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Abstract

Using a theoretical approach based on random processes, signal processing, and information theory,

we study the performance of digital watermarks subjected to an attack consisting of linear shift-invariant

filtering and additive colored Gaussian noise. Watermarking is viewed as communication over a hostile

channel, where the attack takes place. The attacker attempts to minimize the channel capacity under a

constraint on theattack distortion(distortion of the attacked signal), and the owner attempts to maximize

the capacity under a constraint on theembedding distortion(distortion of the watermarked signal). The

distortion measure is frequency-weighted mean-squared error (MSE). In a conventional additive-noise

channel, communication is most difficult when the noise is white and Gaussian, so we first investigate an

effective white-noise attack based on this principle. We then consider the problem of resisting this attack

and show that capacity is maximized when apower-spectrum condition(PSC) is fulfilled. The PSC

states that the power spectrum of the watermark should be directly proportional to that of the original

signal. However, unlike a conventional channel, the hostile attack channel adapts to the watermark, not

vice versa. Hence, the effective white-noise attack is suboptimal. We derive the optimum attack, which

minimizes the channel capacity for a given attack distortion. The attack can be roughly characterized

by a rule-of-thumb: At low attack distortions, it adds noise, and at high attack distortions, it discards

frequency components. Against the optimum attack, the PSC does not maximize capacity at all attack

distortions. Also, there is no unique watermark power spectrum that maximizes capacity over the entire

range of attack distortions. To find the watermark power spectrum that maximizes capacity against the

optimum attack, we apply iterative numerical methods, which alternately adjust the watermark power

spectrum and re-optimize the parameters of the optimum attack. Experiments using ordinary MSE dis-

tortion lead to a rule-of-thumb: White watermarks perform nearly optimally at low attack distortions,

while PSC-compliant watermarks perform nearly optimally at high attack distortions. The effect of

interference from the original signal in suboptimal blind watermarking schemes is also considered; ex-

periments examine its influence on the optimized watermark power spectra and the potential increase

in capacity when it can be partially suppressed. Additional experiments demonstrate the importance of

memory, and compare the optimum attack with suboptimal attack models. Finally, the rule-of-thumb for

the defense is extended to the case of frequency-weighted MSE as a distortion measure.
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Mit Hilfe eines theoretischen Ansatzes basierend auf stochastischer Signalverarbeitung und Informa-

tionstheorie untersuchen wir die Leistungsf¨ahigkeit von digitalen Wasserzeichen im Fall eines Angriffs

durch lineare zeitinvariante Filterung und additives, farbiges, gaußverteiltes Rauschen. Die Wasserze-

ichenproblematik wird als Kommunikation ¨uber einen b¨oswilligen Kanal betrachtet, wobei der Kanal

den Angriff beinhaltet. Der Angreifer versucht bei begrenzterAngriffsverzerrung(Verzerrung des Sig-

nals nach dem Angriff) die Kanalkapazit¨at zu minimieren. Der Einbetter versucht bei begrenzterEin-

bettungsverzerrung(Verzerrung des mit einem Wasserzeichen markierten Signals) die Kanalkapazit¨at

zu maximieren. Das Verzerrungsmaß ist der frequenzabh¨angig gewichtete mittlere quadratische Fehler.

Kommunikationüber einen konventionellen Kanal mit additivem Rauschen ist dann am schwierigsten,

wenn das Rauschen weiß und gaußverteilt ist. Hierauf basierend untersuchen wir zun¨achst einen An-

griff mit effektivem weißen Rauschen. Wir betrachten das Problem, wie einem solchen Angriff wider-

standen werden kann, und zeigen, dass die Kapazit¨at maximiert wird, wenn eine bestimmte Bedingung

(PSC) an das Leistungsdichtespektrum erf¨ullt ist. Die PSC besagt, dass das Leistungsdichtespektrum

des Wasserzeichens direkt proportional zu dem des Originalsignals sein sollte. Allerdings, im Gegensatz

zum konventionellen Kanal, passt sich der b¨oswillige Kanal dem Wasserzeichen an und nicht umgekehrt.

Daher ist der Angriff mit effektivem weißen Rauschen suboptimal. Wir leiten den optimalen Angriff her,

welcher die Kanalkapazit¨at für eine vorgegebene Angriffsverzerrung minimiert. Der Angriff kann grob

mit einer Daumenregel charakterisiert werden: Bei geringen Angriffsverzerrungen wird Rauschen ad-

diert und bei starken Angriffsverzerrungen werden komplette Frequenzkomponenten ausgel¨oscht. Im

Fall des optimalen Angriffs maximiert die PSC die Kapazit¨at nicht für alle Stärken der Angriffsverzer-

rung. Es existiert kein einheitliches Wasserzeichenleistungsdichtespektrum, welches die Kapazit¨at für

den gesamten Bereich von Angriffsst¨arken maximiert. Im Fall eines optimalen Angriffs verwenden wir

zur Bestimmung des Wasserzeichenleistungsdichtespektrums mit maximaler Kapazit¨at eine iterative nu-

merische Methode, welche abwechselnd das Wasserzeichenleistungsdichtespektrum anpasst und die Pa-

rameter des optimalen Angriffs wieder optimiert. Experimente mit gew¨ohnlichem MSE-Verzerrungsmaß

führten zu der Daumenregel: Weiße Wasserzeichen sind nahezu optimal bei geringen Angriffsverzerrun-

gen, während PSC-angepasste Wasserzeichen nahezu optimal bei starken Angriffsverzerrungen sind.

Der Einfluss von Originalsignalinterferenz in suboptimalen blinden Wasserzeichenverfahren wird eben-

falls betrachtet; Experimente zeigen den Originalsignaleinfluss auf das optimierte Wasserzeichenleis-

tungsdichtespektrum und den potentiellen Kapazit¨atsgewinn, wenn die Originalsignalinterferenz teil-

weise unterdr¨uckt werden kann. Zus¨atzliche Experimente zeigen die Bedeutung des Ged¨achtnisses bei

Angriffen und vergleichen den optimalen Angriff mit suboptimalen Angriffsmodellen. Die Daumenregel

für die Wahl des Wasserzeichenleistungsdichtespektrums wird abschließend erweitert f¨ur den Fall eines

frequenzabh¨angig gewichteten Verzerrungsmaßes.
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Nomenclature

ACGN additive, colored Gaussian noise

AR autoregressive

AR(p) p-th order autoregressive process

AWGN additive, white Gaussian noise

GA “greedy” annealing

GMA greedy marginal analysis

IID independent, identically distributed

LSI linear, shift-invariant

M -D M -dimensional

MAP maximuma posteriori

MMSE minimum mean-squared error

MSE mean-squared error

RV random variable

PSC power-spectrum condition

SA simulated annealing

WGN white Gaussian noise

� 1-D orM -D convolution

a, 0 � a � 1 original-interference suppression factor

ak, k 2 f1; 2; : : : ; pg coefficients of 1-D AR(p) process

A(~!), 0 � A(~!) � 1 freq.-dependent scaling factor in optimum attack

C channel capacity (or maximum achievable rate for0 � a < 1)

C(�) channel capacity as a function of�

Cp% channel capacity or maximum achievable rate whenp% of original-

interference power is suppressed

Ct target channel capacity

Cmax, Cmin maximum and minimum channel capacities after attack

cl[x] clipping function (clipx to interval[0; 1])

Dembed maximum allowable embedding distortion
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Dt target attack distortion

Dyx embedding distortion

Dŷx attack distortion

Dŷx(�) attack distortion as a function of�

Dŷx;max, Dŷx;min maximum and minimum attack distortions

Æ[~n] M -D unit point-sample function

e[n] = ŷ[n]� x[n] 1-D error or difference signal (random process)

�ee(!) 1-D power spectrum ofe[n]

Fee(!) 1-D freq.-weighted error power spectrum

f [n], f [~n] 1-D,M -D impulse responses of LSI freq.-weighting filters

F (!), F (~!) 1-D,M -D Fourier transforms off [n] andf [~n], resp.

g[n], g[~n] 1-D,M -D impulse response of attack filter

g�1[~n] M -D impulse response of inverse attack filter

G(!),G(~!) 1-D,M -D transfer functions of attack filter


G frequency support ofG(~!)

!0 cutoff frequency ofG(!)

h[~n] M -D impulse response of ideal whitening filter

H(~!) M -D transfer function of ideal whitening filter

�; �min; �max Lagrange multiplier and its minimum and maximum values

�� solution for� such thatC(��) = Ct orDŷx(�
�) = Dt

M dimensionality

N number of equal-support subsets used to cover


n, ~n = (n1; n2; : : : ; nM ) 1-D,M -D time/space indices

!, ~! = (!1; !2; : : : ; !M ) 1-D,M -D frequency variables


 = [��; �)M M -D baseband frequency support

v[~n] M -D Gaussian noise

w[n],w[~n] watermark (1-D orM -D random process)

�2w variance ofw[n] orw[~n]

�ww(!), �ww(~!) 1-D andM -D power spectra ofw[n] andw[~n], resp.
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W = f~! : �ww(~!) > 0g frequency support of�ww(~!)

Fww(!) 1-D freq.-weighted watermark power spectrum

F 0ww(!) 1-D freq.-weighted, PSC-compliant watermark power spectrum

x[n], x[~n] original signal (1-D orM -D random process)

Px perceptual power ofx[n] or x[~n]

y[~n] watermarked signal (M -D random process)

ŷ[~n] attacked signal (M -D random process)

z[~n] effective received signal (M -D random process)

ne[~n] effective noise (M -D random process)

we[~n] effective watermark (M -D random process)

zi[~n] effective inverse-filtered received signal (M -D random process)

ni[~n] effective inverse-filtered noise (M -D random process)

zw[~n] whitened, effective received signal (M -D random process)

nw[~n] whitened, effective noise (M -D random process)

ww[~n] whitened, effective watermark (M -D random process)

Fn, Gn, Vn,Wn,Xn piecewise-constant approximations ofF (~!), G(~!), �vv(~!), �ww(~!), and

�xx(~!), resp., overnth subset of


1 Introduction

Digital watermarkingmay be described as the secure, imperceptible, robust communication of information

by direct embedding in and retrieval from digital data, typically multimedia data such as digital audio,

images [15], or video [22, 30]. Potential applications include tracing the distribution path of watermarked

data, multimedia annotation, detection of modifications, and copyright protection [49, 23].

Securityindicates that only authorized parties should be able to retrieve, and possibly alter, the em-

bedded information.Imperceptibilitymeans that the watermarked data should be perceptually equivalent

to the original, unwatermarked data (sometimes called “host data” or “cover data”). In some applications

this requirement can be relaxed to “unobtrusiveness,” meaning that small perceptible differences between

the watermarked and original data can be tolerated.Robustnessmeans that it should be possible to retrieve

the embedded information reliably even after processing of the watermarked data1; any such processing is

known as anattack. Attacks may be coincidental, such as compression of a legally-obtained, watermarked

1A different class of watermarks, known asfragile watermarks, are designed to fail in a prescribed manner after mild processing

of watermarked data. Data authentication is a primary application area of fragile watermarks, which are not considered here.

6



audio file or image, or malicious, such as an attempt by a multimedia pirate to destroy the embedded infor-

mation and prevent tracing of illegal copies of watermarked digital video.

Often, the design of robust watermarking schemes has been motivated by heuristics and intuition. Var-

ious authors have argued that watermarks should be embedded in different frequency ranges, e.g., lowpass,

bandpass, highpass, or white watermarks, without reaching a consensus. In early spread-spectrum water-

marking schemes (e.g., [42, 22]), white-noise watermarks were employed by direct extension from spread

spectrum communications and by the idea that robustness would be enhanced by distributing the water-

mark over all frequencies. In an image watermarking context, Coxet al. [15] were among the first to

propose embedding in the “perceptually significant frequency components” of the original image. They

justified this position by pointing out that these components facilitate perceptual masking [49] and that

an attacker cannot alter these components without also severely degrading the watermarked image. Other

authors (e.g., [54, 55]) used high-frequency watermarks, which are easier to separate from the typically

lowpass original signal. Still others (e.g., [28, 36]) believed that lowpass watermarks would introduce un-

acceptable embedding distortion and highpass watermarks would be susceptible to attack; as a compromise

these authors advocated the used of bandpass watermarks.

