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Abstract

A subspace based blind channel identi&cation algorithm using only the fact that the received signal can be
oversampled is proposed. No direct use is made in this algorithm of either the statistics of the input sequence or
even of the fact that the symbols are from a &nite set and therefore this algorithm can be used to identify even
channels in which arbitrary symbols are sent. Using this algorithm as a base and using the extra information which
becomes available when the transmitted symbols are from a known &nite set, the EC-LS-Subspace algorithm is
derived. The EC-LS-Subspace algorithm operates directly on the data domain and therefore avoids the problems
associated with other algorithms which use the statistical information contained in the received signal directly. In
the noiseless case, if some conditions are met, it is possible for the proposed Basic Subspace algorithm to identify
the channel exactly using an observation interval of just (J+2)T , if the length of the impulse response of a channel
is JT; T being the symbol interval. In the noisy case, simulations have shown that the channel can be identi&ed
accurately by using a very small observation interval (comparable to (J +2)T ). ? 2001 Elsevier Science B.V. All
rights reserved.

1. Introduction

Most digital communication systems are subject to intersymbol interference (ISI). In many cases this
is so severe that the correct reception of the transmitted sequence is hindered unless speci&c equalization
procedures are adopted. Classically, these procedures are based on the knowledge of the channel which
is obtained by sending a known training sequence. But, when the channel is varying, even slowly, the
training sequence has to be sent periodically so that the channel estimates can be updated and this
reduces the e2ective channel rate.
In contrast to the classical channel identi&cation methods, blind channel identi&cation methods are

very attractive since they do not require training sequences. Most existing blind identi&cation methods
use the statistics of the transmitted sequence instead of the explicit knowledge of the sequence itself.
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Since communication channels are very likely to be nonminimum phase, most of the existing blind
channel identi&cation algorithms have used higher order statistics [2–6,9,10]. Elegant solutions using this
approach have been given but all of them need a very large number of symbols (typically, much more
than several hundred symbols).
The discovery by Tong et al. [1], of an algorithm which allows the blind identi&cation of channels

using only second-order statistics is considered to be a breakthrough. Their algorithm relies on the
cyclo-stationary of communication signals and makes explicit use of the second-order cyclo-stationary
statistics of the oversampled channel output. A number of algorithms, which improve on the results
in [1] and which make explicit use of second-order cyclo-stationary statistics, have been proposed,
[1,8,12,16,17].
Most of these algorithms do not make explicit use of the signal structure inherent in the oversampled

channel output. The oversampled output has a lot of structure and this can be exploited in di2erent ways.
Recently, Xu et al. [16], and Liu and Xu [17] have come up with algorithms which exploit the inherent
structure of the oversampled channel output in di2erent ways.
In this paper we present a new algorithm which exploits the structure of the oversampled output in

yet another way. But the approach that we use to exploit this structure is quite di2erent from the other
methods. We have used the following philosophy in deriving this algorithm—since a lot of the output
structure comes from the shifts in the input sequence, it should be possible to look at the inverse channel
and hence exploit the shifts in the input sequence instead of directly making use of the output structure.
The idea is that visually explicit shifts in the input sequence can be exploited much more easily and
more thoroughly than the implicit structure embeded in the oversampled output.
It must be noted here that instead of oversampling, one could also use multiple physical receivers or

sensors. The basic idea involved here is the exploitation of the di2erent instantiations of the same input
signal by multiple FIR channels.
Although the Basic Subspace algorithm does not use any property of the symbol set and gives exact

results in the noiseless case, in the noisy case a much better algorithm can be obtained by making use
of the known properties of the transmitted sequence. We have therefore modi&ed the Basic Subspace
algorithm by incorporating least-square techniques. This modi&ed algorithm, EC-LS-Subspace algorithm,
has a number of desirable properties. In particular, it provides very accurate channel estimates, needs a
small observation interval and is quite robust to channel noise.
The received baseband signal x(·) can be written as

r(t)=
∞∑

k=−∞
skh(t − kT ) (1)

x(t)= r(t) + n(t) (2)

where sk is an information symbol in a signal constellation S (S may be an in&nite set), h(·) is the
discrete-time channel impulse response, T is the symbol interval and n(·) is the additive noise. In the
sequel we will assume that the impulse response h(·) has &nite support, i.e. h(t)=0 for t¿ JT; J ∈N.
The channel identi&cation problem requires us to estimate the channel impulse response h(t) (or at

least samples of h(t)). Classical channel identi&cation procedures using a training sequence have the
knowledge of both x(t) as well as the transmitted symbols {sk}. A blind channel identi&cation algorithm
on the other hand has to estimate the channel response h(·) given only the received signal x(·).
In this paper we derive and study a new blind channel identi&cation algorithm which needs very few

symbols 2 to estimate the channel. The organization of the paper is as follows—in Section 2, we derive

