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Abstract

The synchronization of a desired user transmitting a known training sequence in

a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-

tem is addressed. It is assumed that the receiver consists of an arbitrary antenna

array and works in a near-far, frequency-nonselective, slowly fading channel. The

estimator that we propose is derived by applying the maximum likelihood (ML)

principle to a signal model in which the contribution of all the interfering compo-

nents (e.g., multiple-access interference, external interference and noise) is modeled

as a Gaussian term with an unknown and arbitrary space-time correlation matrix.

The main contribution of this paper is the fact that the estimator makes eÆcient

use of the structure of the signals in both the space and time domains. Its perfor-

mance is compared with the Cram�er-Rao Bound, and with the performance of other

methods proposed recently that also employ an antenna array but only exploit the

structure of the signals in one of the two domains, while using the other simply

as a means of path diversity. It is shown that the use of the temporal and spatial

structures is necessary to achieve synchronization in heavily loaded systems or in

the presence of directional external interference.

Key words: Synchronization; CDMA; Antenna Arrays; Maximum Likelihood

Estimation; Space-Time Diversity.

1 Corresponding author: Tel.: +34 934016431; fax: +34 934016447
2 E-mail: gonzalo@gps.tsc.upc.es, juan@gps.tsc.upc.es, swindle@ee.byu.edu
3 Work supported in part by the Catalan and Spanish Governments under grants:

CIRIT 2000SGR-00083, TIC98-0703, TIC99-0849, TIC2000-1025, FIT-070000-

2000-649, and by the US National Science Foundation under grant CCR-99072.

Preprint submitted to Elsevier Preprint 9th February 2001



1 INTRODUCTION

Multiple-access interference (MAI) is inherent to asynchronous DS-CDMA

systems, since orthogonality among the users' codes cannot in general be

achieved. The MAI can make the conventional detector (i.e., a bank of �l-

ters, each matched to a speci�c user's code) become useless when the pow-

ers of the signals received from di�erent users are unequal [1]. This is the

so-called near-far problem. One alternative to overcome this problem is the

use of power-control schemes. However, these schemes have some limitations

because they increase the overall complexity of the system, do not guaran-

tee optimal performance (e.g., they limit the performance of users with good

channels, and some MAI still occurs even though ideal power control is used),

and there are certain system con�gurations in which power control cannot be

employed. Therefore, in many communications systems the use of multi-user

detectors (usually, in combination with power control) is necessary in order

to combat the near-far problem. The optimum multi-user receiver proposed

in [2] has been followed by a number of sub-optimum ones (see [3] for a re-

view). All these receivers require knowledge of one or several parameters, such

as the users' code timings, powers and carrier phases. Moreover, in general

the code timing 4 needs to be estimated with high accuracy, since timing er-

rors have a large impact on the performance of many detectors [4]. For these

reasons, the use of near-far resistant and accurate code synchronization tech-

niques for acquisition and tracking is essential to achieve good performance in

a DS-CDMA system. This statement is corroborated by the suggestion in [5]

that the capacity of a DS-CDMA system is limited by the ability to achieve

code acquisition. Besides, MAI is not the only type of interference that may

be encountered. The receiver can be disturbed by any other intentional or

accidental signal, which we will represent in general as external interference.

The design of synchronization techniques that are also robust against exter-

nal interference is of fundamental importance in many situations, such as in

military or safety-critical applications.

The conventional approaches to timing acquisition and tracking are the sliding

correlator and the delay lock loop (DLL) [6]. These schemes are only well

suited for an additive white Gaussian noise channel. Extensions of the DLL

which are appropriate for a frequency-selective channel were developed in [7,8].

However, these modi�ed loops are not able to combat MAI. Recently, several

near-far resistant timing estimators have been proposed in the literature for a

single-antenna receiver [9,10,11,12,13,14,15,16]. Some of these are derived from

the maximum likelihood principle and need training sequences. Others exploit

the eigenstructure of the correlation matrix of the received signals. While these

4 We will use the expressions code timing, time delay or code synchronization with-

out distinction, since all of them have been widely employed in the literature.
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estimators do not require training sequences, their performance is poorer than

that of the ML-based ones. In [11], a large sample ML estimator was proposed,

and a comparison with many other methods revealed that the ML estimator is

preferred for moderate or large training sequence lengths. Its accuracy can be

signi�cantly improved for short training sequences using a structured estimate

of the correlation matrix, as suggested in [13]. This approximate ML estimator

has been extended to the case of frequency-selective channels in [15]. However,

the resulting criterion involves a complex multidimensional search, so iterative

optimization algorithms are considered.

It is well known that detection performance in DS-CDMA can be greatly

improved through the use of antenna arrays [17,18]. Similarly, the synchro-

nization problem can also bene�t from using multiple antennas, as shown in

[19,20,21,22,23]. Moreover, given the possible lack of temporal structure of

the external interference, the use of an antenna array is almost mandatory to

achieve robustness against this type of interference. In this paper, we propose

a method for estimating the timing of a certain user that transmits a known

training sequence. We will focus on code synchronization because there ex-

ist a multitude of algorithms for estimating the remaining parameters given

reliable estimates of the code-timings [24]. In fact, the expression of the ML

estimates of the amplitudes and phases of the signals will be obtained as a

by-product of the derivation of the timing estimator in Section 4.1. We as-

sume that the receiver consists of an arbitrary antenna array that operates

in a frequency-nonselective (or 
at), slowly fading channel [1]. Actually, the

estimator proposed herein could also be used in frequency-selective channels,

but we will restrict ourselves to the nonselective case for the sake of simplicity.

Flat-fading channels are common in situations where the distance between the

users and the base station is relatively small (e.g., in a microcell), or when the

multipath is due to local scatterers near the remote user or the base station.

Note that the availability of a training sequence is not a stringent assumption,

since most communications systems transmit these sequences during certain

intervals. Besides, once a reliable estimate of the timing is formed, the esti-

mator can be switched to a decision-directed mode. The fact that the method

estimates the parameters of only one user while retaining near-far resistance

is also of interest, because it leads to decentralized implementations and dra-

matically reduces the complexity with respect to methods that estimate the

parameters of all users simultaneously (see, e.g., [10]).

