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ABSTRACT

In this paper we propose the use of adaptive-context-
based prediction in a sequential mode for lossless au-
dio compression. We show that lossless compression al-
gorithms with sequential context based prediction can
achieve better compression results than with forward-
frame-based linear prediction. Two distinct algorithms
are proposed and evaluated for audio signal sampled
at 48 kHz with 16 bits/sample. The context quanti-
zation and prediction in both algorithms are similar to
those used in an algorithm previously proposed for im-
age compression[7] but new solutions are provided for
modelling of errors and collecting the coding statistics.
The �rst algorithm uses histogram bucketing in a small
number of contexts in conjunction with an arithmetic
coder. The second algorithm uses parametric modelling
of errors in a large number of contexts in conjunction
with Golomb-Rice encoding.

1 INTRODUCTION

Lossless compression of high quality audio signals has
become a signi�cant topic of research, being considered
a desirable feature which must be implemented (at least
as one option) in the new high quality audio applica-
tions, e.g. digital versatile disks [1]. Lossless audio
compression may appear even more necessary in audio
and speech archiving [4] or whenever the audio signal
undergoes multiple encoding-decoding operations.

We consider here the lossless compression of high
quality audio signal, sampled at 48kHz with 16
bits/sample. The application of classical universal cod-
ing methods as Lempel-Ziv related algorithms[11], or
context algorithm [3][10] in their original forms does not
provide a good solution for lossless compression of audio
signal sampled at 16 bits/sample and it is even less ef-
fective for 20 or 24 bits/sample. Although the universal
algorithms are proven to be asymptotically optimal for
stationary sources, the complexity of their underlying
models will add an extra term to the best achievable
coding rate. This additional term is asymptotically de-
creasing to zero, but it will still be important for usual
sizes of �les (in the range of Mbytes).

One solution to the above problem is to constrain the
underlying model of Context algorithm according to the
apriori information about the nature and characteris-
tics of the signals to be compressed. In this way, the
universality of the coding scheme will be limited, but
for the particular constrained class of signals the cod-
ing performance will be improved. Properties such as
scaling, extrapolation capability, �nite dynamic range
of the output signal, must be apriori enforced during
the modelling stage of audio signal.

The combination of linear prediction models (largely
used in audio and speech modelling for compression ap-
plication) with the powerful context algorithm (proven
to encode at optimal rates Markov, or even more gen-
erally, tree sources) has not yet been considered for
lossless audio compression. Several studies have been
performed for lossless image compression [6] [7] [9], but
there the set of the input signal was usually restricted
to f0; : : : ; 255g, while now the interesting alphabet is at
least f0; : : : ; 65535g. Two major problems arise when
dealing with such large sizes of the alphabet: the se-
lection of quantized contexts for coding, and the mech-
anism to be used in collecting the statistics for error

coding.

In this paper we examine several solutions for the ap-
plication of Context algorithm to audio compression:
the prediction model operates in sequential mode (no
parameters need to be transmitted); each context has
a speci�c linear predictor, updated by recursive Least
Squares (RLS) algorithm; the intercept in the model
is estimated based on some auxiliary contexts, selected
according to the order statistics of previous samples;
histogram-bucketing is used for modelling the error pdf
when arithmetic encoding is used to encode the errors,
according to their estimated pdf; or, alternatively, para-
metric modelling of errors conditioned on more re�ned
contexts makes possible the use of Golomb-Rice encod-
ing.

2 CONTEXT BASED PREDICTION

Di�erent solutions were considered for using the Context
algorithm for compression of graylevel images, where the



most common uncompressed format is 8 bits per pixel.
Several alternative techniques are available for context
quantization and error modelling[6],[7],[9]. We use here
context tree modelling similar to the one proposed in
[7]. For each sample xn of the audio signal we select the
contextual information from a context mask containing
the most recent N past samples xn�N ,...,xn�1. The
values in the context mask are increasingly ordered re-
sulting inX(1),...,X(N). A primary conditioning context
is selected by a decision tree of depth 2 where at each
node one decision variable is compared with some �xed
thresholds. The �rst decision variable is the absolute
value of the prediction error at the preceding position
"(n � 1); the second one is the range of the samples
inside the prediction mask, de�ned as � = X(N)-X(1).
The primary conditioning context is used for labeling
the parameters of the RLS predictors and in the case
of the �rst algorithm, also for labeling the histogram of
prediction error. The thresholds in the decision tree are
scaled according to the number of bits per sample in
the original signal. A secondary context is associated to
each primary context, in order to take into account the
ranking of sample magnitudes inside the context win-
dow. A Hasse cube forms the state transition diagramof
the �nite state machine (FSM) selecting the secondary
context[7]. In our experiments only the nodes in the
middle layer of the Hasse diagram are used to specify
the secondary context and therefore used for labeling
the �ne tuning parameters (intercepts) needed in the
adaptive prediction and, in the second algorithm, for
labeling the additional parameters for the Golomb-Rice
encoding. We note that fully adaptive context selec-
tion, using all nodes in the Hasse diagram as presented
in [6], has the potential of improving the compression
rate with several percents, but unfortunately with the
cost of a twofold increase in the overall complexity of
the algorithm.

