PREDICTIVE LSF COMPUTATION

Bogdan Dumitrescu; Ioan Tabus
Signal Processing Laboratory,
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland

e-mail:

ABSTRACT

This paper presents a new method for computing the line
spectral frequencies (LSF). The new features of the method
consist in: (1) the use of predictions of the LSF's as starting
points for the search of the current LSFs, (2) the fast brack-
eting of the LSFs working on a grid of points and (3) the
refinement of LSFs by a variable number of bisections. The
method provides an easy control of the trade off between
necessary accuracy and worst case computational time and
is easily tunable to different orders of prediction polynomi-
als. The experimental results show an improvement of the
average performance with more than 30% with respect to a
frequently used method (Kabal-Ramachandran).

1 INTRODUCTION

Current speech coders in the range 4-32 Kbits/s model the
vocal short-time spectral envelope (for each frame of sampled
signal) using a linear predictor, i.e. the n-th order AR filter
1/A(z), with

A(z) =1+ Zakz_k. (1)

The parameters of the filter are usually coded using the line
spectral frequencies (LSF) [1]. Supposing that n is even, the
polynomials P and @, defined as follows,

P(z) = A(2) + =" AT = PE)(1+27Y),
Q(z) = A(z) — 27"V AT = Q)1 - 271,

are symmetric and antisymmetric, respectively. All their
roots lie on the unit circle and are distinct, with trivial roots
at —1 and 1, respectively. After removing the trivial factors,
the symmetric polynomials P(z) and Q(z) are obtained, with
zeros of the form z; = €’/“¢. Since the roots appear in com-
plex conjugate pairs, one may restrain to the roots z; located
on the upper unit semicircle, defined by z; = Re z;,i =1:n,
(named line spectral pairs — LSP) or by w; € (0,7),7=1:mn,
named LSF.
If the LSPs and LSF's are ordered,

2)

1>z1>22>...>2T,> -1
O<wi<w2<...<wp<m,

®3)

then an interlacing property holds, i.e. the odd LSPs belong
to P and the even LSPs to @. The relation between LSPs
and LSFs is obvious: z; = cos w;.

On leave from the Department of Control and Computers, Po-
litehnica University of Bucharest, 313, Spl. Independentei, 77206
Bucharest, Romania, e-mail: bogdan@lucky.schur.pub.ro.

bogdand,tabus@cs.tut.fi

The most efficient methods for computing the LSFs have
two stages. In the first, two polynomials P, and Q. of degree
m = n/2 and with real roots are computed from P and
Q. The algorithm of Kabal and Ramachandran [3] uses a
Chebyshev recurrence relation to evaluate P, and Q,, which
are actually not formed explicitly. The algorithm of Wu and
Chen [5] computes explicitly P, and Q,, which implies some
extra operations, with the advantage of using the Horner
algorithm for polynomial evaluation.

In the second stage, the roots of the reduced polynomi-
als are computed. In [3], P,(z) is evaluated on a fine grid
in order to detect sign changes; when a root is bracketed,
the search is refined by a fixed number of bisections and a
final linear interpolation is performed. The search starts, for
example, at 1; taking advantage of the interlacing property,
when a root of a polynomial is found, the search continues
for a root of the other polynomial.

In [5], the (modified) Newton-Raphson method is used
to find a root, then the polynomial is deflated with respect
to that root. The procedure is repeated until closed-form
formulas may be applied.

A method introduced in the late 80’s by Omologo [4] may
be considered a precursor of our method, because it uses the
values of LSFs in the previous frame as starting point in an
iterative algorithm. However this algorithm is completely
different of ours and while it has a good average behavior, it
is uncontrolled with respect to worst case performance.

There is no absolute ranking of the cited methods, one
method outperforming the others in some particular situa-
tions. Therefore we confine our comparison to the case of
real-time speech coders, as those used in mobile telephony.
Kabal’s algorithm seems the most appropriate to this field;
its execution time is approximately constant regardless of the
polynomials and the corresponding code is small. The Wu-
Chen algorithm is faster when the LSPs should be computed
with high accuracy, which is not the case here; moreover, the
procedure being partly iterative, the worst case behavior may
be far enough of the average.

The recent ITU-T standard G.729 [2] implements the
Kabal-Ramachandran algorithm, for the case m = 5. The
evaluation grid has 60 points (equally spaced in frequency);
after bracketing a root, 4 bisections are performed. These
values lead to a total worst case of 109 polynomial evalua-
tions. (P, is also evaluated in the roots of @, and vice-versa,
excepting for the first computed root.)