Following an approach that has already been applied successfully to this and

other problems, all signals except that of the desired user are modeled together

as a Gaussian component with arbitrary and unknown correlation matrix. This

idea has been used for the problem at hand in [11,13,19,21,22] among others,

for Doppler and direction-of-arrival estimation in radar systems in [25], and for

time-delay estimation in navigation systems in [26]. An extension of [11] for a

multiple-sensor receiver can be found in [20]. However, this approach assumes
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that the interfering signals are uncorrelated among antennas, and reduces

to several single-sensor estimators applied in parallel to several independent

channels. Hence the e�ect of the antenna array is only to increase the signal-

to-noise ratio (SNR) and provide diversity to combat the fading of the signal

of the desired user at di�erent antennas (i.e., maximal ratio combining); the

array is not used to cancel the interfering signals relying on their directional

properties. Indeed, as pointed out by the authors themselves, the performance

of the estimator in [20] cannot be signi�cantly improved by increasing the

number of antennas, when for fair comparisons with single-antenna methods,

the interference power is proportional to the number of sensors used in the re-

ceiver. In a slowly fading environment, the assumption of uncorrelation among

antennas is not appropriate at all, because the signals possess de�nite spatial

signatures, as will be justi�ed in the next section. This fact is exploited by

the estimator proposed in [19]. Nevertheless, this estimator assumes that the

interfering signals are white in the temporal domain, so only the spatial struc-

ture of the MAI is used to combat it. As a result, a prohibitively large number

of antennas may be needed to achieve near-far resistance.

The signi�cance of this paper lies in that we consider a space-time correlation

matrix for the interfering signals, which allows both the temporal (provided

by the codes) and spatial (provided by the antenna array) structure of the re-

ceived signals to be exploited. The bene�ts in symbol detection of exploiting

the joint space-time signature have been analyzed thoroughly in [27]. Notwith-

standing, the use of the space-time signature in synchronization is an open

issue. The method proposed herein extends and outperforms those presented

in previous work. It will be shown that the use of the spatial and temporal

structure of the interference is indispensable in achieving code synchronization

in some scenarios, and this can be accomplished with a small number of an-

tennas. The technique in [22] also takes into account the spatial and temporal

structure of the interference. But it considers a frequency-selective channel

and is limited to estimating the overall channel response, since the estimation

of the time delays is computationally too complex.

This paper is organized as follows. In Section 2, the signal model is introduced.

Section 3 justi�es the essential assumption on which the estimator relies and

compares it with the assumptions made in related work. The derivation of the

ML estimator and some alternatives to improve the estimate of the correlation

matrix are presented in Section 4. Section 5 is concerned with the Cram�er-

Rao Bound for the problem at hand. Finally, numerical results are analyzed

in Section 6, and Section 7 summarizes our conclusions.
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2 SIGNAL MODEL

Consider an asynchronous DS-CDMA system with K users and an arbitrary

receive antenna array of L sensors, which satis�es the standard narrow-band

array condition common to many array signal processing problems (i.e., the

time required for a signal to propagate across the array is much smaller than

the reciprocal of its bandwidth). We assume a 
at-fading channel, which means

that for each user the time-delay di�erences between di�erent propagation

paths are negligible compared with the reciprocal of the signal bandwidth [1].

For this channel, the received complex baseband signal at the lth sensor is

after down-conversion and chip-matched �ltering (see Figure 1)

yl (t) =
KX
k=1

�l;k sk (t� �k) + nl (t) l = 1; 2; : : : ; L ; (1)

where �l;k is the complex fading coeÆcient for the kth user at the lth antenna,

�k is the delay associated with the kth user, and nl (t) represents the thermal

noise and all other external interferences. Note that the signal model does not

presume the use of power control. The expression in (1) and the development

below would also be valid for the received signal before chip-matched �ltering.

However, we have not considered this case for consistency with the existing

literature, and because dealing with the signals after �ltering allows us to work

with rectangular transmitted chip-pulses in a natural way [10].

The term in (1) corresponding to the kth user's signal is:

sk (t) =
M�1X
m=�1

dk (m) ck (t�mT ) ; (2)

where

ck(t) =
N�1X
n=0

gk (n) p (t� nTc) (3)

is the spreading waveform. We have assumed that the summation in (2) starts

at m = �1 only for the sake of notational convenience in subsequent def-

initions. The symbols dk (m) are transmitted at a rate 1=T and constitute

an i.i.d. sequence with variance �2d. The length of the chip sequence gk (n)

is N = T=Tc, the chip rate is 1=Tc and p (t) represents an arbitrary chip-

shaping waveform. The signal is observed during an interval of M +1 symbols

(Tobs = (M + 1)T ), which is the length of the training sequence.

The coeÆcients �l;k include the e�ects of the propagation, transmitted power,

carrier phase and Doppler frequency. Their temporal evolution is characterized

by the coherence time Tcoh, which is de�ned as the time interval during which
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a given fading coeÆcient is highly correlated with itself, and is in general in-

versely proportional to the maximum Doppler frequency [1]. Since we consider

a slowly fading channel (i.e., Tcoh � Tobs), for the estimator derivation we will

assume that the fading coeÆcients are constant during the observation inter-

val, as done in many other papers (e.g., [21,15]). This assumption is primarily

for mathematical convenience, and it will be shown that the performance of

the proposed estimator is also highly satisfactory in more realistic scenarios.

The condition for slow fading imposes some restrictions on the length of the

training sequence M and on the maximum allowable Doppler frequency. How-

ever, these are mild restrictions, which are satis�ed by the parameters in a

large majority of practical situations and do not represent a signi�cant limi-

tation of our approach, as shown in the numerical examples of Section 7. The

relevant implication of having fairly constant fading coeÆcients during Tobs is

that the signals possess rather de�nite spatial signatures, which can be used

to di�erentiate the desired user's signal from the MAI and external interfer-

ence. It is important to remark that this property holds independently of the

statistical correlation between the fading coeÆcients at di�erent antennas.