Most of the early (and current) work in watermarking has been applied, with robustness and impercep-

tibility evaluated experimentally [32]. Many attacks consist of additive noise, compression (e.g., MP3 for

audio, JPEG for images, and MPEG-2 for video), or geometric transformations such as rotation, shifting,

and scaling [35].

Recently, more theoretical approaches have attempted to provide watermarking, and the larger field of

information hiding, with a stronger foundation [44, 16, 27, 47, 10, 33, 51, 31, 34, 8, 48]. Of particular

note, Moulin and O’Sullivan [34] have introduced a powerful information-theoretic framework for studying

watermarking. They cast the problem as a game between the owner and the attacker. The owner’s goal is to

send and receive as much information as possible, while the attacker’s goal is to hinder communication.

This paper focuses on the conflicting requirements of imperceptibility and robustness and takes a theo-

retical approach based on random processes, signal processing, and information theory. We do not treat the

issue of security here; we assume that proper crytographic methods and protocols are used to maintain key

security. The intuitive notion of robustness can be stated as follows: “A watermark is robust if communi-

cation of the embedded information cannot be impaired without also rendering the attacked data useless.”

Hence, to evaluate robustness, we must pose two questions simultaneously: “When is communication im-

paired?” and “When is the attacked data useless?” The first question suggests that we measure the capacity

or a related quantity; the latter suggests that we measure the perceptual quality, or distortion, of the attacked
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data. In addition, to ensure imperceptibility, we should measure the distortion of the watermarked data after

watermark embedding.

In the spirit of [34], we consider the conflicting goals of the attack and owner. The attacker wishes to

minimize the communication rate while keeping the distortion of the attacked data small enough so that it

remains useful, while the owner wishes to maximize the communication rate while keeping the distortion

of the watermarked signal acceptably low. We apply Kerckhoff’s principle [43] for both the owner and

attacker and assume that the attacker knows the owner’s methods, and vice versa. We emphasize the use

of a well-defined criterion for evaluating robustness, since otherwise it is difficult to compare the utility of

different watermarking methods.

Sec. 2 introduces notation, a mathematical model for the attack and defense, and expressions for dis-

tortion and capacity. Sec. 3 derives the optimum attack and shows that there may not be a unique defense.

Sec. 4 demonstrates the difficulty of finding a defense and describes some numerical methods for computing

the defense. Finally, Sec. 5 summarizes the main conclusions and discusses the practical implications of this

study.

2 Mathematical Models

We treat the data as a discrete-time/space signal and in turn model signals as ergodic, zero-mean, wide-sense

stationary,M -dimensional (M -D) discrete-time/space Gaussian random processes. Indexing of anM -D

signalx is denoted byx[~n], where~n = (n1; n2; : : : ; nM ). Similarly, theM -D Fourier transform is given by

X(~!) with ~! = (!1; !2; : : : ; !M ). Throughout this paper, we consider only the baseband frequency support


 = [��; �)M , with theM -D 2�-periodicity understood. Boldface indicates random quantities, such as

x[~n]. We ignore quantization effects due to digitization of signal values and assume infinite precision.

The original signal is modeled by the random processx[~n] with variance�2x and power spectrum

�xx(~!). Likewise, the embedded watermark is represented by the random processw[~n] and has vari-

ance�2w and power spectrum�ww(~!). The originalx[~n] and watermarkw[~n] are assumed independent.

Denote the frequency supports of�xx(~!) and�ww(~!), respectively, byX = f~! : �xx(~!) > 0g and

W = f~! : �ww(~!) > 0g.
Although these assumptions are ideal, most watermarking applications deal with multimedia, which can

often be modeled as being locally stationary and Gaussian. For example, samples in flat image regions may

be treated as realizations of independent, identically distributed (IID) Gaussian random variables (RVs) with

a low variance, and samples in textured regions are treated as realizations of IID Gaussian RVs with a high
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variance.

2.1 Watermark Embedding and Attack

A block diagram of the embedding model and attack appears in Fig. 1. We discuss the components of this

diagram in this section. We first model the embedding of watermarkw[~n] into the originalx[~n] by simple

addition; the watermarked signal isy[~n],

y[~n] = x[~n] +w[~n]; (1)

wherex[~n] andw[~n] are assumed independent.

Next, we model the attack. Giveny[~n], the attacker produces an attacked signalŷ[~n]. We assume that

the attacker employs linear shift-invariant (LSI) filtering and additive colored Gaussian noise (ACGN). Let

g[~n] andG(~!), respectively, denote the impulse response and transfer function of the attack filter. Letv[~n]

denote Gaussian noise that has variance�2v and power spectrum�vv(~!) and is independent ofx[~n] and

w[~n]. The attacked signal̂y[~n] is

ŷ[~n] = g[~n] � y[~n] + v[~n] = g[~n] � (x[~n] +w[~n]) + v[~n]: (2)

Applying Kerckhoff’s principle, the attacker is assumed to know�xx(~!) and�ww(~!), and hence, to have

complete knowledge of the statistics ofx[~n] andw[~n]. In Sec. 3 we explain how the attacker exploits this

knowledge and derive the optimum attack.

The attack model (2) is ideal. Gaussian noise is a common channel model and is frequently used to

approximate synchronous signal degradations. For example, the noise could model distortions introduced

after printing and scanning of a watermarked image that has been re-aligned. Also, many lossy compres-

sion schemes operate in the frequency domain; they discard lower-amplitude frequency components and

quantize higher-amplitude frequency components. Hence, Eq. (2) can also approximate compression as a

combination of frequency-selective filtering and additive (quantization) noise.

In addition, it is not unreasonable to expect that an attacker might use filtering (because of its simple

implementation) or Gaussian noise (since in an additive-noise chanel with limited noise variance, commu-

nication is most difficult when the noise is Gaussian [40]). Finally, just as a real-world original signal may

be modeled as being locally stationary, the attack model can represent locally stationary processing of the

watermarked signal.

Recall that the frequency supports of the watermark and original areW andX , respectively. ClearlyW
should be a subset ofX , for otherwise the attacker could filter out the portion of the watermark in(W�X )
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without introducing any distortion. As will be shown in Sec. 4.3.1, the optimum watermark power spectrum

hasW = X to resist the optimum attack.

2.2 Watermark Reception

Finally we consider retrieval of the information carried by the watermark. Given the attacked signalŷ[~n],

the receiver attempts to determine the information conveyed byw[~n]. Applying Kerckhoff’s principle, we

assume that the receiver has knowledge ofg[~n]. This assumption is highly ideal, but it allows us to determine

performance limits: The receiver will perform best if it has exact knowledge ofg[~n]; less accurate knowledge

of g[~n] can only degrade performance. Hence, the results we find can be interpreted as upper bounds on

communication performance.

Depending on the design of the watermarking system, the originalx[~n] may interfere with reception.

Consider two extreme scenarios:reception-with-originaland blind reception. In the first scenario, the

receiver has access tox[~n]; then it can eliminate interference fromx[~n] by computingz1[~n] = ŷ[~n] �
g[~n] � x[~n] = g[~n] �w[~n] + v[~n] and then working withz1[~n]. In the second scenario, the receiver has no

knowledge ofx[~n], which acts like an additional source of interference; thenz0[~n] = ŷ[~n].

For the case of a memoryless Gaussian original and the additive white Gaussian noise (AWGN) chan-

nel, Chen and Wornell [10] have applied the work of Costa [13] to show that the theoretical capacity of an

optimal blind receiver is actually equal to the capacity of the receiver-with-original. This surprising result

occurs because the originalx[~n] is known during watermark embedding [16], so the problem is that of com-

munication with side information (x[~n]) at the encoder but not at the decoder [41, 21, 13, 26]. Rather than

attempting to suppress interference fromx[~n], the communication system employs channel codes designed

with the statistics ofx[~n] in mind [13, 12, 45].

A few blind watermarking systems based on Costa’s result have been proposed [16, 9, 38, 12, 11, 19].

Notably, Chen and Wornell [8] proposed a system that asymptotically approaches capacity. Chouet al. [11]

recognized the duality between the blind watermarking problem and that of lossy source coding with side

information at the decoder but not at the encoder, and they have applied recent results in distributed (lossy)

source coding to blind watermarking. A further discussion of this duality appears in [45, 46]. Despite these

developments, some interference from the original may be unavoidable in practice; one difficulty is that the

codebook can become very large, greatly increasing the complexity of a real system [34, 19].

For these reasons, we introduce anoriginal-interference suppression factora, 0 � a � 1, and assume
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that theeffective received signalis z[~n],

z[~n] = ŷ[~n]� ag[~n] � x[~n] = g[~n] �w[~n] + (1� a)g[~n] � x[~n] + v[~n]: (3)

Note thatx[~n] may not actually be available to the receiver; Eq. (3) expresses that the watermarking system

performs as if it operated onz[~n]. The casea = 0 corresponds to blind reception if the watermarking system

does not exploit the knowledge ofx[~n] available during embedding; we use the term“conventional blind

reception” to refer to this case.2 The casea = 1 corresponds to reception-with-original and to an optimal

blind receiver. If the complexity of a suboptimal blind watermarking scheme can be related toa, it is then

possible to evaluate the performance-complexity trade-offs of the scheme.

Finally, in our model, we always assume synchronization between the embedding and retrieval units. As

explained in the introduction, some current attacks operate by disrupting synchronization. Such attacks do

not actually remove or destroy the watermark, so a more sophisticated receiver should be able to resynchro-

nize [24, 17, 7, 6, 18]. Hence, we assume synchronization throughout this paper.

2.3 Distortion Expressions

In watermarking, the distortion of various signals must also be considered. As a compromise between

perceptual relevance and mathematical tractability, we measure distortion using frequency-weighted mean-

squared error (MSE). For a signalx̂[~n] and a reference signalx[~n], define the distortion between̂x[~n]

andx[~n] by Dx̂x = E
h
[f [~n] � (x̂[~n]� x[~n])]2

i
, wheref [~n] is the impulse response of a LSI frequency-

weighting filter. Letting~x[~n] = x̂[~n] � x[~n], we can writeDx̂x = (2�)�M
R

 jF (~!)j2�~x~x(~!) d~!, where

we assumejF (~!)j > 0, 8~!. Of course,jF (~!)j = 1;8~!, is ordinary MSE distortion. Note thatjF (~!)j could

be made dependent upon�xx(~!) to approximate some perceptual masking effects [49, 52].

We are interested in theembedding distortionDyx and theattack distortionDŷx. From (1), the former

is simply

Dyx =
1

(2�)M

Z


jF (~!)j2�ww(~!) d~!: (4)

For MSE distortion,Dyx = �2w. To findDŷx, we use (2) and find

Dŷx =
1

(2�)M

Z


jF (~!)j2 �jG(~!)� 1j2�xx(~!) + jG(~!)j2�ww(~!) + �vv(~!)

�
d~!: (5)

Finally, since�2x is the power of the originalx[~n], we define theperceptual powerof the original by

Px =
1

(2�)M

Z


jF (~!)j2�xx(~!) d~!: (6)

2As a service to the reader, we avoid using the pun “blind-and-dumb reception.”
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2.4 Capacity Expressions

We also require an expression for the capacity of the watermarking system. For simplicity, let us momentar-

ily assume a 1-D AWGN channelwith no filtering; i.e.,g[~n] = Æ[~n]. The channel noise isn[n] = x[n]+v[n],

wherex[n] andv[n] are WGN with respective variances�2x and�2v and are independent of one another. The

statex[n] is known to the encoder, which transmits a signalw[n] subject to a power constraint�2w, and the

decoder receivesy[n] = w[n] + x[n] + v[n] = w[n] + n[n]. In watermarking, the statex[n] is analogous

to the original, and the transmitted signalw[n] is analogous to the watermark signal.