2 USING PREDICTIONS FOR FAST ROOT
BRACKETING

The use of predicted LSF's for the fast computation of the
current ones was not exploited up to now. It is well recog-
nized that there is a correlation between the LSF's belonging
to successive frames of a sampled speech signal. This corre-
lation is actually used in the quantization stage. There are
several methods proposed to this purpose, among which the
most explicit is to design a linear prediction model used to
approximate the current (computed) LSFs set w;, i = 1: n,
with a set w; and to quantize w; — ;. For example, in G.729,
two fourth order MA predictors are used in order to provide
a better LSF approximation.

Our method uses the predicted LSF's for the computation
of the current LSF's, with the goal of reducing the complexity
of root searching.

There are several tracks that could lead from the approx-
imations to the exact LSFs. We have chosen a solution
which is near in flavor to the Kabal-Ramachandran algo-
rithm. That is, working on the same grid covering the in-
terval (—1,1), we try to find a grid interval which brackets
the LSP, starting the search in the predicted LSP and using
additional information offered by the sign and the slope of
the polynomial around the prediction. Let us denote z; the
LSP to be computed and &; the predicted LSP.

Let us suppose that we already have computed the first
¢ — 1 LSPs and we want to compute z;. The interval (-1, 1)
is covered with a grid of points ¢;, I = 1 : L, conventionally
ordered from 1 to —1 (in G.729, L = 60). Due to the ordering
of the LSPs set, there is an index k., such that z; < g,,,
the larger for which z;—1 < gx,,; in other words, gx,, is the
first grid point at the right of ;_1; we will use the notation
gk,, = Ti—1]. Let suppose that z; is a root of P, and that
P, (z;—1) > 0; this case is immediately extended for the other
polynomial and for opposite sign. The prediction #; of the
current LSP is available through the largest grid index &k such
that &; < g; = Z;|. To complete the notation, let k£ be the
grid index for which g = z;], i.e. the LSP z; is within the
interval (gx+1,gx]. Our problem is to find k starting from k.

The possible locations of the prediction are presented in
figure 1, where the notations s = g;, s1 = g;,, are used.

First of all, if k < km, i.e. the prediction is at the right
of the last computed LSP, we reassign k = km + 2. Then,
the assumption is made that the prediction is never so bad
such that g; < ®;y4 (the experiments largely confirmed this
assumption). The interval (€44, 2i—1) is now divided in four
categories, marked by vertical stripes in figure 1.

The algorithm we propose is outlined in figure 2.

The first classification is made upon the sign of P.(s). If
the sign is negative, i.e. the prediction is in stripe C, the
root is already bracketed and further search will be oriented
to the right of s. The interval conataining the root is found
by going backwards from [= & — 1 down to kn,, with step
dc (whose value will be chosen later), until finding a positive
value. (Of course, if §¢ > 1, further bisections are needed to
obtain one grid interval containing the root.)

If P,(s) is positive, then the polynomial is evaluated in
the next grid point s1 = g;_ ;. Now, if P-(s1) is negative, we
fall in stripe B, which is the best case: the LSP is bracketed
with two polynomial evaluations !

If P.(s1) is also positive, the algorithm we propose is the
following. If P.(s1) < Pr(s), the corresponding stripes are

i+4 X420
S S,S
Dﬁ[] D&H:]
A, D,

Figure 1: Possible locations of the current predicted LSP.

A1 and A. In A; the strategy is exactly the same of the
Kabal-Ramachandran algorithm, since there is no other in-
formation available about the root; that is, the polynomial is
evaluated on successive grid points starting from k + 2 until
finding a sign change. The case A; must be avoided, since
it is indistinguishable of A;; the solution we adopted is to
choose a threshold value A and, if k — km > A, to recom-
pute the ”prediction” with k£ = km + A/2. The choice of A
is clearly a compromise: a large value will make less sure the
avoidance of the region A,, while a small value will possibly
modify good predictions when z;_1 — z; is large.

If P.(s1) > Pr(s) the corresponding stripes are D; and
D5, with the mention that D might not exist, depending on
the position of x;_1, which is a root of Q,, with respect to
the maximum of P, in the interval [z;,z;_2]. In this case,
we chose to reset & to km and to proceed like in case A.

We will name PK the described algorithm (standing for
predictive Kabal-Ramachandran). It is clear that the algo-
rithm is not dependent on all the details of the basic Kabal
algorithm, but only on the existence of a prediction of the
LSPs and the limitation of the search on some grid points.
However, we will report results comparing to the original
Kabal-Ramachandran algorithm, since this is largely used
currently.