The signals in (1) are sampled at the rate 1=Ts = Q=Tc, where Q is an integer

and is referred to as the oversampling factor. Each set of NQ consecutive

samples received at the lth antenna is stacked into a column vector 5 :

yl (m) =

�
yl (mT + Ts) ::: yl (mT +NQTs)

�T
: (4)

The sampling is assumed to be completely asynchronous, the only condition

being that bit synchronization of the desired user has been previously achieved,

i.e., �1 2 [0; T ), where without loss of generality we have assumed that the

�rst user is the desired one. If the duration of the transmitted chip-shaping

waveform is Tc or smaller, only two consecutive symbols from the desired user

contribute to yl (m). For instance, this occurs with rectangular chip-shaping

pulses and is a good approximation for other pulse types. In any case, if the

adjacent bits are also present in that vector due to the tails of the chip-shaping

pulse, then their tiny contribution will be lumped together in the noise term,

as justi�ed in [28]. Therefore, the signal contribution of the �rst (desired) user

to the vector yl (m) can be expressed as follows

yl;1 (m) = �l;1A
(1) (�1)d1 (m) ; (5)

5 The transpose, conjugate and conjugate transpose operations are represented by

(�)T , (�)c and (�)H , respectively. The ith element of a vector is represented by [�]i.
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where

d1(m) =

�
d1 (m) d1 (m� 1)

�T
(6)

A(1) (�1) =

�
a
(1)
+ (�1) a

(1)
�

(�1)

�
(7)h

a
(1)
+ (�1)

i
i
= c1 (iTs � �1) i = 1; :::; NQ (8)h

a
(1)
�

(�1)
i
i
= c1 (iTs + T � �1) i = 1; :::; NQ : (9)

The matrixA(1) (�1) contains the temporal signatures of the desired user. Note

that the model above is also valid for users other than the �rst one as well.

To simplify our notation, in the sequel we will drop the the superscript that

indexes the users. At this point, we can write the received NQ � 1 vector at

the lth sensor as

yl (m) = �l;1A (�1) d1(m) + el (m) m = 0; 1; :::;M � 1 : (10)

The vector el (m) includes the MAI, the thermal noise and all other sources

of interference.

3 GAUSSIAN ASSUMPTION

If the temporal vectors received from every antenna are stacked into a LNQ�1
space-time vector:

y (m) =

�
yT1 (m) yT2 (m) ::: yTL (m)

�T
; (11)

then equation (10) can be rewritten in a compact form as

y (m) = (�
A (�1))d1 (m) + e (m) ; (12)

where 
 denotes the Kronecker product, e (m) is formed similarly to y (m)

and

� =

�
�1;1 �2;1 ::: �L;1

�T
(13)

is the spatial signature of the �rst user. As outlined in the introduction, we

model e (m) as a zero-mean, circularly complex Gaussian LNQ � 1 vector,

which is independent of d1(m) and independent for di�erent samples, and has

an arbitrary and unknown space-time covariance matrix:

E fe (m)g = 0 E
n
e (m) e (n)

H
o
= Q Æm;n : (14)
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There is no doubt that this model is only approximate. Nevertheless, it gathers

the most signi�cant e�ects of all the interfering signals, and allows us to derive

tractable algorithms. The problem addressed in this paper may be stated as

follows. Estimate �1, given the set of samples

Y =

�
y (0) y (1) � � � y (M � 1)

�
(15)

and assuming that the spreading sequence fg1 (n)g
N�1
n=0 and the training bit

sequence fd1 (m)gM�1
m=�1 for the desired user are available. Estimates of � and

Q, which are taken as deterministic and unstructured parameters, will also

be derived. Although we do not parameterize the spatial signature in terms

of one or several directions-of-arrival and amplitudes, the array maintains its

ability to discriminate the signals in the spatial domain. Assuming an unstruc-

tured � eliminates the need for a calibrated antenna array, and allows us to

model a cluster of coherent arrivals that share the same time delay, without

estimating the individual parameters of each arrival. A detailed discussion of

the advantages of this assumption can be found in [23].

It is well known that the assumption of temporally white MAI is unrealis-

tic [29] and leads to non near-far resistant estimators because it neglects the

structure of the MAI. However, the estimator proposed herein, though model-

ing the interference as Gaussian, does not su�er from the same problem since

it retains the structure of the MAI in the matrix Q, and so it is near-far

resistant. Actually, it is the fact that an unknown correlation matrix Q is

considered for the equivalent noise e(m) that makes the estimator able to at-

tenuate any interfering signal that exhibits a certain structure in the temporal

and/or spatial domains. In this paper, we present the estimator that results

from an arbitrary matrix Q, in contrast to previous work that has solved the

problem stated herein for simpli�ed structures of that matrix. We will also see

in Section 4.2 that imposing a very simple and natural structure on Q allows

us to estimate it without using excessively large training sequences.

The signal model proposed in [19] may seem at �rst glance rather di�erent to

the one proposed above. Nonetheless, it can be shown that they are related

by realizing that in [19] it is implicitly assumed that the space-time correla-

tion matrix can be decomposed as Q = Qsp 
 INQ, where Qsp is an arbitrary

L � L matrix that corresponds to the spatial correlation of the interference.

It is apparent that the estimator in [19] yields suboptimal performance since

it ignores the inherent temporal structure of the CDMA signals. A dual de-

composition is considered in [20]. In this case, the matrix Q is expressed as

Q = IL 
 Qte, where Qte is a NQ � NQ matrix representing the temporal

structure of the interference. This model amounts to presuming that the fading

coeÆcients �l;k for a given user are uncorrelated between di�erent antennas

and that the observation interval is long enough (compared to Tcoh) to apply

ergodicity, but this last condition is not satis�ed in the case of slow fading.
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4 MAXIMUM LIKELIHOOD ESTIMATOR

In this section, the estimator of the code-timing of the desired user is derived

by applying the ML principle [30] to the signal model described above. Next,

several techniques that may serve to improve the quality of the estimate of

the noise-plus-interference correlation matrix are discussed.