In the reception-with-original scenario,x[n] is known to both the encoder and decoder. The decoder can

just subtractx[n] from y[n]. The result is just like an AWGN channel with power constraint�2w and noise

power�2v , and the capacity isC = 1
2 log2(1 + �2w=�

2
v) [39, 14]. Ifw[~n] andv[~n] areM -D with respective

power spectra�ww(~!) and�vv(~!), then the capacity isC = (2�)�M
R



1
2 log2 (1 + �ww(~!)=�vv(~!)) d~!

[40].

In blind watermarking,x[n] is known to the encoder but not to the decoder. This scenario was con-

sidered by Costa [13], who proved the remarkable and surprising result that the capacity is againC =

1
2 log2(1+�2w=�

2
v). Hence, blind watermarking can theoretically perform as well as reception-with-original

watermarking3! Also, the capacity is independent of the power�2x of the state/originalx[n]. The interested

reader is referred to the references in Sec. 2.2 for more details on Costa’s solution.

To extend Costa’s result to anM -D Gaussian channel with memory and channel state known to the

encoder, one can divide the frequency spectrum into parallel, independent Gaussian subchannels, apply the

result to each subchannel, and let the number of subchannels go to infinity [40]. Then for fixed power spectra

�ww(~!), �xx(~!), and�vv(~!), C = (2�)�M
R



1
2 log2 (1 + �ww(~!)=�vv(~!)) d~!.

Our watermarking model includes filtering and the original-interference suppression factora. Conse-

quently, we use (3) to write the capacity [29] as

C =
1

(2�)M

Z



1

2
log2

�
1 +

jG(~!)j2�ww(~!)

(1� a)2jG(~!)j2�xx(~!) + �vv(~!)

�
d~!: (7)

We may interpret (7) as follows. We say that theeffective watermarkis we[~n] = g[~n] � w[~n], while the

effective noiseis ne[~n] = (1� a)g[~n] � x[~n] + v[~n]. Then (7) becomes

C =
1

(2�)M

Z



1

2
log2

�
1 +

�wewe(~!)

�nene(~!)

�
d~!: (8)

In the sequel, we will make alternative interpretations where they are useful.

3Under these assumptions; for non-Gaussian channels,Cblind is likely to be less thanCwith original.

12



It is important to appreciate the need for noisev[~n] in (2) and (7). Suppose thatg[~n] is invertible,

i.e.,G(~!) 6= 0, 8~!. For an ideal watermarking scheme,a = 1, so that the originalx[~n] does not hinder

communication. If the noisev[~n] were not present, then the attack would be invertible; the receiver could

perfectly undo the effects of the attack, andC would be infinite4. The noisev[~n] is necessary to make the

attack in (2) non-invertible wheng[~n] is invertible. This observation agrees with [34], where the authors

pointed out that if an attack is invertible, it does not impair communication at all.

Strictly speaking, “capacity” is the supremum of achievable rates over all possible watermarking sys-

tems. When0 � a < 1, Eq. (7) actually gives the maximumachievable rateof a suboptimal watermarking

system. However, it is common to speak of “capacity” when describing the best performance of a given,

perhaps suboptimal, communications system. For brevity, we use the term “capacity” even whena 6= 1.

2.5 Attacks and Defenses

With these expressions forDyx, Dŷx, andC, we are ready to look for optimal attacks and defenses. We

assume that�xx(~!) andF (~!) are fixed. We state the attacker’s problem formally as:

Problem 1 (Attack) Let�ww(~!) be given. For some target capacityCt � 0, chooseG(~!) and�vv(~!) to

minimizeDŷx such thatC = Ct.

Alternatively, the attacker could attempt to minimizeC under the constraintDŷx = Dt.

The owner seeks a defense; this problem is defined as:

Problem 2 (Defense)Let G(~!) and�vv(~!) be given. For some maximum embedding distortionDembed

and some target capacityCt � 0, choose�ww(~!) to maximizeDŷx such thatC = Ct andDyx � Dembed.

The owner has an additional constraint onDyx, the embedding distortion. For the Gaussian channel, capacity

increases with signal power, so the inequality constraint can be replaced by the equalityDyx = Dembed,

which maximizes the allowable watermark power. Finally, we remark that the owner could instead try to

maximizeC under the constraintsDŷx = Dt andDyx = Dembed.

The attack distortionDŷx at capacityC = Ct (capacityC at distortionDŷx = Dt) provides a well-

defined way of evaluating the robustness of a watermark with a given power spectrum�ww(~!) and embed-

ding distortionDyx = Dembed. With C = Ct (Dŷx = Dt), the greater the attack distortionDŷx (capacity

C), the more robust the watermark.

4Of course, in a practical system, signal values are digitized, so the capacity will not actually be infinite but will be limited by

the precision of the digital representation.
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We have constrained attacks to consist of LSI filtering and ACGN for mathematical tractability. Conse-

quently, there may exist other, more powerful attacks. In this paper, “optimum linear filtering” means the

best LSI filtering attack (in conjunction with ACGN), rather than minimum mean-squared error (MMSE)

or maximuma posteriori (MAP) estimation via filtering. Any claims of optimality in this paper refer to

optimality within the class of LSI-filtering/ACGN attacks. However, forx[~n] memoryless and Gaussian

and MSE distortion, it has been shown [34] that the attack (2) is optimum amongall possible attacks,5 and

Gaussian-distributed signalsw[~n] achieve the highest communication rate in the presence of this attack.

Hence, forx[~n] Gaussian and MSE distortion, our results will describe the ultimate performance limits.

3 Optimum Attack

We present the optimum attack, but first discuss an intuitively appealing, but suboptimal, attack.

3.1 Effective White-Noise Attack and Defense (Power-Spectrum Condition)

Since the receiver knowsg[~n], it can apply the inverse filter with impulse responseg�1[~n] and, without loss

of information [29], compute

zi[~n] = g�1[~n] � z[~n] = w[~n] + (1� a)x[~n] + g�1[~n] � v[~n]: (9)

We may say that the watermark remainsw[~n] and define theeffective inverse-filtered noiseby ni[~n] =

(1� a)x[~n] + g�1[~n] � v[~n]. Define the power spectrum ofni[~n] to be

�nini(~!) =

8><
>:
(1� a)2�xx(~!) + jG(~!)j�2�vv(~!); if G(~!) 6= 0;

1; if G(~!) = 0.
(10)

Observe that�nini(~!) is well-defined for all frequencies, even ifG(~!) = 0 at some frequencies. Then (7)

can be written as [40, 29]

C =
1

(2�)M

Z



1

2
log2

�
1 +

�ww(~!)

�nini(~!)

�
d~!: (11)

In a conventional ACGN channel,�nini(~!) remains fixed and�ww(~!) is selected to maximize the

mutual information between the encoder and decoder. The solution for�ww(~!) is a water-filling rule [14,

Sec. 10.5], which givesw[~n] a power advantage over the noiseni[~n]. It is well-known that communication

in the presence of additive Gaussian noise is most difficult when the noise is white [40].

5In this case, the attack reduces to the Gaussian test channel [34].
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An effective white-noise attackbased on this idea was recently investigated in [48]. The details appear

in App. A.6 Whatever the shape of the watermark power spectrum�ww(~!), the attack selectsG(~!) and

�vv(~!) to make�nini(~!) directly proportional to�ww(~!). Consequently,ni[~n] is white relative tow[~n].

The owner cannot gain a power advantage by changing the shape of�ww(~!) since the attack will re-adjust

G(~!) and�vv(~!) as needed.

As a defense against this attack, it can be shown (see [48] or App. B) that, for anyC = Ct, Dŷx is

maximized when

�ww(~!) =
�2w
�2x

�xx(~!): (12)

We refer to Eq. (12) as thepower-spectrum condition(PSC). In terms of power spectra, the PSC states that

“the watermark should look like the original.”A watermark that is “spectrally matched” to the original

(in the sense that (12) is satisfied) is said to bePSC-compliant. The PSC makes sense intuitively: The

watermark appears white relative to the original, which makes it hardest to estimate or distinguish from

the original. Indeed, the PSC was first derived as a necessary and sufficient condition for resisting MMSE

estimation of the watermark from the watermarked signal [47].

For this attack, Eq. (11) simplifies toC = 1
2 log2

�
1 + �2w=�

2
ni

�
. When the PSC is satisfied,G(~!) and

�vv(~!) become constant for all~!, and closed-form expressions for�2ni andDŷx result [48]. Then a direct

relationship betweenC andDŷx can be obtained (App. C):

C =
1

2
log2

�
1 +

(Px �Dŷx)Dembed

P 2
x � (Px �Dŷx) (a(2� a)Px +Dembed)

�
: (13)

This relationship was previously derived in [48] for MSE distortion,

C =
1

2
log2

 
1 +

�
�2x �Dŷx

�
�2w

�4x � (�2x �Dŷx) (a(2� a)�2x + �2w)

!
: (14)

If x[~n] is memoryless and Gaussian, and the distortion measure is MSE, then�ww(~!), G(~!), and

�vv(~!) are constant for all frequencies. For this case, the attack model (2) has been shown to be optimum

among all possible attacks [34], and Eq. (14) describes the fundamental relationship betweenC andDŷx.

3.2 Optimum Attack

The preceding attack and defense (PSC) each have an intuitively pleasing motivation. However, the hostile

nature of attacks on watermarks means that�nini(~!) can adapt to�ww(~!). The attacker has “the last word”

on the behavior of the channel, so the attacker, rather than the owner, has a potential power advantage.

6The distortion measure in [48] was MSE; the appendix extends the derivation to frequency-weighted MSE.
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Consequently, the effective white-noise attack is suboptimal because, by restricting the form of�nini(~!),

the attack does not fully exploit its power advantage. This section presents the optimum attack for a given

watermark power spectrum�ww(~!).

Under the assumptions of IID RVs, a Gaussian original, and MSE distortion, it was shown in [34] that

the optimum attack among all possible attacks consists of scaling and additive Gaussian noise. The attack

model (2) thus extends the attack in [32] by adding memory. Hence, forx[~n] Gaussian and MSE distortion,

the attack we derive will be optimum among all attacks.

The attacker’s problem is to findG(~!) and�vv(~!) to minimizeDŷx subject toC = Ct (Problem 1).

This problem can be solved by the calculus of variations; the details appear in App. D. The optimum attack

filter and noise power spectrum are given by

G(~!) = A(~!)
�xx(~!)

�xx(~!) + �ww(~!)
; (15)

�vv(~!) = (1�A(~!))G(~!)�xx(~!) = (1�A(~!))A(~!) �2
xx(~!)

�xx(~!) + �ww(~!)
; (16)

where0 � A(~!) � 1, 8~!. Note that0 � G(~!) < 1, 8~!, so that the filter can only attenuate the watermark;

it will never amplify the watermark.

The exact expressions forA(~!) are rather complicated, so we provide them in stages. Unfortunately,

they do not provide obvious insight into the exact nature of the attack. However,A(~!) is parameterized by

a Lagrange multiplier�, which leads to an interpretation of the attack behavior in Sec. 3.2.2.

For anya 2 [0; 1],

A(~!) = 1; for ~! such that�xx(~!) = 0 or�ww(~!) = 0: (17)

If �xx(~!) = 0, this rule results inG(~!) = �vv(~!) = 0. There is no power from the original at this

frequency, so the only possible power is due to the watermark; the attack can completely eliminate the

watermark at this frequency without increasingDŷx. Similarly, if �ww(~!) = 0, thenG(~!) = 1 and

�vv(~!) = 0. There is no watermark power at this frequency, so only the original signal is present (or else it

is zero), and the attack passes this frequency unchanged.

