and

f (r(k))

"

+ns
i/1

y6 i<p~1
l/0

expC!
1

2A
r(k!l)!r(

i
(k!l)

p
e

B
2

D
+ns

i/1
<p~1

l/0
expC!

1

2A
r(k!l)!r(

i
(k!l)

p
e

B
2

D
.

(25)

In (25) y6 i equals #1 or !1, p
e

is the standard
deviation (std) of e(k), and r(

i
(k!l) is the lth ele-

ment (l"1,2,2, p) of the ith channel state
(i"1,2,2n`p). They also showed that a type-1
FLS whose antecedent MFs are Gaussian, and uses
product inference and height defuzzi"cation can
implement (25) perfectly.

Eq. (25) was derived in [42] for time-invariant
channels. For time-varying channels, the channel
coe$cients, a

i
(k) (i"0,1,2, n), are uncertain,

which means that each channel state element,
r(
i
(k!l), is also uncertain. We represent this uncer-

tainty in a type-2 FL equalizer using type-2 Gaus-
sian antecedent MFs with uncertain means, as
described below.

In the rest of this section we focus on the follow-
ing channel model that was used in [21]:

r(k)"a
1
s(k)#a

2
s(k!1)#[a

1
s(k)#a

2
s(k!1)]2

#0.7[a
1
s(k)#a

2
s(k!1)]3# 0.5[a

1
s(k)

#a
2
s(k!1)]4#e(k) (26)

where nominal values for the channel's coe$cients
are a

1
"1, and a

2
"0.7, and we assume that we

know the order of the channel, n, i.e., that it has
2 taps. We choose the number of equalizer taps, p,
to be equal to n#1, i.e., p"2; hence, there are
2n`p"8 channel states. When a

1
and a

2
are con-

stants, the channel states of (26) are 8 individual
points on the r(k)!r(k!1) plane.

We focus on the case when the channel is time
varying, i.e., when a

1
and a

2
are time varying. The

time variations of each of these coe$cients was
simulated, as in [3], by using a second-order Mar-
kov model in which a white noise source drove
a second-order Butterworth low-pass "lter. The
amplitude of the random noise was controlled by
a scalar parameter b; when b"0 then each coe$c-
ient was a constant, whereas for b'0 they were
both time varying, and, the larger b was, the larger
were the ranges of the time-varying coe$cients. For
b'0 the channel states now are 8 smeared out
clusters, because r(

i
(i"1,2,8) are uncertain.

The 8 clusters establish 8 rules in a type-2 FLS,
where the lth rule is:

Rl: IF r(k) is FI l
1

and r(k!1) is
FI l
2

THEN s( (k) is Gl.

In this rule: FI l
1

and FI l
2

are type-2 fuzzy sets charac-
terized by Gaussian MFs with uncertain means,
and Gl is a type-1 fuzzy set characterized by
a Gaussian MF with mean #1 or !1 as deter-
mined by the channel state category (which is crisp,
either #1 or !1). We used height type reduction
(which, in this case, is the same as center-of-sets
type reduction, because the rule consequent is
type-1), i.e.,

>
h
(x)"Ph1 Ph2 2PhM 1N

+M
l/1

y6 l h
l

+M
l/1

h
l

(27)

where y6 l equals #1 or !1 (and is the center of
consequent set Gl), and h

1
3Dl"_2

k/1
k
FI

l
k
(x

k
)
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Fig. 10. Performance of type-1 FL equalizer, nearest neighbor
equalizer, and type-2 FL equalizer, versus SNR when b"0.15
and the number of training prototypes is 121. (a) average BER,
and (b) std of BER for 50 Monte-Carlo realizations.

in which

k
FI

l
k
(x

k
)"expC!

1

2A
x
k
!ml

k
p
e
B

2

D,
ml

k
3[ml

k1
, ml

k2
], k"1,2. (28)

In order to complete the description of the type-2
FLS, we must specify numerical values for
[ml

k1
,ml

k2
] (k"1,2) and p

e
. We used a clustering

method [1,8,27] applied to a training sample of
noisy measurements to determine the former para-
meters. In [2] it is shown that equalizer perfor-
mance is not very sensitive to the value used for p

e
.