4.1 Derivation

The probability density function of Y is

p (Y j �1;�;Q) =
1

LNQM jQjM

� exp
(
�

M�1X
m=0

�
y (m)�Dd1 (m)

�H
Q�1

�
y (m)�Dd1 (m)

�)
; (16)

where j�j denotes the determinant, and the matrix D (�1;�) = � 
 A (�1)

is the joint space-time signature of the desired user. The dependence of D

on the parameters is omitted from our notation whenever there is no risk of

confusion. The negative log-likelihood function 6 of the observed data Y is

easily shown to be

�1 (�1;�;Q) = ln jQj+ Tr
n
Q�1C (�1;�)

o
; (17)

where Tr f�g denotes the trace of a matrix, and

C (�1;�) =
1

M

M�1X
m=0

�
y (m)�Dd1 (m)

� �
y (m)�Dd1 (m)

�H
: (18)

The ML estimates of �1, � and Q are the values that minimize (17). Using

standard matrix calculus results [31] and without imposing any structure on

Q, it is immediate that the gradient of (17) with respect to Q is

@�1 (�1;�;Q)

@Q
= Q�1 �Q�1C (�1;�)Q

�1 : (19)

The value of Q that nulls (19) is

Q̂ (�1;�) = C (�1;�) : (20)

provided that C (�1;�) is non-singular (refer to Section 4.2 for conditions

on the minimum value of M). The ML estimate of Q, denoted by Q̂ML, is

6 In the sequel, all parameter-independent additive or multiplicative constants of

the likelihood functions will be neglected.
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obtained by evaluating (20) at the ML estimates of �1 and �, which are yet

to be determined.

De�ne the following matrices

D̂ =

�
d̂+ d̂�

�
= R̂yd R̂

�1
dd (21)

R̂yy =
1

M

M�1X
m=0

y (m) yH (m) R̂dd =
1

M

M�1X
m=0

d1 (m) dH1 (m) (22)

R̂yd =
1

M

M�1X
m=0

y (m) dH1 (m) Ŵ = R̂yy � R̂yd R̂
�1
dd R̂

H
yd : (23)

Note that the matrices D̂ and Ŵ are the unstructured estimates of D and the

noise correlation matrix Q, respectively. When (20) is substituted into (17),

the following concentrated likelihood function results

�2 (�1;�) = ln
���R̂yy �DR̂H

yd � R̂ydD
H +DR̂ddD

H
��� (24)

= ln

����Ŵ +
�
D� D̂

�
R̂dd

�
D� D̂

�H ���� (25)

= ln
���Ŵ���+ ln

����I+ Ŵ�1
�
D�D̂

�
R̂dd

�
D�D̂

�H ���� (26)

= ln
���Ŵ���+ ln

����I+ �
D� D̂

�H
Ŵ�1

�
D� D̂

�
R̂dd

���� : (27)

Equation (25) is obtained from (24) by adding and subtracting the term

R̂yd R̂
�1
dd R̂

H
yd inside the determinant. The other two equations stem directly

from the following standard properties of the determinant: jPQj = jPj � jQj
and jI+PQj = jI+QPj, valid for matrices of appropriate dimensions. The

function in (27) can be minimized in closed-form with respect to �. However,

while the derivation is not complicated, it is very cumbersome and will not be

presented herein. Next, this estimate of � could be substituted back into (27),

and a one-dimensional criterion for the estimation of the delay would result.

Instead of minimizing �2, we will transform this function into another that is

asymptotically (in M , throughout the paper) equivalent and allows a simpler

derivation of the estimates. It can be argued that since M is the length of the

training sequence, we will never reach asymptotics in M . However, our nu-

merical results show that asymptotic behaviour is obtained for rather modest

sample sizes.

According to the Weak Law of Large Numbers:

D̂ = D ( ~�1; ~�) +Op

�
1=
p
M
�

(28)

R̂dd = �2d I+Op

�
1=
p
M
�
; (29)

where Op (�) represents the \in probability" version of the corresponding de-

terministic notation [32], and ~�1 and ~� are the true values of the parameters.
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Due to equation (28), we can replace R̂dd by its asymptotic value and neglect

the second- and higher-order terms in the Taylor expansion of the second loga-

rithm in (27), while retaining the same asymptotic accuracy for the estimates.

The Taylor expansion of the logarithm of the determinant is

ln jI+Xj = Tr fXg �
1

2
Tr
n
X2

o
+ � � � ; (30)

which is valid whenever the absolute values of the eigenvalues ofX are bounded

above by one. Therefore, an asymptotically equivalent ML criterion can be

expressed as follows

�3 (�1;�) = Tr

��
D (�1;�)� D̂

�H
Ŵ�1

�
D (�1;�)� D̂

��
(31)

=
�
�
 a+ (�1)� d̂+

�H
Ŵ�1

�
�
 a+ (�1)� d̂+

�
+
�
�
 a� (�1)� d̂�

�H
Ŵ�1

�
�
 a� (�1)� d̂�

�
: (32)

It is convenient to write this cost function in such a way that the linear and

quadratic dependences on � are made more explicit, since this facilitates the

minimization with respect to this vector. An equivalent expression for (32) is

�3 (�1;�) =� 2Re
n
�
H p+ (�1)

o
+�H F+ (�1) �

� 2Re
n
�
H p� (�1)

o
+�H F� (�1) �

+ d̂H+ Ŵ
�1 d̂+ + d̂H

�
Ŵ�1 d̂� ; (33)

where we have de�ned

p� (�1) = matTNQ�L

n
Ŵ�1 d̂�

o
ac
�
(�1) (34)

F� (�1) =
�
IL 
 aH� (�1)

�
Ŵ�1 (IL 
 a� (�1)) ; (35)

and the matNQ�Lf�g operator rearranges column-wise the elements of one

vector into a NQ � L matrix. At this point, the minimization of (33) with

respect to � is immediate and yields

�̂ML = (F+ (�1) + F� (�1))
�1

(p+ (�1) + p� (�1))
���
�1=�̂1;ML

: (36)