In the equations that follow, we assume that�xx(~!) > 0 and�ww(~!) > 0 at frequency~!. Define

cl[x] =

8>>>>><
>>>>>:

1; if x > 1;

x; if 0 � x � 1;

0; if x < 0.

(18)
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Fora = 0 (conventional blind reception),

A0(~!) = cl

�
1 +

�xx(~!)

�ww(~!)
� �

2 ln 2

�xx(~!) + �ww(~!)

�2
xx(~!)jF (~!)j2

�
: (19)

For0 < a � 1,A(~!) has a different form than (19) (an explanation appears in App. D),

A(~!) =

cl

" 
1 +

�ww

2a(2� a)�xx
�
p
�2
xx�

2
ww + (2�=ln 2)a(2 � a)�xx�ww (a(2� a)�xx +�ww) jF j�2

2a(2� a)�2
xx

!

�
�

�xx +�ww

a(2� a)�xx +�ww

�#
; (20)

where we have omitted the frequency variable~! on the right-hand side. In particular, witha = 1 we have

reception-with-original/optimal blind reception, and (20) reduces slightly to

A1(~!) =

cl

"
1 +

�ww(~!)

2�xx(~!)
�
p
�2
xx(~!)�

2
ww(~!) + (2�=ln 2)�xx(~!)�ww(~!) (�xx(~!) + �ww(~!)) jF (~!)j�2

2�2
xx(~!)

#
:

(21)

Applying (15) and (16), the corresponding distortion is given by

Dŷx = Px � 1

(2�)M

Z


jF (~!)j2A(~!) �2

xx(~!)

�xx(~!) + �ww(~!)
d~! (22)

= Px � 1

(2�)M

Z


jF (~!)j2G(~!)�xx(~!) d~!: (23)

Finally, the capacity can be written as

C =
1

(2�)M

Z



1

2
log2

�
1 +

A(~!)�ww(~!)

�xx(~!) + �ww(~!)�A(~!) (a(2� a)�xx(~!) + �ww(~!))

�
d~!: (24)

3.2.1 Lagrange Multiplier and Relationship between Capacity and Distortion

In the preceding equations,� is a scalar Lagrange multiplier that determinesA(~!). For anya 2 [0; 1], the

limiting values of� are

�min = 2 ln 2 min
~!2W

�2
xx(~!)jF (~!)j2
�ww(~!)

(1� a)2�xx(~!)
�
(1� a)2�xx(~!) + �ww(~!)

�
(�xx(~!) + �ww(~!))

2 ; (25)

and

�max = 2 ln 2max
~!2W

�2
xx(~!)jF (~!)j2
�ww(~!)

: (26)
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Whena = 0 (conventional blind reception),

�min = 2 ln 2 min
~!2W

�3
xx(~!)jF (~!)j2

�ww(~!) (�xx(~!) + �ww(~!))
: (27)

Whena = 1 (reception-with-original/optimal blind reception),�min = 0.

The preceding expressions forA(~!) are complicated, but their general behavior depends on� in a simple

way. When� = �min, A(~!) = 1, 8~!. As �! �max, A(~!)! 0, and when� = �max, A(~!) = 0, ~! 2 W.

Hence,A(~!) is a monotonically decreasing function of�; the rate of decrease differs from one frequency to

another, but the trend holds for all~! 2 W.

Thus, the Lagrange multiplier� parameterizesA(~!), which in turn determinesDŷx andC. Hence,

G(~!) and�vv(~!) no longer appear in the expressions forDŷx andC (Eqs. (22) and (24)), and we can

work directly withDŷx, C, and�. SinceA(~!) decreases monotonically from unity to zero with�,Dŷx is a

strictly increasing functionDŷx(�) of �, whileC is a strictly decreasing functionC(�) of �. We recognize

that, viaA(~!), � controls the trade-off betweenC andDŷx. By sweeping� from �min to �max, we can

explore the full performance range of a given watermark power spectrum�ww(~!). We can thus compute

the distortion-capacity functionf(Dŷx(�); C(�)) : �min � � � �maxg. BecauseDŷx(�) andC(�) are

invertible functions of�, we can also define thecapacity-distortion functionC(Dŷx) = C(��1(Dŷx)).

C(Dŷx) is decreasing sinceDŷx(�) andC(�) are strictly increasing and decreasing, respectively.

We can also use the limiting values of� to find the range of possible values forDŷx andC. They can

be computed by substituting appropriate values ofA(~!) (given next) into (22) and (24). When� = �min,

A(~!) = 1, 8~!, In this case,�vv(~!) = 0, andG(~!) reduces to the Wiener filter, which is the MAP and

MMSE estimator for estimatingx[~n] from y[~n]. However, the attack is now invertible, so it does not impair

communication at all [34] and merely beautifiesŷ[~n]. Dŷx is minimized, andC is maximized. Denote these

values byDŷx;min andCmax. Note that whena = 1, Cmax = 1 because the attack introduces no noise

(v[~n] = 0, 8~n) and all interference from the originalx[~n] can be eliminated.

When� = �max, A(~!) = 0, ~! 2 W, andA(~!) = 1, ~! 62 W. ThenDŷx is maximized andC is

minimized; denote these values byDŷx;max andCmin. Note thatCmin is always zero. IfX � W, then

Dŷx;max = Px because the attacked signal becomesŷ[~n] = 0, 8~n, so the attack must completely destroy

the original signal to stop all communication.

3.2.2 Characterization of Attack Behavior

We can also use the relationship between� andA(~!) to characterize the attack. For envisioned water-

marking applications, it is reasonable to assume�xx(~!) � �ww(~!), 8~!, so thatG(~!) � A(~!) and
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�vv(~!) � (1�A(~!))A(~!)�xx(~!). At each frequency~!, G(~!) decreases from nearly unity to zero with

�, and�vv(~!) first increases from zero to14�xx(~!) before decreasing back to zero. For small�, G(~!) � 1

and�vv(~!) > 0, so the attack mainly adds noise; for large�, G(~!)! 0, so the attack chiefly discards fre-

quency components. Thus, we may roughly describe the behavior of the optimum attack with the following

rule-of-thumb : At low distortions (high capacities), add noise; at high distortions (low capacities), throw

away frequency components.

3.3 Experimental Results

To examine the theoretical performance of watermarks with different power spectra, we modeled the wa-

termark and original as 1-D autoregressive (AR) processes [25]. AR processes are often used to model

naturally occurring signals such as audio, images, and video. Recall that a 1-D AR(p) processx[n] is gen-

erated by the stochastic difference equationx[n] =
Pp

k=1 akx[n � k] + u[n], whereu[n] is WGN. The

original signal was modeled as an AR(1) process witha1 = 0:95 and power�2x. The different watermarks,

each with power�2w, were modeled as follows: “PSC” (AR(1),a1 = 0:95), “lowpass” (AR(1),a1 = 0:90),

“bandpass” (AR(2),a1 = 0, a2 = �0:9025), “highpass” (AR(1),a1 = �0:95), and “white”. Examples of

the original, white, and PSC-compliant power spectra appear in Fig. 2.

In decibels, the ratio of original-signal power to attack distortion is10 log10
Px
Dŷx

= 10 log10
Px
Dyx
�

10 log10
Dŷx

Dyx
. In most of the experimental results presented in this paper, we employ MSE distortion and

use the embedding ratio10 log10(�
2
w=�

2
x) = �30 dB. For convenience, we useDyx = �2w = 1, so that the

distortionDŷx relates to the above ratio via10 log10
Px
Dŷx

= 10 log10 �
2
x � 10 log10Dŷx.

The subsequent experiments are briefly described here. Sec. 3.3.1 compares the performances of the

effective white-noise attack and the optimum attack and shows that the former attack is indeed subopti-

mal. Next, Sec. 3.3.2 examines how the behavior of the optimum attack changes depending on the attack

distortionDŷx; the results verify the rule-of-thumb in Sec. 3.2.2: “At low distortions, add noise; at high dis-

tortions, throw away frequency components.” Finally, Secs. 3.3.3 and 3.3.4 show the effect of interference

from the original and suggest that there is not a unique watermark power spectrum that performs best over

the entire range of attack distortions.

3.3.1 Comparison with Effective White-Noise Attack

The left-hand graph in Fig. 3 shows the capacity-distortion curves for various watermarks after the effective

white-noise attack of Sec. 3.1 whena = 1. Clearly, the PSC-compliant watermark is most robust against

this attack. However, the right-hand graph shows the performance of PSC-compliant and white watermarks
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after either the effective white-noise attack or the optimum attack whena = 1. It is evident that the PSC-

compliant watermark is not most robust over the entire range ofDŷx; the white watermark performs much

better at low distortions. By fully exploiting the potential power advantage, the optimum attack is clearly

more effective than the effective white-noise attack. Against the PSC-compliant watermark, the optimum

attack consistently reduces capacity by roughly one order of magnitude over the effective white-noise attack.

Against the white watermark, the attacks perform comparably at low distortions, but at high distortions the

advantage of the optimum attack becomes obvious.

3.3.2 Examples of Attack Behavior

The preceding results show that the white watermark resists the optimum attack better than the PSC-

compliant watermark at lower distortions, while the situation is reversed at higher distortions. Here we

provide some explanations for this behavior. We employ the interpretation of the effective watermarkwe[n]

and noisene[n] in Sec. 2.4, as well as another interpretation presented here.

The purpose of this interpretation is to help visualize the relative powers of the watermark and attack. As

remarked in Sec. 3.1, an ideal receiver could apply the inverse filterg�1[~n] to z[~n] (Eq. (3)) and then decode

from zi[~n] (Eq. (9)). Additionally, the receiver could apply an ideal whitening filter with transfer function

H(~!) =
�
�2w=�ww(~!)

�1=2
and impulse responseh[~n]. Thus, definezw[~n] = h[~n] � g�1[~n] � z[~n] =

ww[~n] + nw[~n], whereww[~n] = h[~n] � g�1[~n] � g[~n] � w[~n] is thewhitened, effective watermark, and

nw[~n] = h[~n] � g�1[~n] � ((1� a)g[~n] � x[~n] + v[~n]) is thewhitened, effective noise. SinceG(~!) may be

zero at some frequencies,ww[~n] has power spectrum

�wwww(~!) =

8><
>:
�2w; G(~!) 6= 0;

0; G(~!) = 0.
(28)

From Eqs. (15) and (16), whenG(~!) = 0, �vv(~!) = 0 as well. Thus,nw[~n] has power spectrum

�nwnw(~!) =

8>><
>>:

�2w
�ww(~!)

�
(1� a)2�xx(~!) + jG(~!)j�2�vv(~!)

�
; G(~!) 6= 0;

0; G(~!) = 0.

(29)

Now (7) can be written as

C =
1

(2�)M

Z

G

1

2
log2

�
1 +

�wwww(~!)

�nwnw(~!)

�
d~! =

1

(2�)M

Z

G

1

2
log2

�
1 +

�2w
�nwnw(~!)

�
d~!; (30)

where
G denotes the frequency support ofG(~!) (within 
).

Figs. 4 and 5 examine different parts of the attack for low and high distortions. Examples appear for both

white and PSC-compliant watermarks. Four graphs appear for each watermark; all graphs in these figures
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use a decibel scale for the vertical axis. The upper-left graph shows the attack componentsA(!), G(!),

and�vv(!). The upper-right graph shows the power spectrum�ee(!) of the errore[n] = ŷ[n] � x[n].

The lower-left graph contains the power spectra of the effective watermarkwe[n] and noisene[n], and the

lower-right graph shows their whitened versions,ww[n] andnw[n]; in the latter graph, it is easier to see the

attacker’s power advantage relative to the watermark.