The context tree previously used in the image com-
pression algorithm described in [7] was surprisingly
found to have an optimal behaviour also for the present
audio compression application: the best achievable per-
formance was obtained by keeping the context structure
and parameters at their optimal values found in the ex-
periments for image compression (these parameters rep-
resent quantization thresholds, forgetting factors). This
fact expresses once more the universality of Context al-
gorithm, where, due to adaptivity, most important fea-
tures in the signal (be it image or sound) can be learned
on the 
y, during encoding.

A recursive least squares algorithm with forgetting
factor is used for updating the parameters of the pre-
dictors in various primary contexts, which was shown
in [7] to be a particular case of FSM-L predictors. For
each context we track the power of prediction residu-
als (using an exponential forgetting accumulator) and
whenever it is below a threshold � the updating step is
omitted. We obtained a signi�cant speeding up of the

algorithm experimenting with di�erent thresholds, and
it appears that a feedback from the observed number of
updates per processed sample can be used to adapt the
threshold �.

3 CONTEXT BASED MODELLING AND

CODING OF PREDICTION ERRORS

The large alphabet size makes it very di�cult to han-
dle nonparametric distributions of prediction errors, but
we present in the next subsection a solution by combin-
ing histogram tracking with histogram bucketing, which
provides all necessary information needed to e�ciently
use arithmetic coding (algorithm FSM-L-HMB). The
more direct solution of using a parametric distribution
leads in the second subsection to the use of Golomb-Rice
coding (algorithm FSM-L-PD).

3.1 Histogram modelling and bucketing

(HMB)

Histogram tracking is widely used in signal compression
to adaptively track the time varying distribution of pre-
diction residuals. For audio signals with 16 or more bits
per sample, it is not anymore possible to directly use
the adaptive histogram tracking method as presented
in [6] and hence we have combined adaptive histogram
tracking with the histogram bucketing method[5].
The value of the error " is �rst invertibly mapped to

positive integers (negative errors into odd numbers and
positive errors to even numbers).

"0 =

�
2" if " � 0
2j"j � 1 otherwise

(1)

We split the value "0 into two parts, and transmit them
in two di�erent ways. The M most signi�cant bits of
"0 de�ne the integer "q = b "0

2M
c. This integer will be

�rst encoded, by means of arithmetic coding based on
the observed histogram. There is one histogram corre-
sponding to each primary context. We choose to adapt
the size of the alphabet for each histogram, according to
the number symbols actually observed over a time pe-
riod in the corresponding context. The symbols which
are not occurring frequently are not modeled by the his-
togram, and therefore have to be transmitted using ESC
sequences.
The statistics of the N �M less signi�cant bits of "0

(the second part to be encoded) in various contexts are
bucketed, by conditioning only with respect to the value
of the most signi�cant bits (the context is not taken into
account at all). The quantized contexts will condition
the probability distribution function of the quantized
value, "q, while the quantization error r"q = "0�M"q is
conditioned on "q , which re
ects the bucketing principle
in [5]. Now for each input sample we will send two
symbols, "q and r"q ; the �rst one will be encoded with
the arithmetic encoder, to take full advantage of the
adaptivity to symbol statistics. The gain of using an



arithmetic encoder for transmitting the second type of
symbols, ""q , was found to be less than a percent from
the total bitrate, when compared to the use of a Hu�man
coding with a �xed coding table. The high memory
requirement of histogram modelling is the main limiting
factor in establishing the number of primary contexts.