After substituting (36) into (33), the timing estimator is obtained as

�̂1;ML = arg max
�1

(p+ (�1) + p� (�1))
H

� (F+ (�1) + F� (�1))
�1

(p+ (�1) + p� (�1)) ; (37)

which only involves the minimization of a one-dimensional cost function.
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A possible way to extend this estimator to frequency-selective channels con-

sists in modifying the signal model in (12). The new model should explicitly

take into account the fact that the desired user's signal arrives at the antenna

array through R1 propagation paths having di�erent delays and di�erent spa-

tial signatures. This is the approach followed in [15] for a single-antenna re-

ceiver. Its serious drawback is that the application of the ML principle to the

new signal model results in a highly complex multidimensional optimization

problem. However, it is important to remark that a much simpler alternative

is also possible. It simply consists of employing the cost function derived for


at-fading channels, given by (37), also for frequency-selective channels. The

estimates of the delays of the R1 propagation paths are obtained as the val-

ues corresponding to the largest R1 maxima of that cost function, while in

the 
at-fading case only the absolute maximum is picked. This simple modi-

�cation is possible since the delay-spacing between the di�erent propagation

paths is generally greater than the reciprocal of the signal bandwidth (see

[33]). A similar approach was used in [33] to extend a MUSIC-based estima-

tor, initially derived for 
at-fading channels, to the frequency-selective case.

In any case, our paper is focused on the 
at-fading case, and a deeper analysis

for other types of channels is beyond the scope of our e�ort.

4.2 Covariance Matrix Estimation

The advantage of exploiting the space-time structure of the signals is that

every antenna adds NQ degrees of freedom to the system, whereas each user

occupies only two degrees and each external interferer occupies between 1 and

NQ depending on its bandwidth. When the channel introduces angular and

Doppler spread, the number of degrees of freedom used by each signal in-

creases. Using spatio-temporal diversity, a large number of degrees of freedom

is achieved with few sensors. The price to be paid is that a longer training se-

quence may be needed, at least theoretically, with respect to other approaches

that only exploit one source of diversity but provide a much smaller number

of degrees of freedom. In order that Ŵ be non-singular with probability one,

we need M � LNQ+ 2, which may result in too large of a training sequence.

To shed light on how this restriction on M can be alleviated, it is convenient

to analyze the eigenstructure of the correlation matrix Q. The eigendecompo-

sition of Q is given by

Q = V�VH ; (38)

where � is a diagonal matrix of the eigenvalues f�ig of Q in descending order,

and the columns of V are the corresponding eigenvectors. The eigenvalues

satisfy the following relation

�1 � � � � � �d � �d+1 = � � � = �LNQ = �2w ; (39)
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where d is the dimension of the interference subspace, which is spanned by the

�rst d columns of V, and �2w is the power of the white noise. The subspace

spanned by the last LNQ�d columns ofV is referred to as the noise subspace.

Since Ŵ is a consistent estimate of Q, the eigenvalues of Ŵ tend to those of

Q when M grows without limit. However, if M < LNQ+2, some eigenvalues

of Ŵ are zero, and hence the inverse of this matrix does not exist. Moreover,

when M is only slightly greater that LNQ + 2, some eigenvalues of Ŵ may

be very small. The inversion of an ill-conditioned matrix can cause numeri-

cal instability and impair the performance of the estimator. Nevertheless, the

inequality M > LNQ+2 should not be a necessary condition for the applica-

tion of the estimator, since as long as M is much greater than d, appropriate

estimates of the interference and noise subspaces of Q can be obtained. To

this end, a parametric estimate of Q is derived, which we designate Ŵs. This

new estimate is obtained from Ŵ, but we force it to have the structure given

by (38) and (39), instead of being fully unstructured. The matrix Ŵs is taken

as the one that is closest to Ŵ in the sense of the Frobenius-norm. Thus,

assuming that Ŵs = P̂ + �̂2I and that the rank of P̂ is d, the problem that

we have to solve can be stated as�
P̂ �̂2

�
= arg min

�2;P jrankfPg=d




Ŵ �P� �2 I



2
F
: (40)

It is well-known that the solution to this problem is given by

P̂ =
dX

k=1

�
�̂k � �̂2

�
v̂kv̂

H
k (41)

�̂2 =
1

LNQ� d

LNQX
k=d+1

�̂k ; (42)

where v̂k and �̂k are the eigenvectors and eigenvalues of Ŵ. The use of the

structured estimate Ŵs in (36) and (37) not only avoids the previous bound

on M for the application of the estimator, but also improves the performance

for all values ofM . We assume that an estimate of the dimension d is available.

It can be inferred either from knowledge of certain system parameters, such

as the number of active users, angular spread, etc., or by applying multiplicity

tests on the smallest eigenvalues of Ŵ [34,35,36]. This is a non-trivial issue

that is beyond the scope of the paper. The same approach was used to obtain

a structured estimate of the correlation matrix in [13,15], but the 2-norm was

used instead. In [37] a related method, known as \eigenvalue thresholding",

is proposed and derived using the ML principle with a noise 
oor constraint.

It involves an eigendecomposition and requires knowledge of the white noise

power, but not knowledge of the rank of the interference subspace.

An alternative technique for eliminating the problems associated with invert-

ing Ŵ is to use the widespread diagonal loading technique [38]. It simply

13



consists in replacing Ŵ by another estimate Ŵd obtained as

Ŵd = Ŵ + � I ; (43)

where � should be on the order of �2w. This is an ad hoc technique whose ad-

vantage lies in its simplicity. However, simulation results have shown that the

previous eigenanalysis method performs slightly better. In [13], it is suggested

that this improvement is due to the fact that the noise subspace of Ŵs is

white (i.e., 
at eigenvalue spectrum), whereas the noise subspaces of Ŵ and

Ŵd are colored.

An approach that may seem logical at �rst glance is to replace the inverse of

Ŵ, when this matrix is singular, by its Moore-Penrose pseudo-inverse Ŵ#.