Fig. 4 shows the attack at low distortion,Dŷx = 6 dB; the white watermark hasC = 0:189, and

the PSC-compliant watermark hasC = 0:0519. For both watermarks,G(!) � A(!) � 1, 8!, and

�vv(!) has approximately the same shape as�ww(!). The optimum attack primarily functions by properly

shaping�vv(!). The shape of�ee(!) is similar to that of�vv(!), which shows that the distortion is

mainly due to the additive noisev[n]. Against the white watermark, the lower set of graphs show that the

effective noise power spectrum is nearly flat and about 6 dB greater than the watermark power spectrum

at all frequencies; the attack must distribute the noise power evenly over all frequencies and cannot gain a

substantial power advantage over any frequency range. Against the PSC-compliant watermark,�nene(!)

adapts the watermark power spectrum to make�nwnw(!) about 10–17 dB greater than�wwww(!) at most

frequencies; the attack gains a large power advantage except in a small region around the origin, where

the watermark power spectrum�ww(!) is concentrated. In this way, the white watermark reaches a higher

capacity than the PSC-compliant one.

Fig. 5 shows the behavior at high distortion,Dŷx = 24 dB; nowC = 2:05 � 10�5 for the white

watermark, andC = 2:19�10�4 for the PSC-compliant watermark. The optimum attack discards frequency

components:G(!) = 0 for j!j > !0. The graph of�ee(!) shows that the distortion is dominated by the

portions of the original that have been filtered out. Against the white watermark, the filter has!0 � 0:05�;

most of the watermark (and original) is simply discarded. Over the interval[�!0; !0], �nwnw(!) is 32–

38 dB greater than�wwww(!). Against the PSC-compliant watermark,!0 � 0:15�; this larger frequency

support indicates that more of the watermark passes through the filterG(!). In addition,�nwnw(!) is only

20–30 dB greater than�wwww(!) over most of the interval[�!0; !0]. Thus, after filtering byG(!), more

watermark power remains for the PSC-compliant watermark than for the white one, and the former achieves

a higher capacity.

These examples agree with the rule-of-thumb in Sec. 3.2.2: “At low distortions, add noise; at high

distortions, throw away frequency components.” They help explain why the best-performing watermark

power spectrum is likely not unique over the entire range ofDŷx. The white watermark better resists

additive noise, while the PSC-compliant watermark better resists frequency-selective filtering.
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3.3.3 Reception-with-Original/Optimal Blind Reception

The left-hand graph in Fig. 6 shows the theoretical performance of various watermarks when subjected to

the optimum attack witha = 1. The capacity-distortion curves may appear not to be convex, but this is

a visual effect due to the logarithmic capacity scale and decibel distortion scale. When drawn with linear

scales, the curves are convex but difficult to distinguish.

Again, we immediately see that the PSC-compliant watermark is not optimum for allDŷx. None of

the watermarks tested has the best performance over the entire range ofDŷx. At low distortions, the white

watermark performs best; at high distortions, the PSC-compliant watermark performs best; for a middle

range of distortions, the lowpass watermark performs better than both the white and PSC-compliant ones.

This behavior suggests that there may be no unique optimum watermark power spectrum that maximizesC

over allDŷx.

3.3.4 Interference from the Original

The right-hand graph in Fig. 6 shows performance curves for the watermarks whena = 0. Generally, the

white watermark performs best at low to medium distortions, while the PSC-compliant watermark performs

best at high distortions.

For low to medium distortions, the PSC-compliant watermark has the poorest performance and the

white watermark has the best performance. We can explain this behavior as follows. The PSC-compliant

watermark power spectrum has the same shape as�xx(!), so it suffers most from interference due to the

original. The bandpass and highpass watermarks concentrate their power away from the frequencies where

�xx(!) is largest; these watermarks outperform the PSC-compliant watermark, in contrast to casea = 1

(left-hand graph in Fig. 6). Yet because they concentrate power in the middle or high frequencies, these

watermarks are easier to attack than the white watermark.

However, at high distortions, most of the power of the bandpass and highpass watermarks is discarded

by the attack; the same occurs for the white watermark, although to a lesser extent. The shape of the PSC-

compliant watermark power spectrum allows more of its power to survive the attack. In a sense, the original

shields the PSC-compliant watermark because the attack cannot discard the frequency components where

the watermark power is concentrated without also destroying the original.
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4 Optimized Defense

Finding a defense in the presence of the optimum attack is extremely difficult. The owner should select

�ww(~!) to maximizeDŷx while satisfying constraintsDyx = DembedandC = Ct (Problem 2). However,

Dŷx andC depend upon�ww(~!) in a complicated manner viaA(~!). An analytic solution for�ww(~!) may

be impossible to find. Also, the experimental results of Sec. 3.3 suggest that there may not be a unique

�ww(~!) that solves the owner’s problem over all possible pairs(Dŷx; Ct).

4.1 Piecewise-Constant Approximation

In an attempt to learn more about the possible solution, we make some approximations that may allow

us to find�ww(~!) numerically. Divide
 into N non-overlapping, equal-support subsets that cover
.

Hence, each region has a total support size of(2�)M=N . We assume thatjF (~!)j and all power spectra

are constant over each subset. We index theN subsets from 1 toN , so that when~! lies in thenth subset,

�xx(~!) = Xn � 0, �ww(~!) = Wn � 0, andjF (~!)j = Fn > 0. We often denote the piecewise-constant

quantities asN -vectors. For example,�ww(~!) is represented byW =
h
W1 W2 � � � WN

iT
.

Consequently,A(~!),G(~!), and�vv(~!) are also constant over each subset; the corresponding values are

respectively denoted byAn,Gn, andVn. We may therefore view each subset as an independent subchannel,

so that we haveN parallel subchannels. The integrals involvingDyx, Dŷx, andC can be replaced by

summations. Eqs. (5), (22) and (24) become

Dyx =
1

N

NX
n=1

F 2
nWn; (31)

Dŷx = Px � 1

N

NX
n=1

F 2
nAn

X2
n

Xn +Wn
; (32)

C =
1

N

NX
n=1

1

2
log2

�
1 +

AnWn

Xn +Wn �An (a(2� a)Xn +Wn)

�
: (33)

4.2 Description of Optimization Algorithms

We have implemented three iterative numerical methods to optimize the watermark vectorW . The first uses

a greedy marginal-analysis(GMA) algorithm, the second employssimulated annealing(SA), and the third

uses“greedy” annealing(GA) [50]. A brief description of the algorithms follows; more details are given in

App. E,

Let DembedandCt be given, soDŷx should be maximized. An initial vectorW that satisfiesDembedis

selected; we chooseW to distribute the embedding distortion evenly over allN subchannels. During each
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iteration,W is perturbed slightly, and the attack is re-optimized. Attack re-optimization can be performed

efficiently becauseC(�) is a decreasing function of� (Sec. 3.2.1). Hence, a bisection search can be used

to find�� such thatjC(��) � Ctj=Ct < ". Once�� has been found,Dŷx(�
�) can be computed. When the

perturbations no longer produce increases inDŷx, the algorithms stop. The algorithms all operate in this

way but differ in the wayW is perturbed and the stopping criterion.

4.3 Experimental Results

In these experiments, we used the AR models described in Sec. 3.3 and approximated the power spectra

usingN = 64 subchannels. In our initial experiments, we found that the results produced by the SA and

GA methods were almost identical, but the SA algorithms took much longer to converge. For this reason,

we only present results for the GMA, GA/normal, and GA/scaled methods here.

4.3.1 Reception-with-Original/Optimal Blind Reception

The left-hand graph of Fig. 7 shows the results for optimized watermark power spectra witha = 1. The op-

timization algorithms gave nearly identical capacity-distortion curves. The greedy nature of the algorithms

sometimes caused them to become trapped in local maxima, but overall they performed well. It is evident

that a white watermark performs nearly as well as the optimized watermarks at low distortions, while a

PSC-compliant watermark performs almost as well at high distortions. These results confirm that there is

not a unique optimum defense for all attack distortions.

Fig. 8 shows examples of the optimized watermark power spectra produced by the optimization methods

at three different attack distortions (Dŷx = 6, 15, and 24 dB); the corresponding capacities appear in the

table in the figure. The white and PSC-compliant power spectra appear for comparison. At 6 dB, the upper

plot shows that all three optimized watermarks are nearly white. At 15 dB, the middle plot demonstrates that

the optimized power spectra reach a compromise between the white and PSC-compliant power spectra. The

optimized power spectra are similar to the power spectrum of the lowpass AR model, which explains its good

performance at medium distortions in Sec. 3.3.3 and Fig. 6. Lastly, at 24 dB, the optimized watermark power

spectra are very similar to the PSC-compliant one. These results agree with the discussion in Sec. 3.3.2, and

we have arule-of-thumb for the defense:At low distortions, white watermarks perform well; at high

distortions, PSC-compliant watermarks perform well.

Lastly, observe that at high distortion (24 dB), the optimized watermark power spectra are not zero at

high frequencies, even though the attack discards these frequency components. A small amount of water-

mark power remains in these frequency components, which corresponds to the requirementW 0
n � ", 8n, in
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the optimization algorithms (see App. E). It would appear that performance could be improved by putting all

of the watermark power in the frequency components that are not discarded by the attack. However, the at-

tack would re-optimize itself and no longer discard frequency components where the watermark power was

zero. The attack would no longer need to incur large distortions while reducingC; in particular,Dŷx;max

could become less thanPx. By leaving a small amount of its power at high frequencies, the optimized

watermark hasW = X and forces the attack to discard these frequency components and incur additional

distortion.

4.3.2 Interference from the Original

Experiments were also conducted for the casea = 0, corresponding to conventional blind reception when

no knowledge of the original is exploited by the watermarking system. Now the originalx[n] acts like

high-power, low-frequency noise, so the original signal’s power spectrum�xx(!) forms a large portion of

the effective noise power spectrum�nene(!) (Sec. 2.4). The resulting capacity-distortion curves appear

in the right-hand graph of Fig. 7. The GMA algorithm occasionally became trapped, but the GA meth-

ods gave consistently good performance. At low distortions, the white watermark again performs close to

the optimized watermarks, while the PSC-compliant watermark does so at high distortions. However, the

curves show that, unlike the casea = 1, optimizing the watermark power spectrum results in additional

improvement.

Fig. 9 shows the optimized watermark power spectra forDŷx = 6, 15, and 24 dB and the corresponding

capacities. The power spectra reflect a compromise between resisting the attack and water-filling to avoid

interference from�xx(!). At low distortion, �xx(!) dominates�nene(!). The optimized watermark

power spectra have roughly the same shape as�xx(!) (so they appear white relative to�nene(!)), but they

place very little power at the frequencies where�xx(!) is largest (so they avoid most of the original-signal

interference). As the attack distortion becomes larger, the optimized watermarks become more like a PSC-

compliant watermark because the attack begins to discard the frequency components where�xx(!) is not

concentrated. Although�xx(!) interferes with watermark reception, it also acts like a shield that prevents

the low-frequency portions of the watermarks from being filtered out, as suggested in Sec. 3.3.4.

4.3.3 Comparison of Blind Schemes

This section looks at the potential capacity improvement in blind watermarking when knowledge of the orig-

inal signal is exploited during watermark embedding, rather than using a conventional blind watermarking

scheme that treats the original as noise. The left-hand graph in Fig. 10 displays the capacity-distortion curves
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for the optimized watermarks produced by the GA/scaled algorithm for four different values of the original-

interference suppression factora: 0 (conventional blind reception), 0.2929 (50% original-interference power

suppression), 0.6838 (90% power suppression), and 1 (optimal blind reception). It is clear that a suboptimal

blind watermarking scheme that suppresses some of the original-interference power can achieve a substantial

increase in capacity. Promising methods for practical schemes may be found in [16, 10, 38, 8, 11].

The right-hand graph in Fig. 10 shows the ratioCp%=C0%, whereCp% denotes the capacity whenp per-

cent of the original-interference power is suppressed. ForDŷx < 10 dB,C50% is about 1.8 timesC0%,C90%

about 3–7 times, andC100% is 7–148 times (not shown). For10 dB� Dŷx � 25 dB, the increases are more

modest; the capacities have the approximate ratioC100% : C90% : C50% : C0% � 6 : 3 : 1:5 : 1. At higher

distortions, there is still some room for improvement over conventional blind reception, butC100% is itself

very small (less than10�4). In applications where communication even at very high distortions is necessary,

a conventional blind watermarking scheme may remain a practical choice. However, when the number of

samples is limited (e.g., image watermarking), even an optimal scheme may not be able to communicate

sufficient information at high distortions.