3 TUNING OF PARAMETERS

The experiments were performed on the TIMIT database,
the test part, on over 500,000 speech frames processed with
the G.729 floating point coder (single precision), at which we
have attached our routine for predictive LSP computation.

The quality of the prediction of the G.729 coder is indi-
cated by the percentages of predictions falling in the four
categories A, B, C, D from figure 1. The first line of table 1
is showing the result without modifying the prediction. For
the second line, k is increased to kn, + 2 if the prediction is
at the right of D;. We notice that the categories that raise
difficulties, i.e. D and especially A2, have low frequencies,
while over a quarter of the predictions fall into stripe B,
where the LSP is bracketed with two evaluations.

Choice of A. The threshold A is introduced to avoid the
location of the prediction in stripe As. Measuring, for all
the speech frames, the distance zit4| — z;—1] (in number of

1. For the root z; of P,

Denote s; the next grid point at left of s

Then move s to the right
(Ifs—zi—1] > Athens=mzi_1] +34A)
1.3 If P.(s) and Pr(z;—1) have different signs
CASE C

Else

If P-(s1) <0< Pr(s)
CASE B

Else if 0 < P.(s1) < Pr(s)
CASE A

Until the root is bracketed (P,(s1) < 0)
Else (i.e. 0 < Pr(s) < Pr(s1))

CASE D

Reassign s + zi—1| +1

Until the root is bracketed (P-(s1) < 0)

1.0 Denote z;—1| the nearest right grid point of z;—1 and s the nearest right grid point of the root prediction &;
If s > x;—1] (prediction right of latest computed root), then s « z;_1| +1

Suppose that P,(z;—1) > 0 (if not, reverse all the inequalities involving P;)

1.1 Evaluate the polynomial in s: P,.(s) = horner(Pr,s)
1.2 If P.(s) and Pr(z;—1) have the same sign and the prediction s of the current root is far-off of previous root

Move on the grid from s to the right with step dc (s + s — d¢)
Evaluate at each grid point the polynomial P,(s) = horner(P;, s)
Until the root is bracketed (when P.(s) > 0)

Evaluate the polynomial in s1: P.(s1) = horner(Py, s1)
The root is bracketed with no further evaluations !
Move on the grid from s to the left with step d4 (s1 < s1 4+ da)

Evaluate at each grid point the polynomial P.(s1) = horner(Pr, s1)

Move on the grid from s to the left with step dp (s1 < s1 + ép)
Evaluate at each grid point the polynomial P,.(s1) = horner(Pr, s1)

Figure 2: Description of fast bracketing in the predictive LSP computation algorithm. The routine to compute the value
of a polynomial is generically named horner. The notation s and s; are used simultaneously for a grid point and for the

corresponding index.

grid intervals), we have found this distance smaller than 12
in less than 10~°. Combined with the even lower apparition
of predictions in stripe As (see again table 1), the choice
A = 12 ensures that the probability to obtain both these
events is negligible. The third line of table 1 shows that
introducing A eliminates the case A2 and does not modify
significantly the relative frequencies of other cases.

Choice of éc- It is helpful to see how large the values
ofd=Fk—k may be when the prediction falls in stripe C'
(after applying the ”A rule”); we found out that although
d is usually very small (d =1 in 50% of cases), it may take
large values, going up to 19.

Therefore, in the algorithm in figure 1, we chose d¢c = 2,
significantly improving on the worst case with respect to the
choice ¢ = 1. We denote PK; the corresponding algorithm.

4 PERFORMANCE OF THE PREDICTIVE LSP
ALGORITHM

The performance of our algorithm is reported in number of
polynomial evaluations ("horners”) Nporner required for the
computation of a LSP set. This measure does not take into
account the way the polynomial is evaluated and may be as
well suitable for the straight Horner rule as for the Cheby-
shev version. Agreeing that four bisections are needed to

refine a bracketed root, it is obvious that the minimum pos-
sible value of Nporner is 60, in the case where all LSPs of a
speech frame are predicted with high accuracy (all predic-
tions are in stripe B); a worst case is difficult to evaluate;
for example, if all predictions are at the right of the previous
computed LSP, the number of evaluations will be the same
as in Kabal’s algorithm.

The first plot is in the left side of figure 3, indicating the
number of occurrences of Nporner on the whole test data for
the algorithm PK,. The average value of Nporper is 70.68.
The worst value is 99. The frequencies of the number of
occurrences on length 5 intervals are shown in table 2. It
results that the frequency of a Nporner greater than 90 is
very small and that the event Nporner > 80 has a frequency
less than 4%.