However, the use of the pseudo-inverse is not recommended because it yields

a notably worse performance than the two previous approaches, and its calcu-

lation is computationally complex. The explanation for its poor performance

is simple. In order to mitigate the e�ect of the interference, the terms d̂� and

IL 
 a� (�1) are prewhitened with the inverse of the noise-plus-interference

correlation matrix, as shown in (34)-(35). The dominant component after

prewhitening should be the projection of these terms onto the noise sub-

space, since it is orthogonal to the interference 7 . Whenever the matrix Ŵ

is non-singular, this desired property is achieved by any of the approaches

above (that is, using Ŵ�1 = Ŵ#, Ŵ�1
s or Ŵ�1

d ), since the eigenvalues of

the noise subspace are much smaller than the rest. However, when any of the

noise eigenvalues are zero, the pseudo-inverse disregards the projection onto

the corresponding eigenvectors. On the contrary, the eigenanalysis method

and the diagonal loading approach assign small values to the null eigenvalues,

so that the projection onto the corresponding eigenvectors is emphasized.

The discussion above does not pretend to be a formal or complete study of

the application of the ML principle with singular or ill-conditioned correlation

matrices. This is an open issue that deserves a much deeper analysis. Our goal

has only been to show that the unstructured estimate of the correlation matrix

can be suitably transformed in order to deal with short training sequences.

5 CRAMER-RAO BOUND

The Cram�er-Rao Bound (CRB) is a lower bound on the covariance of any

unbiased estimator [30]. It can be proved that the ML estimators (36), (20)

and (37) are consistent as long as the signals to which they are applied satisfy

7 In this discussion we are implicitly assuming that the interference is much more

powerful than the background noise. This situation is common in mobile communi-

cation systems, which are usually interference-limited.
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the model presented in Sections 2 and 3. The consistency of �̂1;ML and �̂ML fol-

lows immediately from equations (28) and (32); and along with equation (20)

it directly implies the consistency of Q̂ML. The proofs of these claims are

well-known (see, e.g., [39]). Since all the ML estimators are consistent, they

are also asymptotically eÆcient [40, Theorem 6.2.3], that is, their asymptotic

covariance coincides with the CRB.

According to the model under consideration, the M observations of y(m) are

independent circular Gaussian vectors with mean �(m) = D (�1;�)d1 (m)

and covarianceQ. The parameters of this model are � =
h
Re

n
�
T
o
; Im

n
�
T
o
; �1

iT
and Q 8 . The Bangs-Slepian's formula [41, ch. 15] for the klth element of the

Fisher Information Matrix (FIM) is

[FIM]kl =M Tr
n
Q�1Q

0

kQ
�1Q

0

l

o
+ 2Re

(
M�1X
m=0

�
�

0

k (m)
�H
Q�1

�
0

l (m)

)
;

(44)

where (�)
0

k denotes the derivative with respect to the kth parameter. Since

� (m) and Q depend on di�erent parameters, the FIM is block diagonal with

respect to � and Q. Therefore, the CRB for � is the same whether Q is known

or not, and vice versa. As we are concerned only with the CRB for the signal

parameters (�), we need only consider the second term in (44). The CRB for

� is the inverse of the corresponding block of the FIM, and can be written as

CRB�1 (�) = 2Re

8>>>>><
>>>>>:

2
666664

F1 jF1 F2�

�jFH
1 F1 �jF2�

�
HFH

2 j�HFH
2 �

HF3�

3
777775

9>>>>>=
>>>>>;

; (45)

where

F1 =
M�1X
m=0

�
IL 


�
A (�1) d1 (m)

�H�
Q�1

�
IL 


�
A (�1) d1 (m)

��
(46)

F2 =
M�1X
m=0

�
IL 


�
A (�1) d1 (m)

�H�
Q�1

�
IL 


�
B (�1) d1 (m)

��
(47)

F3 =
M�1X
m=0

�
IL 


�
B (�1) d1 (m)

�H�
Q�1

�
IL 


�
B (�1) d1 (m)

��
(48)

B (�1) =

�
b+ (�1) b� (�1)

�
=

dA (�1)

d�1
: (49)

8 Actually, the parameters corresponding to Q are its real and imaginary parts. For

sake of simplicity, this fact is not detailed since it does not a�ect the computation

of the CRB for �.

15



It is possible to compute the asymptotic values of (46)-(48). Recalling that

R̂dd ! �2d I, it is not hard to verify that

Fa
1 = M lim

M!1

F1

M
=M �2d

��
IL 
 aH+ (�1)

�
Q�1

�
IL 
 a+ (�1)

�
+

+
�
IL 
 aH� (�1)

�
Q�1

�
IL 
 a� (�1)

��
(50)

Fa
2 = M lim

M!1

F2

M
=M �2d

��
IL 
 aH+ (�1)

�
Q�1

�
IL 
 b+ (�1)

�
+

+
�
IL 
 aH� (�1)

�
Q�1

�
IL 
 b� (�1)

��
(51)

Fa
3 = M lim

M!1

F3

M
=M �2d

��
IL 
 bH+ (�1)

�
Q�1

�
IL 
 b+ (�1)

�
+

+
�
IL 
 bH� (�1)

�
Q�1

�
IL 
 b� (�1)

��
: (52)

When these values are substituted into (45), an asymptotic expression for the

CRB is obtained. The asymptotic CRB is usually preferred because it does

not depend on the particular value of the training sequence, and is the one

plotted in the �gures of the next section.

6 SIMULATION RESULTS

In this section we compare the performance of our estimator, referred to as the

\space-time diversity" (STD) estimator, with two of the techniques proposed

to date that in most cases give the best results. Namely, we consider the

methods presented in [19] and [20], which we will denote as \space-diversity"

(SD) and \time-diversity" (TD) estimators, respectively. In these two papers

and also in [11], the SD and TD methods are compared with a number of

di�erent estimators proposed in the literature. Note that the comparison with

these two approaches is fair since they also use an antenna array in reception.