4.3.4 Comparison with Memoryless Case

It is also worthwhile to compare performance for a correlated original and for a white or memoryless origi-

nal, for which Eq. (13) gives a closed-form relationship betweenC andDŷx. Of course, in the memoryless

case, there are no frequencies where the optimum attack or optimized defense can gain a power advantage.

We now show that memory can significantly affect watermark capacity.

Fig. 11 shows the capacity-distortion curves for lowpass (AR(1),a1 = 0:95) and memoryless original

signals. Consider low distortions. Whena = 1 (left-hand graph), the curves are almost identical. This

behavior can be explained by recalling that, for the colored original in this distortion range, the best water-

marks are almost white, and the optimum attack mainly operates by adding nearly-white noise. Whena = 0

(right-hand graph), watermark capacity with a colored original is much greater than with a white original.

Recall that the optimized watermarks do not place much power at frequencies where�xx(!) is large, but

they cannot do this in the memoryless case, where�xx(!) is flat.

For eithera = 0 or a = 1 at higher distortions, watermark capacity with a memoryless original is

significantly greater than that with a colored original. When the original is colored, the attack can exploit a

power advantage at frequencies where�xx(!) is small and eventually discard these frequency components

when the distortion becomes large. This is not possible in the memoryless case.
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4.3.5 Comparison with Suboptimal Attacks

This section compares the performance of three different attacks and their respective defenses. For simplic-

ity, we employ MSE distortion and assumea = 1 (reception-with-original/optimal blind reception). First,

we consider anadditive-noise attack, consisting only of ACGNv[~n], soŷ[~n] = x[~n]+w[~n]+v[~n]. It is clear

that such an attack is suboptimal, but this model has been used frequently in the watermarking literature. For

this attack,Dŷx = �2w + �2v . Then the best watermark has a white power spectrum; the attack cannot gain

a power advantage at any frequency and must use white noise. Hence,C = 1
2 log2

�
1 + �2w=(Dŷx � �2w)

�
.

Second, we consider the effective white-noise attack of Sec. 3.1. The best defense against this attack requires

that�ww(~!) satisfy the PSC (12). The capacity-distortion curve is given by (14). Third, we present the re-

sults for the optimum attack of Sec. 3.2 and the optimized defense (watermark power spectra) generated by

the GA/scaled algorithm described in Sec. 4.2.

Fig. 12 shows the capacity-distortion curves for the three attacks. At low distortions, the additive-

noise attack provides a fairly accurate approximation to the optimum attack, which functions mainly as

additive noise in this distortion range. As the distortion increases, the capacities predicted by the additive-

noise and effective white-noise attack models become erroneously optimistic. At high distortions, the latter

anticipates a capacity 10–50 times greater than that actually produced by the optimum attack; for the former,

the capacity may be overestimated by factors as large as 50, 100, or more. These results demonstrate that

neither of these attack models is adequate when communication must be maintained even at high distortions

after hostile attacks. However, the additive-noise attack model may suffice for applications in which only a

modest amount of distortion must be tolerated or where resistance to hostile attacks is unnecessary.

4.3.6 Frequency-Weighted Distortion

All of the results presented to this point employ MSE distortion. To observe how the frequency-weighted

MSE affects the attack and watermark, we present a few experimental results here. We setjF (!)j2 =

2:0009=
�
1 + 0:5ej2!

� �
1 + 0:5e�j2!

�
. The scale factor of 2.0009 is chosen so thatPx = 103 = �2x, and

hence the frequency-weighted distortion covers the same range as MSE distortion. A plot of the piecewise-

constant curves that correspond to�xx(!) and jF (!)j2 appear in Fig. 13. This choice ofjF (!)j2 means

that distortions at the middle frequencies are more perceptible than those at low or high frequencies.

Examples of the GA/scaled-optimized watermark and the attack behavior appear in Fig. 14 forDŷx = 6

and 24 dB. The original-interference suppression factor isa = 1, and the perceptual embedding distortion

is maintained atDyx=Px = �30 dB. In each set of four graphs, the upper-left graph includes both�ww(!)

and the frequency-weighted watermarkFww(!) = jF (!)j2�ww(!); likewise, the lower-right graph shows
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the error power spectrum�ee(!) and its frequency-weighted counterpartFee(!) = jF (!)j2�ee(!).

At low distortion (6 dB), the optimized watermark is not white—unlike the case of MSE distortion—

but the frequency-weighted watermarkFww(!) is. We say that the latter isperceptually white. The attack

filter G(!) remains almost flat, but the noise power spectrum�vv(!) is now shaped to avoid introducing

excessive power at frequencies wherejF (!)j2 is large. The power spectra�wewe(!) and�nene(!) of the

effective watermark and noise have almost the same shape. As a result,�nene(!) is approximately white

relative to�wewe(!); this offers a direct analogy to the lower-left graphs in Fig. 4 for MSE distortion.

Finally, the error power spectrum�ee(!) is also shaped such that its weighted counterpartFee(!) has a flat

power spectrum.

At high distortion (24 dB), the optimized watermark power spectrum is roughly PSC-compliant. The

attack discards frequency components, but it cannot discard as many middle frequency components as with

MSE distortion. Next, letF 0ww(!) = jF (!)j2(Dembed=Px)�xx(!), which corresponds to afrequency-

weightedPSC-compliant watermark power spectrum.F 0ww(!) is drawn as a dotted curve in the upper-left

graph. We also say thatF 0ww(!) is perceptually PSC-compliant. Clearly, the frequency-weighted, optimized

power spectrumFww(!) closely matchesF 0ww(!).

Fig. 15 shows the distortion-capacity curves with this frequency-weighted MSE distortion measure and

an original-interference suppression factora = 1. Three optimized curves are shown, as well as curves

for perceptually white and perceptually PSC-compliant watermarks. The curves show that the perceptually

white watermark performs nearly optimally at low distortions, and the perceptually PSC-complaitn water-

mark performs nearly optimally at high distortions.

Based on these results, we can extend the observations for MSE distortion (e.g., Sec. 4.3.1) to frequency-

weighted MSE in a simple way to obtain the followingrule-of-thumb : At low perceptual distortions, a

perceptually white watermark performs nearly optimally, while at high perceptual distortions, a perceptually

PSC-compliant watermark performs nearly optimally.

5 Conclusions and Remarks

5.1 Summary and Conclusions

We have analyzed the theoretical performance of watermarks and employed a well-defined robustness crite-

rion that measures watermark capacity and attack distortion. Watermarking was viewed as communication

over a hostile channel, where attacks take place. Our attack channel model consisted of LSI filtering and

additive colored Gaussian noise. In a conventional additive-noise channel, communication is most difficult
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when the noise is white and Gaussian. This observation inspired the investigation of an effective white-noise

attack. It was shown that the best defense (watermark power spectrum) against this attack results when a

power-spectrum condition(PSC) is fulfilled. The PSC states that the watermark power spectrum should be

directly proportional to the power spectrum of the original signal; in other words,“the watermark should

look like the original” in a statistical sense.

However, unlike conventional channels, the hostile attack channel is not fixed but adapts to the water-

mark; the attacker, not the owner, has “the last word.” The optimum attack was derived and shown to be

superior to the effective white-noise attack. The optimum attack is difficult to describe exactly, but its behav-

ior may be roughly described by a rule-of-thumb:“At low attack distortions (high capacities), add noise;

at high attack distortions (low capacities), throw away frequency components.”Experiments demonstrated

that the PSC is not always the best defense against this attack; they also showed that there is no unique

optimum watermark power spectrum over the entire range of attack distortions.

Next, an optimized defense (watermark power spectrum) against the optimum attack was investigated.

Because of difficulties in finding an analytical solution, and because the defense is intimately tied to the

attack, numerical optimization methods were applied. Like the optimum attack, the optimized defense is

difficult to describe precisely. However, experimental results with the MSE distortion measure produced a

rule-of-thumb for the defense:“White watermarks perform nearly optimally at low distortion, and PSC-

compliant watermarks perform nearly optimally at high distortions.”These results agree with the descrip-

tion of the attack behavior because a white watermark resists additive noise well, while a PSC-compliant

watermark resists frequency-selective filtering well. For applications where only mild attack distortions

must be tolerated, a white watermark is preferable because it should provide a higher capacity than a PSC-

compliant watermark. For applications where communication must be possible even at high attack distor-

tions, a PSC-compliant watermark is more suitable because it should offer a greater capacity than a white

watermark.

Also, the optimized watermarks distribute their power over the entire frequency support of the original

signal’s power spectrum. They leave a small amount of power at frequency components where the original

power is small. Doing so forces the attack to spread its effort over all frequencies.

When the receiver fails to suppress all of the interference from the original, the original acts like ad-

ditional channel noise. The optimized watermark power spectrum strikes a balance between resisting the

attack, which is hostile and adaptive, and water-filling to resist original-signal interference, which is coin-

cidental and passive. Experiments with partial original-interference suppression, likely in practical blind

watermarking schemes, indicate that significant capacity gains over conventional blind reception are possi-
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ble.

Additional experiments indicate that there can be a significant performance difference between the cases

of a memoryless original and an original with memory. When the original signal is highly correlated,

modeling it as memoryless may overestimate the capacity of the watermarking system. Likewise, modeling

the attack as additive noise or effective white-noise can lead to a large discrepancy between predicted and

actual capacity-distortion performance. The optimum attack is more powerful than either of these attacks.

Finally, experiments with frequency-weighted MSE distortion generalize the results for MSE distortion

in a simple way: “At low perceptual distortions, perceptually white watermarks have nearly optimal per-

formance, and at high perceptual distortions, perceptually PSC-compliant watermarks have nearly optimal

performance.” For applications where only mild attacks must be resisted, perceptually white watermarks are

desirable. For robustness at high perceptual distortions, these observations strongly encourage the heuris-

tic rule of Coxet al. [15] and others (e.g., [49, 24, 47]) that the watermark should be embedded in the

“perceptually significant frequency components.”

5.2 Remarks and Practical Implications

Because of the theoretical nature of this paper, some remarks on its significance for practical watermarking

schemes are in order. Many of the assumptions in the analysis are ideal; nevertheless, the results can also

provide helpful insights and useful tools for constructing and evaluating practical watermarking systems.

These remarks are of a more speculative nature than the rest of this paper.

First, we have applied Kerckhoff’s principle from both the owner’s and attacker’s viewpoints. Of course,

the former viewpoint should be used in the responsible design of a watermarking scheme: The designer

should be pessimistic and assume that the attacker has complete knowledge of the statistics of the original

and the watermark. However, the latter viewpoint is optimistic: The owner is assumed to have complete

knowledge of the attack filter and noise statistics. Using this knowledge, the watermark receiver compen-

sates for the attack. In practice, it is unlikely that the watermark receiver will be fortunate enough to have

such accurate knowledge. Consequently, the results in this paper represent upper bounds on performance.

Second, the results (e.g., see Figs. 7 and 15) indicate very low capacities when the attack distortion

becomes large. At such distortions, thousands of samples may be required to communicate a single infor-

mation bit. One should be careful not to draw any sweeping conclusions from our theoretical analysis, but it

does suggest that it could be difficult or even impossible to communicate a significant amount of information

if the attack distortion is high and the number of signal samples is severely limited. Such a conclusion could

have important consequences for practical image and audio watermarking schemes. In contrast, the number
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of available samples is virtually unlimited in video watermarking; however, synchronization and production

costs could be problematic for such long signals.