To compare with Kabal-Ramachandran, we show in the
same figure 3 the number of occurrences of Nporner for this
algorithm. The average value is 104.75 polynomial evalua-
tions and the worst case 109, as we already mentioned.

5 CONTROLLING THE WORST CASE
BEHAVIOR

In a real time implementation, the worst case of the exe-
cution time is the best measure of the performance. The

Number of occurrences

x 10
12

< Dh D, A, B C Do As
k not modified 1.44 | 1.26 | 32.36 | 24.10 | 40.81 | 0.038 | 0.00025
k max(k, km + 2) 0 0.41 | 30.27 | 26.25 | 43.04 | 0.038 | 0.00025
e km+ AJ2
A 0 0.49 | 30.30 | 26.14 | 43.05 | 0.020 0
k> kn+ A (A=12)

Table 1: Frequencies of prediction categories.

Nhorner 6065

66-70

71-75

76-80 | 81-85 | 8690 | 91-95 | 96-99

Frequency of occurrence (%)

9.24

46.25

30.83

9.76 | 3.14 | 0.70 | 0.075 | 0.0046

Table 2: Frequencies of number of occurrences of Nporner for algorithm PKos.

Complexity of the algorithms PK, and Kabal

10r

IS
T

=]
=]

65

Figure 3:

F’K2

Kabal

110

— ﬁmﬂH I
70 75 80 85 90 95 100 105
N, (number of polynomial evaluations)
orer
Frequencies of the number of polynomial

evaluations for algorithms PK: (left side) and Kabal-
Ramachandran (right side).

method presented up to now performs very well in aver-
age, giving a significant gain over the Kabal-Ramachandran
method, but the worst case time is only about 10% bet-
ter. There is a simple extension to cope with this difficulty,
by imposing a maximum number of horners Ny, ., as upper
limit for the execution of the algorithm. During the execu-
tion of the algorithm, we monitor the number of polynomial
evaluations. The algorithm is reorganized in two steps:

1. Each root is only bracketed in one grid interval using
the algorithm described in figure 1. At the end of this step,
the number of polynomial evaluations has the value V.

2. The resulted intervals are bisected to refine the root.
The number of bisections per root N that may be performed
within the limit Npaz is Np = [(NVmaee — N1)/7].

Of course, the proposed strategy may affect the accuracy
of some computed roots, S0 Npqz should be chosen carefully.
Let us denote PK3(Nmaz) the algorithm obtained from PK,
using the technique described above.

Looking again at table 2, we remind that Nporner > 80
appears only in 4% of the cases. Thus, using Nmaez = 80
will affect the accuracy of a very small number of LSP sets.

Algorithm | average | 2-4dB | >4 dB
PK> 1.340 | 11.79% | 0.457%
PK,(80) 1.341 | 11.81% | 0.458%
PK»(75) 1.341 | 11.81% | 0.458%

Table 3: Spectral distortion in predictive LSP computation.

For the algorithm PK2(80), the average of Nporner is 70.35,
slightly modified with respect to algorithm PKj. Table 3
shows that the average spectral distortion is practically un-
changed and the same conclusion applies for the number of
outliers between 2 and 4dB or over 4dB. A similar behavior
has the algorithm PK>(75), for which the average number of
horners is 69.3. These results show that the idea of limiting
the number of polynomial evaluations is successful.

References

[1]

2]

(3]

[4]

[5]

F. Itakura. Line Spectrum Reprezentation of Linear Pre-
dictor Coefficients of Speech Signals. J. Acoust. Soc.
Amer., 57(S35(A)), 1975.

ITU-T. Recommendation G.729 — Coding of Speech
at 8 Kbits/s Using Conjugate-Structure Algebraic-Code-
Excited Linear-Prediction (CS-ACELP), March 1996.

P. Kabal and R.P. Ramachandran. Computation of
Line Spectral Frequencies Using Chebyshev Polynomials.
IEEE Trans. Acoust., Speech, Signal Proc., 34(6):1419—
1426, December 1986.

M. Omologo. The computation and some spectral consid-
erations on line spectrum pairs (LSP). In European Con-
ference on Speech Communication and Technology, Eu-
rospeech, volume 2, pages 352-355, Paris, France, 1989.

C.H. Wu and J.H. Chen. A Novel Two-Level Method
for the Computation of the LSP Frequencies Using a
Decimation-in-Degree Algorithm. IEEE Trans. Speech
Audio Proc., 5(2):106-115, March 1997.