3.2 Context based, parametric distribution

modelling of prediction residuals

The use of parametric distribution for modelling the dis-
tribution of prediction residuals solves all di�culties in-
duced by the large size of the alphabet, but raises the
question of how much is lost by using a conditioning dis-
tribution less 
exible than the histogram. Fortunately,
with parametric modelling of residuals, the number of
contexts can be increased signi�cantly and the method
will still be practical. There will be a clear loss compared
to the use of histogram tracking for the same number
of contexts, but the latter requires more memory which
makes it nonpractical.
Selecting as parametric distribution the one-sided ge-

ometric distribution (OSG) makes the encoding very
fast, since the optimal code for this distribution is
known[2] to be the Golomb-Rice code (which is a special
class of Hu�man codes). We note that a similar encod-
ing technique was used in [4], but without context mod-
elling and with a di�erent prediction technique. Many
variations of Golomb-Rice codes have been introduced
in a series of papers, associated with the selection of the
LOCO-I [8] algorithm as the new JPEG-LS standard for
lossless image compression.
We have used a invertible mapping for transform-

ing the residuals in each context into new residuals, "0,
which have distributions close to the one sided geomet-
rical distribution. If the set of the original samples is
f0; �� 1g, the dynamic range for prediction residuals is
f�(�� 1); �� 1g, but can be reduced to f�(�

2
); �

2
� 1g

[8] by a �rst invertible mapping. Finally, for converting
the remapped errors "1 to non-negative integers "0 (hav-
ing distribution close to OSG) we apply the mapping (1)
which interleaves negative values and positive values in
the sequence 0;�1; 1;�2; 2; :::.
Golomb-Rice coding of "0 is very fast, consisting in

sending the last k bits of "0 followed by the unary rep-
resentation of b "

0

2k
c. The unary representation is termi-

nated with a 0 bit to allow uniquely decoding resulting
in a total number of bits b "

0

2k
c+ k + 1.

The value of the parameter k can be computed in
each context given the su�cient statistic Acon (the sum
of absolute values of all previous errors in the respective
context) using kcon = blog2

Acon
Ncon

+ 0:47c[8] and Ncon

represents how many times the context con was visited.
The parameters to be stored in each context are:

Ncon; Acon (previously de�ned), Bcon (the sum of all "1,
needed for prediction bias correction) and Ccon (an in-
teger correction variable, incremented when Bcon

Ncon
� 0:5

and decremented when Bcon
Ncon

� �0:5)[8].

4 EXPERIMENTAL RESULTS

In the following the proposed compression algorithms
are referred to as FSM-L-HMB (FSM context, L-
predictor, Histogram Modelling and Bucketing) and
FSM-L-PD (FSM context, L-predictor, Parametric Dis-
tribution Estimation). Both algorithms have been im-
plemented in C and all coding rates reported in the fol-
lowing are ratios of actual length of compressed �le per
number of samples in the �le.

Six audio �les (sampled at 48 kHz and A/D converted
at 16 bits/sample) of di�erent lengths (between 1.6 and
2.7 Mbytes) are considered in the experiments, the con-
tent of each �le being suggested in the �rst column of
Table 1.
First the e�ect of changing the predictor order was

analyzed for both FSM-L HMB and FSM-L-PD algo-
rithms (see Table 1). The results obtained with N = 20
are superior to the results obtained with N = 10 for
all �les, indicating that even larger predictor order may
still improve the performance, and there is no need to
use a order selection procedure (as used in [4]) since at
N = 20 our linear prediction models are not yet over�t-
ting. Therefore, mainly the complexity of implementa-
tion will dictate the order of the linear prediction.

The results of the proposed algorithm are compared
with the results of three public domain data compression
algorithms: the �rst two are standard UNIX programs,
compress and pack, based on universal compression algo-
rithms. The third compression procedure is SHORTEN
algorithm[4], which is especially designed for speech and
audio lossless compression and is used for the distri-
butions of speech databases on CD-ROM. The method
combines forward coding (of predictor coe�cients, esti-
mated and encoded at the beginning af a whole block
of new data) and sequential coding, by sending sequen-
tially the prediction residuals, modeled using a para-
metric distribution and encoded using Hu�man coding.
There are two options for the prediction stage, and we
experimented with both: the �rst is to use a \polyno-
mial predictor" computing the high order di�erences of
the input samples, while the second option is the use of
a linear predictor, whose N coe�cients are sent along
with the encoded error. The results of using Compress,
Pack, SHORTEN with linear prediction and for \poly-
nomial predictor" and the best of our algorithms are
listed in Table 2.

The best of our new algorithms outperformed all other
tested methods for the given audio �les. Even if the ex-
periments were limited, the nature of the audio material
was quite diversi�ed and therefore we expect the results
of ranking with respect to other methods to be typical
situations for audio and speech compression.
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