Third, the analysis shows that there is not a unique watermark power spectrum that provides the best

performance over the entire range of attack distortons. This result implies an unavoidable “you can’t have

it all” trade-off: A single watermarking strategy (e.g., white or PSC-compliant) cannot achieve the highest

communication rate or information payload at both low and high distortions. For example, if a system uses

a PSC-compliant watermark to maintain communication at high distortion, but the attack is less severe than

anticipated, then the payload will be lower than if the system had employed a white watermark.

This trade-off doesnot mean that PSC-compliant watermarks are superior to white watermarks, or vice

versa. Rather, it means that the choice of watermark power spectrum is highly application-dependent. For

example, consider applications like embedding meta-information or broadcast monitoring. It may not be

important if the meta-information cannot be retrieved after mild signal degradations. Likewise, a broad-

casting site is unlikely to introduce much distortion intentionally, and it does not matter if consumers later

process the watermarked data after broadcast. For such applications, a white watermark may be appropriate.

However, in applications such as access control and the protection of intellectual property rights, the hidden

information should also be decodable even at extremely high distortions. PSC-compliant watermarks are

more suitable for these applications.

Fourth, although ordinary MSE and frequency-weighted MSE are imperfect distortion measures for

real data, the analysis may still provide a useful guideline for practical watermarking schemes that employ

more accurate perceptual models. A watermark whose embedding distortion is spread fairly uniformly over

the original signal would be analogous to a perceptually white watermark; it would likely provide a large

payload but low robustness. On the other hand, a watermark whose embedding distortion is concentrated

in the perceptually significant portions of the original signal would be analogous to a perceptually PSC-

compliant watermark; it would probably yield a small payload but high robustness.

Finally, we remark that the presented optimum attack is not a purely theoretical entity; it could actually

be implemented by an attacker. Even in practice, an attacker may be able to acquire reasonably accurate

knowledge of the statistics of the original and watermark signals, and then the attack could easily be applied.

The optimum attack may thus be a useful tool for evaluating practical watermarking schemes; it has recently

been applied to an image watermarking scheme in [20].
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A Effective White-Noise Attack

For this attack, the attacker should set

�nini(~!) =
�2ni
�2w

�ww(~!): (34)

ThenC = 1
2 log2

�
1 + �2w=�

2
ni

�
. Since�2w is fixed, the attacker can ensure thatC = Ct by selecting�2ni

appropriately. From (10), it follows that

�vv(~!) = jG(~!)j2
"
�2ni
�2w

�ww(~!)� (1� a)2�xx(~!)

#
; (35)

so that onceG(~!) is known,�vv(~!) is also specified. Regardless ofG(~!), to ensure that�vv(~!) remains

non-negative at all frequencies,�2ni is restricted by

�2ni � (1� a)2�2wmax
~!2W

�xx(~!)

�ww(~!)
: (36)

The distortion expression (5) becomes

Dŷx =
1

(2�)M

Z


jF (~!)j2 ��jG(~!)� 1j2 � (1� a)2jG(~!)j2��xx(~!) + jG(~!)j2K�ww(~!)

�
d~!; (37)

whereK = 1 + �2ni=�
2
w. WriteG(~!) in magnitude-phase form,G(~!) = jG(~!)jej�(~!), and substitute this

form into (37) to obtain

Dŷx =
1

(2�)M

Z


jF (~!)j2� �jG(~!)j2 � 2jG(~!)j cos �(~!) + 1� (1� a)2jG(~!)j2��xx(~!)

+ jG(~!)j2K�ww(~!)
�
d~!: (38)

Let D0
ŷx denote the integrand of (38). To minimizeDŷx, compute the partial derivatives ofD0

ŷx with

respect to�(~!) andjG(~!)j, and set them equal to zero. First,

@D0
ŷx

@�(~!)
= jF (~!)j2 � 2jG(~!)j sin �(~!)�xx(~!) = 0:

Thus,�(~!) = k�, andcos �(~!) = �1. Second,

@D0
ŷx

@jG(~!)j = jF (~!)j
2 � ��2jG(~!)j � 2 cos �(~!)� 2(1� a)2jG(~!)j��xx(~!) + 2jG(~!)jK�ww(~!)

�
= 0:

(39)
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Solving (39) forjG(~!)j gives

jG(~!)j = �xx(~!)

a(2� a)�xx(~!) +K�ww(~!)
cos �(~!):

SincejG(~!)j � 0, cos �(~!) = 1; hence,G(~!) = jG(~!)j, and choose�(~!) = 0, 8~!. Thus, the solution for

G(~!) is

G(~!) =
�xx(~!)

a(2� a)�xx(~!) +K�ww(~!)
: (40)

�vv(~!) can then be computed from (35).

The attack distortion (37) becomes

Dŷx = Px � 1

(2�)M

Z


jF (~!)j2 �2

xx(~!)

a(2� a)�xx(~!) +K�ww(~!)
d~!: (41)

B Power-Spectrum Condition

LetG(~!) be given by (40). Then apply the calculus of variations with the Lagrangian

J = jF (~!)j2 ��(G(~!)� 1)2 � (1� a)2G2(~!)
�
�xx(~!) +G2(~!)K�ww(~!)

�
+ �jF (~!)j2�ww(~!):

Next,
dJ

d�ww(~!)
=

jF (~!)j2K�2
xx(~!)

(a(2� a)�xx(~!) +K�ww(~!))
2 + �jF (~!)j2 = 0:

Solving this equation for�ww(~!) yields

�ww(~!) =
1p
K

�
� 1p�� �

a(2� a)p
K

�
�xx(~!): (42)

It is already evident that�ww(~!) is directly proportional to�xx(~!).

For completeness, continue analysis to verify that�ww(~!) is always a valid power spectrum. Since

power spectra are real, select� < 0. Since power spectra are non-negative, choose the plus-case and then

set 1p�� �
a(2�a)p

K
� 0. Solving for� gives� � �K=a2(2� a)2. Hence,0 < �� � K=a2(2� a)2, and let

�� = �2K=a2(2� a)2, where� must satisfy0 < � � 1 for �ww(~!) to be valid. Then�ww(~!) becomes

�ww(~!) =
a(2� a)

K

�
1� �
�

�
�xx(~!) =

�2w
�2x

�xx(~!):

Solving for� gives

� =
a(2� a)�2x

a(2� a)�2x +K�2w
:

Recall0 � a � 1 andK = 1 + �2ni=�
2
w, so� always satisfies0 < � � 1. Consequently,�ww(~!) in (42) is

always a valid power spectrum and is directly proportional to�xx(~!).
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C Capacity Expression for Effective White-Noise Attack and PSC

Since�ww(~!) is PSC-compliant, substitute�ww(~!) = (�2w=�
2
x)�xx(~!) into the distortion expression (41),

which yields

Dŷx = Px � 1

(2�)M

Z


jF (~!)j2 �2

xx(~!)

a(2� a)�xx(~!) +K �2w
�2x
�xx(~!)

d~!

= Px � �2x
a(2 � a)�2x +K�2w

� 1

(2�)M

Z


jF (~!)j2�xx(~!) d~!

= Px

�
1� �2x

a(2� a)�2x + �2w + �2ni

�
; (43)

where the last line follows becauseK = 1 + �2ni=�
2
w. Next, solve (43) for�2ni , which produces

�2ni =
Px�

2
x � (Px �Dŷx)

�
a(2� a)�2x + �2w

�
Px �Dŷx

:

The capacity isC = 1
2 log2

�
1 + �2w=�

2
ni

�
, so write

�2w
�2ni

=
(Px �Dŷx)�

2
w

Px�2x � (Px �Dŷx) (a(2� a)�2x + �2w)
� Px=�

2
x

Px=�2x

=
(Px �Dŷx)

�2w
�2x
Px

P 2
x � (Px �Dŷx)

�
a(2� a)Px + �2w

�2x
Px

� :
Because�ww(~!) is PSC-compliant,Dembed= (�2w=�

2
x)Px, and (13) follows.

D Optimum Attack

LetG(~!) = jG(~!)jej�(~!). Write the integrand ofDŷx in (5) as

D0
ŷx = jF (~!)j2

��jG(~!)j2 � 2jG(~!)j cos �(~!) + 1
�
�xx(~!) + jG(~!)j2�ww(~!) + �vv(~!)

�
;

and the integrand ofC in (7) asC 0= ln 2, where

C 0 =
1

2
ln

�
1 +

jG(~!)j2�ww(~!)

(1� a)2jG(~!)j2�xx(~!) + �vv(~!)

�
:

Then apply the calculus of variations with the LagrangianJ = D0
ŷx + (�= ln 2)C 0.

First, we have@J=@�(~!) = 2jG(~!)j sin �(~!)�xx(~!) = 0, so�(~!) = k�, andcos �(~!) = �1.

Second, it is useful to compute the partial derivatives ofC 0 before continuing. We find@C 0=@�vv(~!) =

�jG(~!)j2�ww(~!)=2	(~!), and@C 0=@jG(~!)j = jG(~!)j�ww(~!)�vv(~!)=	(~!), where

	(~!) =
�
(1� a)2jG(~!)j2�xx(~!) + �vv(~!)

� �
(1� a)2jG(~!)j2�xx(~!) + �vv(~!) + jG(~!)j2�ww(~!)

�
:
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Then
@J

@�vv(~!)
= jF (~!)j2 +

�
�

ln 2

�
@C 0

@�vv(~!)
= jF (~!)j2 �

�
�

ln 2

� jG(~!)j2�ww(~!)

2	(~!)
= 0;

which we write as

2
jF (~!)j2
jG(~!)j =

�
�

ln 2

� jG(~!)j�ww(~!)

	(~!)
: (44)

We multiply both sides of (44) by�vv(~!) to obtain

2
jF (~!)j2�vv(~!)

jG(~!)j =

�
�

ln 2

� jG(~!)j�ww(~!)�vv(~!)

	(~!)
=

�
�

ln 2

�
@C 0

@jG(~!)j : (45)

Third, we compute

@J

@jG(~!)j = jF (~!)j
2 [(2jG(~!)j � 2 cos �(~!)) �xx(~!) + 2jG(~!)j�ww(~!)] +

�
�

ln 2

�
@C 0

@jG(~!)j = 0:

From (45),

2jF (~!)j2 [(jG(~!)j � cos �(~!)) �xx(~!) + jG(~!)j�ww(~!)] + 2
jF (~!)j2�vv(~!)

jG(~!)j = 0:

Solving for�vv(~!) produces

�vv(~!) = jG(~!)j cos �(~!)�xx(~!)� jG(~!)j2 (�xx(~!) + �ww(~!)) � 0; (46)

where the inequality has been added to ensure that�vv(~!) is a valid power spectrum.

To satisfy this inequality, we must havecos �(~!) = +1, 8~!, soG(~!) = jG(~!)j � 0, 8~!. We choose

�(~!) = 0, 8~!. Eq. (46) yieldsG(~!) � �xx(~!)= (�xx(~!) + �ww(~!)). We can then writeG(~!) as in (15).

Substituting (15) into (46) gives�vv(~!) in (16).

It remains to find an expression forA(~!). We substitute (15) and (16) into (44). After some algebra, we

find

jF j2�2
xx

�
(1� a)2A�xx + (1�A) (�xx +�ww)

�
� �(1� a)2A�xx + (1�A) (�xx +�ww) +A�ww

�
=

�

2 ln 2
�ww (�xx +�ww)

2 ; (47)

where we have omitted the frequency variable~!.

For0 < a � 1, Eq. (47) can be written as a quadratic expression inA(~!). It has roots

A(~!) = 
1 +

�ww

2a(2� a)�xx
�
p
�2
xx�

2
ww + (2�=ln 2)a(2 � a)�xx�ww (a(2� a)�xx +�ww) jF j�2

2a(2 � a)�2
xx

!

�
�

�xx +�ww

a(2� a)�xx +�ww

�
: (48)
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We select the minus-case since otherwiseA(~!) > 1, 8~!. Since0 � A(~!) � 1, 8~!, as well, to satisfy the

Kuhn-Tucker conditions [53], we impose the cl[�] operator (18) and arrive at (20).