The computational complexity of the SD and TD methods is smaller than that

of the STD estimator, because they work with the space-only and the time-

only correlation matrices of the interfering signals, respectively. The size of

these two matrices is obviously smaller than that of the space-time correlation

matrix employed in the the STD approach. Here, we analyze two performance

measures:

� Probability of acquisition (Pac). We de�ne a correct acquisition to have

occurred when the delay estimate is within a half-chip of the true value,

i.e., j�̂1;ML � ~�1j < Tc=2.
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� The root mean squared error (RMSE) given correct acquisition, i.e.,

RMSE (�1) =

r
E
n
j�̂1;ML � ~�1j

2
��� j�̂1;ML � ~�1j < Tc=2

o
(53)

This measure is relevant for the tracking operation of the estimators.

A method is considered to have failed when Pac � 0:5, due to the large number

of outliers. The RMSE is not plotted in this case. We have observed that the

three estimators under consideration are essentially unbiased (their biases are

much smaller than their standard deviations). Therefore, the RMSEs are for all

practical purposes identical to the standard deviations. All results are obtained

from 1000 Monte Carlo realizations. The simulation conditions, except when

one of them is varied, are as follows:

� (pseudo-)Gold codes with length N = 15 chips and BPSK modulation.

� rectangular chip-shaped pulses and oversampling factor Q = 1.

� Energy per bit to white-noise spectral density ratio (Eb/No) equal to 4dB

per antenna for the desired user.

� uniform linear array with L = 4 antennas spaced 0:5 wavelengths apart.

� K = 10 users, M = 80 training bits.

� The power of the signal from each interfering user is distributed log-normally

with mean 10dB (with respect to the desired user) and standard devia-

tion 10dB. This distribution models the log-normal fading caused by large-

distance re
ectors.

� The delays of the users, the mean directions-of-arrival (DOA) of the users

and the external interference are randomly chosen from the range of all

possible values and �xed throughout the Monte Carlo realizations.

The near-far ratio (NFR) is de�ned as the ratio between the mean power of

each interfering user and that of the desired user. The structured estimate

of the correlation matrix Ŵs is used in the implementation of the STD esti-

mator. We simulate two di�erent channels. The �rst, referred to as the static

channel, is a channel that remains constant during the observation interval.

This corresponds to the situation that we have considered in the signal model

of Section 2. There is no angular spreading, so each user has a unique spatial

signature. Since the Doppler frequency fd is assumed equal to 0, the signals

do not su�er from multiplicative distortion (or fast-fading), only log-normal

fading. The amplitude and phase of each user's signal are held �xed during

the observation interval, but are varied for each Monte Carlo run in order to

model the log-normal fading.

The second channel is a realistic mobile channel for the uplink. It is gener-

ated according to the spatio-temporal model described in [42]. Each signal

arrives at the array through several rays, all of them with the same delay.

The number of rays follows a truncated Poisson law with mean and maximum
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values equal to 25 and 50 rays, respectively. The directions of arrival of the

rays are generated according to a Gaussian distribution with a given mean

and a standard deviation of 5 degrees. This is the value that characterizes the

angular spread of the signals. The total power of each signal is divided among

its propagation rays following a Laplacian law conditioned on the separation

between the DOA of each ray and the mean DOA of the signal (see [42] for

details). The Doppler spectrum has the classical Clarke's bath-shape [1], ob-

tained by assuming multiple and randomly located re
ectors near the mobile,

with normalized maximum Doppler frequency equal to fdT = 2 � 10�3. There-
fore, the multiplicative distortion introduced by the channel has approximately

a correlation duration of 1=fdT = 500 symbols. This value for the factor fdT

corresponds to a system with an typical set of parameters, such as 900MHz

carrier frequency, 50kb=s data rate and 120km=h speed, or 1800MHz carrier

frequency, 100kb=s data rate and 120km=h speed. Note that for a pedestrian

channel the speed is about 3km=h, and therefore the value of fdT is much

smaller.

We �rst consider the e�ect of the length of the training sequence M . The

results are shown in Figure 2. The estimator proposed in this paper is the only

one that attains the CRB for the static channel, even though the Gaussian

assumption is only an approximate one. This fact corroborates the explanation

in Section 3 stating that the Gaussian model with space-time correlation is

reasonable and models the most signi�cant e�ects of the MAI. The CRB is

achieved for lengths of the training sequence larger than 250 bits. For smaller

values, there is a very slight degradation with respect to the CRB, which causes

the di�erence between the RMSE and the CRB present in all the subsequent

�gures. As expected, the performance of all the estimators deteriorates in the

mobile channel, where the RMSE can not be further reduced by increasingM .

This impairment should not be interpreted as a failure of the estimators, but

only as the e�ect of working in a much more adverse environment, and it will be

visible in all the following results. AsM increases, the multiplicative distortion

blurs the signal of the desired user. Then, the e�ective length of the training

sequence is no longer equal to M , but is bounded by the temporal correlation

of the channel. Also in the mobile channel the STD estimator outperforms

the other two approaches. The SD method possesses the largest RMSE and

the lowest Pac, since it is the approach with the smallest number of degrees

of freedom. Figure 2(b) demonstrates the ability of our algorithm to acquire

the desired user's delay. As shown in Figure 2(a), RMS errors between 0:1

and 0:01 chips can be achieved with windows of less than 100 bits, indicating

that the algorithm can be used for tracking slowly time-varying parameters in

decision-directed mode.

In Figure 3, we investigate the e�ect of varying the number of users. This

has special interest for a base station that uses spatial-division multiple-access

(SDMA), since such systems may have more users than the length of the codes.

18



Again the STD estimator gives better results than the other two methods

both in RMSE and Pac. The SD and TD approaches experience a serious

deterioration, specially in their probabilities of acquisition, when the number

of users exceeds the length of the code (i.e., K > N), and they completely fail

when K > 2N in the scenario under consideration. On the other hand, using

the space-time estimator the number of users may be increased beyond twice

the code length without an excessive degradation. For instance, note that for

a static channel with K = 40 users the probability of acquisition remains

virtually equal to 1, and only goes down to 0:82 for the mobile channel.

Next, the e�ect of a wide-band external interference is analyzed in Figure 4.