2 Under certain conditions, just J + 3 symbols are enough to obtain the exact impulse response in the noiseless case.
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the Basic Subspace algorithm and this forms the backbone of our approach. In the next section we derive
the conditions for the identi&ability of the channels using this method. In Section 4, we modify the Basic
Subspace algorithm by incorporating least-square techniques and obtain a robust algorithm which works
very well in practical situations. Finally we discuss a simulation example and the conclusions that can
be drawn from it.

2. The Basic Subspace algorithm

In this section we develop the Basic Subspace algorithm. In order to simplify the presentation we will
ignore the noise for the moment. We will &rst discuss the case when the impulse response is of length
2T , i.e. J =2 and then we will present the more general case.

2.1. The Basic Subspace algorithm for the J =2 case

We sample the signal at twice the baud rate, i.e., at t= nT +�1 and t= nT +�2; 06 �1; �26T . Using
the fact that the impulse response has length 2T , it can be easily seen that the following 2M equations
are true:

y(2j − 2)= sjh0 + sj−1h2; y(2j − 1)= sjh1 + sj−1h3; 16 j6M;

where y(2n+ i − 3)= x(nT + �i); h2n+i−1 = h(nT + �i), for i=1; 2.
An important fact to note here is that while there are 2M equations there are M+5 unknown variables

(i.e., hi and si). But these equations are homogeneous and hence hi (or alternately si) can be &xed only
upto a multiplying constant. This implies that we can arbitrarily &x the value of one of the variables
(assuming that it is not zero) to be 1. Therefore, there are M +4 unknown variables and 2M equations.
This means that when M ¡ 4 we certainly cannot solve for the unknown variables, but if M¿ 4 we
may be able to do so. Therefore the minimum length of the observation interval required to &nd {hi} is
no less than 4T . We will now show that under certain conditions we can in fact &nd the exact impulse
response with an observation interval of just 4T . De&ne

x0 = [y(0) y(2) y(4) · · · y(2M − 2)]T; x1 = [y(1) y(3) y(5) · · · y(2M − 1)]T;

s0 = [s0 s1 s2 · · · sM−1]
T; s1 = [s1 s2 s3 · · · sM ]T;

H=
[
h2 h3
h0 h1

]
;

then it is clear that

[x0 x1]= [s0 s1]H: (3)

Assuming that H is invertible, i.e.

�=
[
�0 �2
�1 �3

]
=H−1 (4)

exists, we see by post-multiplying by � in (3), that the vectors s0 and s1 lie in the span of the vectors
x0 and x1 and we have

s0 = �0x0 + �1x1; (5)

s1 = �2x0 + �3x1: (6)
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But s0 and s1 are not just any two vectors in the span of x0 and x1, they have a very special structure:
The bottom M − 1 elements of s0 are the same as the top M − 1 elements of s1. We will now exploit
this relationship. Partition the vectors x0 and x1 as below

[x0 x1]=
[
y(0) y(1)
�0 �1

]
=
[

�0 �1
y(2M − 2) y(2M − 1)

]
; (7)

Where �i and �i are the top and bottom M − 1 elements of xi. The constraint that the bottom M − 1
elements of s0 are the same as the top M − 1 elements of s1, translates into the following relation

�0�0 + �1�1 = �2�0 + �3�1: (8)

This in turn implies that �=[�0 �1 �2 �3]
T is in the null space of � where

�=[�0 �1 − �0 − �1]:
If we make the further assumption that � has only a single dimensional null space, 3 we can then &nd �
uniquely (up to a multiplication factor) and therefore H=�−1 is also determined up to a multiplication
factor. Note that this method needs an observation interval of only 4T to identify the channel, if the
corresponding � matrix has a one-dimensional null space. We will show in Section 3 that under certain
conditions, it is possible for the � matrix to have a one-dimensional null space even with an observation
interval of just 4T . (Note that with an observation interval of 3T , this method will not work. This can be
seen from the fact that � matrix will then be a 2× 4 matrix and so the null space will have dimension
at least two.)