In our simulations we assumed that the value of
p
e

was known.
We compared our type-2 FL equalizer with the

Patra and Mulgrew's type-1 FL equalizer [42] and
Savazzi, et al.'s K-nearest neighbor (NN) equalizer
[47]. In our simulations, we used a training se-
quence of length 121, a testing sequence of length
879, and additive Gaussian noise. Here we show
only a small part of our simulation results, those for
a moderate amount of channel-coe$cient time
variability, for which b"0.15. Simulations were
run for 5 di!erent SNRs ranging from 26 to 34dB
(26:2:34). Note that we ran our simulations for high
SNRs, because the channel in (26) is very non-
linear, and because the simulations in [21] were
presented for SNR ranging from 22 to 40 dB. We
ran 50 Monte Carlo simulations for each value of
SNR.

In Fig. 10 we show the mean and std of bit error
rate (BER) for the 50 MC realizations. Observe that
(1) in terms of the mean values of BER, the type-2
FL equalizer performs better than either the NN or
type-1 fuzzy equalizers; and, (2) in terms of the std
of BER, the type-2 FL equalizer is more robust to
the additive Gaussian noise than either the NN or
type-1 fuzzy equalizers. More detailed results are
given in [27], where it is also shown that the type-2
FL equalizer outperforms the NN and type-1 fuzzy
equalizers over a wide range of b values.

5. Conclusions

Fuzzy logic systems are comprised of rules, and
quite often, the knowledge that is used to construct

these rules is uncertain. Antecedent or consequent
uncertainties translate into uncertain antecedent or
consequent membership functions. Type-1 FLSs,
whose membership functions are type-1 fuzzy sets,
are unable to directly handle rule uncertainties.
They can only handle measurement uncertainties.
Type-2 FLSs, in which antecedent or consequent
membership functions are type-2 fuzzy sets whose
membership grades are themselves type-1 fuzzy
sets, are very useful in circumstances where it is
di$cult to determine an exact membership func-
tion for a fuzzy set; hence, they are useful for
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Table 2
Comparisons of type-1 and type-2 singleton and non-singleton FLSs

Type-1 FLS Type-2 FLS

1. No uncertainties about antecedents 1. Uncertainties about antecedents
or consequents or consequents are accounted for

(the footprint of uncertainty)
Singleton 2. No uncertainties on measurements 2. No uncertainties on measurements
fuzzi"cation that activate the FLS that activate the FLS

3. Only a point output is obtained 3. Both a type-reduced set and a
point output are obtained

1. No uncertainties about antecedents 1. Uncertainties about antecedents
or consequents or consequents are accounted for

(the footprint of uncertainty)
2. There are uncertainties on measurements 2. There are uncertainties on measure-

Non-singleton that activate the FLS; and they are ments that activate the FLS; and they
fuzzi"cation handled by treating the measurements are handled by treating the measure-

as fuzzy numbers ments as fuzzy numbers
(type-1 or type-2)

3. Only a point output is obtained 3. Both a type-reduced set and a
point output are obtained

incorporating rule uncertainties, and, they let us
propagate such uncertainties through them, so that
we can establish their e!ects at the output of the
FLS.

Table 2 summarizes the similarities and di!er-
ences between type-1 and type-2 singleton and
non-singleton FLSs. Much work needs to be done
on non-singleton type-2 FLSs, since they are the
ones that are most appropriate for signal process-
ing applications. We will report on such work in
a future publication.

Zadeh, the father of fuzzy logic, lately has been
advocating computing with words (CW) and using
fuzzy logic to do this. Since words mean diwerent
things to diwerent people, there is uncertainty asso-
ciated with words, which means that FL must
somehow use this uncertainty when it computes
with words. Type 1 FL cannot do this, but type
2 FL can. So, we believe that type-2 FLSs will also
have a signi"cant impact on the growing movement
to compute with words.

There are innumerable directions for extending
and applying type-2 FLSs. We have, for example,
recently developed type-2 TSK FLSs [26]. We are
also applying type-2 FLSs to classi"cation prob-

lems [53], forecasting of noisy time series, and
equalization of non-linear time-varying channels
[27]. We are also developing methods for the tu-
ning and design of type-2 FLSs and for the design
of non-singleton type-2 FLSs.

Now that measurement and rule uncertainties
can be handled in the framework of FL, this author
believes it is time for signal processors to become
more interested in FLSs. They let us do nonlinear
model-free robust signal processing. In order to
expedite this, we have created a collection of type-2
FLS M-"les (to be used in conjunction with
MATLAB) that are on-line at: http://sipi.usc.edu/
&mendel/software.
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