Because of its large bandwidth, the interference does not show any tempo-

ral structure, so it can be exclusively mitigated in the spatial domain. Only

the STD and SD estimators provide adequate performance when the desired

signal-to-interference ratio (SIR) is small (e.g., smaller than < �15dB). Their
performance is nearly insensitive to the SIR except for extremely low SIR in

the mobile channel. Despite everything, the former gives better results than

the latter in all cases. Moreover, the SD estimator is not near-far resistant

for the system parameters that we have considered. In Figure 5 the near-far

resistance of the di�erent estimators is compared. In the static channel, the

CRB and the RMSE and Pac of the estimator proposed herein are totally in-

sensitive to the MAI level, whereas those of the TD and SD schemes are not.

With regard to the probability of acquisition, the STD estimator performs

satisfactorily in the mobile channel up to a NFR equal to 35dB, which is an

improvement of about 8dB and 18dB over the TD and SD methods, respec-

tively. Further insight into the near-far performance is gained by observing

Figure 6. An estimator can be considered to be near-far resistant when the

RMSE tends to zero and the Pac tends to one as the Eb/No increases, even

in the presence of arbitrarily strong MAI. This property is only satis�ed by

our STD estimator, at least in the static channel. The RMSEs of the other

two estimators (i.e., the SD and TD methods) have performance 
oors due to

the MAI that cannot be surpassed by reducing the power of the background

white noise.

In Figure 7, we examine the relationship between the probability of acquisition

and the RMSE with the normalized Doppler fdT . These results are obtained

for an angular spread with standard deviation equal to 8 degrees. The STD

estimator performs better than the other two for all values of fdT considered.

The di�erence between the RMSEs of the di�erent methods is roughly constant

as the Doppler is increased. On the other hand, the probability of acquisition

of the STD estimator is less sensitive to the Doppler than that of the SD

and TD approaches. This �gure shows that the performance of the estimator

proposed herein is not critically a�ected by the Doppler spread of the channel.

For instance, Pac for our method is approximately 0.92 when fdT = 0:01. This

is an excellent result, since the correlation length of the channel is about 100
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symbols, and hence on the order of the observation interval.

Our last set of results involves analyzing the performance achieved with dif-

ferent estimates of the correlation matrix. In Figure 8, we compare the RM-

SEs obtained with the structured estimate Ŵ�1
s (the one employed in all the

simulations above), the pseudo-inverse Ŵ# and the diagonally loaded esti-

mate Ŵ�1
d . The diagonal loading factor is set equal to the power of the white

noise. As predicted and justi�ed by the theoretical study in Section 4.2, the

performance with the pseudo-inverse is always worse than with the other two

estimates, and undergoes a severe degradation for short lengths of the training

sequence. The RMSEs obtained with the diagonally loaded and the structured

matrix estimates, which are nearly coincident, are better discerned in Figure 9.

This �gure shows that the RMSE of the former is noticeably greater than that

of the latter for small loading factors. When the loading factor is equal to or

greater than the white-noise power, they perform similarly, but there is al-

ways a certain advantage in favor of the structured estimate, especially for

the mobile channel.

7 CONCLUSIONS

A code-timing synchronization technique for DS-CDMA systems that oper-

ates in near-far, frequency-nonselective, slowly fading channels and employs

an arbitrary antenna array for reception has been derived by applying the ML

principle. As such the technique is a single-user, near-far resistant estimator

and would be applicable in a system employing multiuser detection without

power control. It is assumed for the derivation that the desired user transmits

a known training sequence, and all other received components are modeled as

Gaussian with unknown space-time correlation. This approach fully exploits

the spatial and temporal structure of the interfering signals in order to cancel

them, and di�ers from other methods put forward to date that, while also em-

ploying antenna arrays, only exploit the structure of the signals in one of the

domains. As a result, the proposed technique outperforms existing synchro-

nization methods for reasonable lengths of the training sequence. The use of a

structured estimate of the correlation matrix or diagonal loading allows one to

reduce the required size of the observation window. The RMSE and the acqui-

sition probability of the proposed algorithm have been evaluated numerically

in two types of channels. Although the estimator is applied in a multiple-access

channel, the RMSE attains the CRB derived under the Gaussian assumption,

which con�rms the validity of the starting model. The results of this paper

show that the eÆcient use of space-time diversity is indispensable for accurate

acquisition and tracking of the synchronization parameters in heavily loaded

systems and/or in the presence of external interference.
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Figure 2. Performance of the STD, TD and SD estimators as a func-

tion of the length of the training sequence M in two di�erent channels.

K = 10; N = 15; L = 4; Eb=No = 4dB per antenna, NFR = 10dB.
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Figure 3. Performance of the STD, TD and SD estimators as a function of the num-

ber of users K in two di�erent channels. M = 80; N = 15; L = 4; Eb=No = 4dB

per antenna, NFR = 10dB.
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Figure 4. Performance of the STD, TD and SD estimators in the

presence of a wide-band external interference in two di�erent channels.

M = 80; K = 10; N = 15; L = 4; Eb=No = 4dB per antenna, NFR = 10dB.
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Figure 5. Performance of the STD, TD and SD estimators as

a function of the near-far ratio NFR in two di�erent channels.

M = 80; K = 10; N = 15; L = 4; Eb=No = 4dB per antenna.
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Figure 6. Performance of the STD, TD and SD estimators as a function of the

Eb/No in two di�erent channels. M = 80; K = 10; N = 15; L = 4; NFR = 10dB.
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Figure 7. Performance of the STD, TD and SD estimators as a function of Doppler

spread. M = 80; K = 10; N = 15; L = 4; Eb=No = 4dB per antenna,

NFR = 10dB.
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Figure 8. Comparison of the performance for three di�erent

estimates of the correlation matrix in two di�erent channels.

K = 10; N = 15; L = 4; Eb=No = 4dB per antenna,

NFR = 10dB; � = �2w.
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Figure 9. E�ect of varying the diagonal loading factor in two

di�erent channels. The power of the white-noise is �2w = 6.

M = 80; K = 10; N = 15; L = 4; Eb=No = 4dB per antenna,

NFR = 10dB
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