In the casea = 0, (48) is not well-defined. Substitutea = 0 into (47), which produces a linear equation

in A(~!); imposing the constraintA(~!) � 0, 8~!, yields (19).

E Optimization Algorithms

We outline the optimization algorithms for the case whereDembedandCt are given andDŷx should be max-

imized. They can easily be modified to replace the capacity constraint with an attack-distortion constraint

Dŷx = Dt and maximizeC (see Sec. 2.5).

Initialization The algorithms require theN -vectorsX andF , and the scalarsDembedandCt. The initial

watermarkN -vectorW should be selected such thatWn � 0, 8n, and(1=N)
PN

n=1 F
2
nWn = Dembed;

the latter condition enforces the embedding distortion constraint. Typically, we setWn = Dembed=F
2
n ,

8n, so that the initial embedding distortion is distributed evenly over all subchannels.

Bisection Search for Optimum Attack GivenW , it is necessary to find the optimum attack that minimizes

Dŷx such that the capacityC = Ct. With all other parameters fixed, the attack is parameterized by�.

BecauseC(�) is a decreasing function of� (Sec. 3.2.1), a simple bisection search can be employed

to find �� such thatjC(��) � Ctj=Ct < "C for some small tolerance"C > 0. Once�� has been

determined, it is a simple matter to compute the corresponding attack distortionDŷx(�
�).

If the alternate approach to the attack is desired (minimizeC such thatDŷx = Dt), a bisection

search can also be used sinceDŷx(�) is an increasing function of�. After �� has been found such that

jDŷx(�
�)�Dtj=Dt < "D, for some"D > 0, the corresponding capacityC(��) can be computed.

Perturbation When perturbing the watermark vectorW , it is useful to work with the embedding distortion

vectorD, whose elements areDn = F 2
nWn, 8n. The perturbed watermark distortion vectorD0

is given byD0 = D + �D, where�D is the perturbation vector with elements�Dn. Then the

perturbed watermarkW 0 has elementsW 0
n = D0

n=F
2
n , 8n. To fulfill the constraint onDembed, �D

must satisfy(1=N)
PN

n=1�Dn = 0. To ensure thatW 0
n � 0, 8n, the elements�Dn must also

satisfy�Dn � �Dn, 8n. In actuality,W 0
n is restricted such thatW 0

n � ", where" is a small, positive

number (e.g.," = 10�6). An explanation for this restriction appears in Sec. 4.3.1.

In the following, T corresponds to temperature in the annealing schedule. For the GMA al-

gorithm, one element�Dn is set equal to�T , and the other(N � 1) elements of�D are set to
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�T=(N � 1). For the annealing methods, there are two different ways for generating perturbations.

In the first method, referred to asSA/normalor GA/normal, �D is produced by concatenatingN

random deviates from a normally distributed random-number generator with standard deviationT . In

the second method,SA/scaledor GA/scaled, the elements of�D are�Dn = "nDn, where"n is the

output of a uniform-[�T; T ] random-number generator and0 < T < 1; henceD0
n = (1 + "n)Dn.

Decision After a perturbation has been made, the bisection search is used to re-optimize the attack and find

�0 such thatjC 0(�0)�Ctj=Ct < "C ; thenD0
ŷx(�

0) is computed. Each algorithm must decide whether

or not to accept the perturbed watermarkW 0 or keep the previous watermarkW .

The GMA algorithm tries all single-subchannel perturbations and selects the one that produced the

greatest value ofD0
ŷx > Dŷx; thenW  W 0 andDŷx  D0

ŷx. If all single-subchannel perturbations

result inD0
ŷx < Dŷx, the algorithm stops.

The SA algorithms use the Metropolis decision rule [37]. IfD0
ŷx > Dŷx, the perturbation is

accepted, andW  W 0, Dŷx  D0
ŷx. Otherwise, the algorithm computesp = exp

��
D0
ŷx �

Dŷx

�
=KT

�
, whereK > 0 is the temperature constant, and picks a random numberr uniformly

distributed over[0; 1]. If r < p, the perturbation is accepted andW andDŷx are updated; ifr � p,

the perturbation is rejected.

The GA algorithms make a random perturbation, but only accept the perturbation ifD0
ŷx > Dŷx.

This is analogous to settingK = 0 in the corresponding SA algorithms.

Annealing ScheduleAll the algorithms, including GMA, employ an annealing schedule that gradually

reduces the temperatureT according toT  cT , wherec 2 (0; 1) is the cooling factor. For a given

temperatureT , many perturbations (typically100N ) are performed before reducing the temperature

by c. If none of the perturbations are accepted at a single temperature, the algorithms stop.

In the annealing algorithms, if a large number (e.g.,10N ) of the perturbations are accepted,T is

immediately reduced. The logic is that the system is “too hot” and simply jumping randomly from

one state (watermark vectorW ) to another; hence, it is reasonable to cool the system prematurely.
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Figure 1: Block diagram of watermark embedding, LSI filtering-additive noise attack, and watermark re-
ception. The originalx[~n] may not be physically available to the receiver, but the watermarking system
may exploit knowledge ofx[~n] during embedding so that it behaves as if it eliminates some or all of the
interference fromx[~n]. Thus, the receiver caneffectivelyremoveag[~n] � x[~n] from ŷ[~n].
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Figure 2: Example power spectra for original and watermarks used in experiments. All power spectra are
shown with a decibel scale.
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C
ap

ac
ity

C

[b
its

/s
am

pl
e]

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

eff. white−noise attack/PSC watermark  
eff. white−noise attack/white watermark
optimum attack/PSC watermark           
optimum attack/white watermark         

Comparison of Attacks

DistortionDŷx [dB]
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Figure 3: Comparison of effective white-noise attack and optimum attack. Left: performance of various
watermarks subject to the effective white-noise attack. Right: performance of PSC-compliant and white
watermarks subject to either attack. For both graphs, the original-interference suppression factor isa = 1.
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White Watermark (C = 0:189 bits/sample,Dŷx = 6 dB)
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PSC-Compliant Watermark (C = 0:0519 bits/sample,Dŷx = 6 dB)
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Figure 4: Example of attack behavior for white and PSC-compliant watermarks after optimum attack at low
distortion. The original-interference suppression factor isa = 1. All power spectra are shown with a decibel
scale.
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Figure 5: Example of attack behavior for white and PSC-compliant watermarks after optimum attack at high
distortion. The original-interference suppression factor isa = 1.
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Figure 6: Performance of various fixed watermark power spectra subject to the optimum attack.
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Figure 7: Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack.
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Dŷx = 6 dB
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Figure 8: Example optimized watermark power spectra for selected attack distortionsDŷx whena = 1
(reception-with-original/optimal blind reception). Results for GMA [solid curve], GA/normal [dashed
curve], and GA/scaled [dotted curve] are shown. For reference, thin curves corresponding to white [dotted]
and PSC-compliant [solid] power spectra are also given. The accompanying table gives the corresponding
capacity valuesC.
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Figure 9: Example optimized watermark power spectra for selected attack distortionsDŷx whena = 0
(conventional blind reception). Results for GMA [solid curve], GA/normal [dashed curve], and GA/scaled
[dotted curve] are shown. For reference, thin curves corresponding to white [dotted] and PSC-compliant
[solid] power spectra are also given. The accompanying table gives the corresponding capacity valuesC.

46



0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

a=1.0000 (optimal blind reception)     
a=0.6838 (90% reduction)               
a=0.2929 (50% reduction)               
a=0.0000 (conventional blind reception)

DistortionDŷx [dB]
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Figure 10: Performance comparison for blind watermarking schemes depending upon the original-
interference suppression factora.
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Figure 11: Performance comparison for memoryless originalx[~n] and lowpass originalx[~n] (AR(1), a1 =
0:95).
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Figure 12: Performance of various attacks and their defenses. The original-interference suppression factor
a = 1.
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Figure 13: Piecewise-constant original power spectrum�xx(!) and frequency-weighting functionjF (!)j2
used in experiments with frequency-weighted distortion.
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Dŷx = 6 dB,C = 0:196 bits/sample
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Dŷx = 24 dB,C = 4:89 � 10�4 bits/sample
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Figure 14: Example optimized watermark power spectra from GA/scaled algorithm and attack behav-
ior for frequency-weighted distortion. The frequency-weighted counterpart of�ww(!), Fww(!) =
jF (!)j2�ww(!), appears in the upper-left graph for the two distortions shown; for the caseDŷx = 24 dB,
the frequency-weighted PSC-compliant spectrumF 0ww(!) is also shown as a dotted curve. The frequency-
weighted version of the error power spectrum�ee(!), Fee(!) = jF (!)j2�ee(!), appears in the lower-right
graph for each distortion. The original-interference suppression factor isa = 1.
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Figure 15: Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack.
The original-interference suppression factora = 1. The distortion measure isfrequency-weightedMSE.
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Figure Captions

Figure 1

Block diagram of watermark embedding, LSI filtering-additive noise attack, and watermark reception. The

original x[~n] may not be physically available to the receiver, but the watermarking system may exploit

knowledge ofx[~n] during embedding so that it behaves as if it eliminates some or all of the interference

from x[~n]. Thus, the receiver caneffectivelyremoveag[~n] � x[~n] from ŷ[~n].

Figure 2

Example power spectra for original and watermarks used in experiments. All power spectra are shown with

a decibel scale.

Figure 3

Comparison of effective white-noise attack and optimum attack. Left: performance of various watermarks

subject to the effective white-noise attack. Right: performance of PSC-compliant and white watermarks

subject to either attack. For both graphs, the original-interference suppression factor isa = 1.

Figure 4

Example of attack behavior for white and PSC-compliant watermarks after optimum attack at low distortion.

The original-interference suppression factor isa = 1. All power spectra are shown with a decibel scale.

Figure 5

Example of attack behavior for white and PSC-compliant watermarks after optimum attack at high distor-

tion. The original-interference suppression factor isa = 1.

Figure 6

Performance of various fixed watermark power spectra subject to the optimum attack.

Figure 7

Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack.

Figure 8

Example optimized watermark power spectra for selected attack distortionsDŷx whena = 1 (reception-

with-original/optimal blind reception). Results for GMA [solid curve], GA/normal [dashed curve], and
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GA/scaled [dotted curve] are shown. For reference, thin curves corresponding to white [dotted] and PSC-

compliant [solid] power spectra are also given. The accompanying table gives the corresponding capacity

valuesC.

Figure 9

Example optimized watermark power spectra for selected attack distortionsDŷx whena = 0 (conventional

blind reception). Results for GMA [solid curve], GA/normal [dashed curve], and GA/scaled [dotted curve]

are shown. For reference, thin curves corresponding to white [dotted] and PSC-compliant [solid] power

spectra are also given. The accompanying table gives the corresponding capacity valuesC.

Figure 10

Performance comparison for blind watermarking schemes depending upon the original-interference sup-

pression factora.

Figure 11

Performance comparison for memoryless originalx[~n] and lowpass originalx[~n] (AR(1), a1 = 0:95).

Figure 12

Performance of various attacks and their defenses. The original-interference suppression factora = 1.

Figure 13

Piecewise-constant original power spectrum�xx(!) and frequency-weighting functionjF (!)j2 used in ex-

periments with frequency-weighted distortion.

Figure 14

Example optimized watermark power spectra from GA/scaled algorithm and attack behavior for frequency-

weighted distortion. The frequency-weighted counterpart of�ww(!), Fww(!) = jF (!)j2�ww(!), appears

in the upper-left graph for the two distortions shown; for the caseDŷx = 24 dB, the frequency-weighted

PSC-compliant spectrumF 0ww(!) is also shown as a dotted curve. The frequency-weighted version of

the error power spectrum�ee(!), Fee(!) = jF (!)j2�ee(!), appears in the lower-right graph for each

distortion. The original-interference suppression factor isa = 1.
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Figure 15

Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack. The

original-interference suppression factora = 1. The distortion measure isfrequency-weightedMSE.
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