2.2. The Basic Subspace algorithm for the arbitrary J case

We will now present the main steps of the algorithm for the identi&cation of an arbitrary FIR channel.
We assume that the impulse response has length JT and that the received signal is not corrupted by noise.
In the noiseless case, this method can be used to identify the channel exactly 4 with an observation length
of just (J + 2)T . We use the same notations as for the J =2 case. Here the received signal is sampled
at J times the baud rate. It is easy to see that we obtain the following equations for 06 i6 J − 1:

y(i)= sJ−1hi + sJ−2hJ+i + · · ·+ s0h(J−1)J+i ;
y(J + i)= sJ hi + sJ−1hJ+i + · · ·+ s1h(J−1)J+i

...
...
...

y(JM − J + i)= sM+J−2hi + sM+J−3hJ+i + · · ·+ sM−1h(J−1)J+i ;

where y(Jn− J + j − 1)= x(nT + �j); hJn+j−1 = h(nT + �j); 16 j6 J .
Following the same procedure as in the J =2 case, we now de&ne the vectors xi and si for 06 i6 J−1

as below

xi=[y(i) y(J + i) y(2J + i) · · · y((M − 1)J + i)]T;
si=[si si+1 si+2 · · · sM+i−1]

T:

As before we obtain the relation

X=SH; (9)

where

X=[x0 x1 · · · xJ−2 xJ−1]; S=[s0 s1 · · · sJ−2 sJ−1]

3 That this indeed happens with an extremely high probability will be proved in Section 3.
4 Provided the corresponding � matrix in (11) has a one-dimensional null space.
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and the kth column of H is hk ; 16 k6 J , where

hk =[hJ (J−1)+k−1 hJ (J−2)+k−1 · · · hJ+k−1 hk−1]
T:

Inverting this relation we see that si ∈ span{x0;x1; : : : ;xJ−1}. Therefore we have for 06 i6 J − 1,

si= �
(i)
0 x0 + �

(i)
1 x1 + · · ·+ �(i)J−1xJ−1; (10)

where the {�(i)j }; taken appropriately, form the matrix �=H−1.
Let �i and �i be the bottom M − 1 and top M − 1 elements of xi ; respectively. Then the constraint

imposed by the structure of si (i.e. bottom M − 1 elements of si is the same as the top M − 1 elements
of si+1) translates into the following relation:

��=0; (11)

where

�=[�(0)0 ; : : : ; �
(0)
J−1; �

(1)
0 ; : : : ; �

(1)
J−1; : : : ; �

(J−1)
0 ; : : : ; �(J−1)

J−1 ]T;

�=




� � 0 0 · · · 0 0
0 � � 0 · · · 0 0
0 0 � � · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · � �




with the number of block-columns being J ,0 representing a matrix of zeros and

�=[�0 �1 · · · �J−1]; �=− [�0 �1 · · · �J−1]: (12)

Therefore we know that �∈Null(�), and again if we know that � has a one-dimensional null space,
then we can &nd � and therefore H and {sk}.

In the next section, we will prove that the probability that � does have one-dimensional null-space
tends to one. We still have to substantiate our claim that under certain conditions this method will
work with as small an observation interval as (J + 2)T . In the next section we show that under certain
conditions, � can have a one-dimensional null space with an observation interval of (J + 2)T . This
implies that under certain conditions this algorithm can identify the channel with as small an observation
interval as (J + 2)T . Note that it cannot work with a smaller observation interval. The number of
equations will then become less than the number of unknown variables and so the solution cannot be
uniquely determined. Another way to understand this is by looking at the dimensions of the matrix �—if
the observation interval is (J + 1)T , then the dimension of � is (J 2 − J ) × J 2. Since, J ¿ 1, the null
space of � has dimension greater than one.

3. Identi ability

The two assumptions under which the Basic Subspace algorithm will work are:
• H is invertible (or in the noisy case H should also be well-conditioned).
• � has a one-dimensional null space.
H being invertible is not a big problem but unfortunately it is often ill-conditioned and this causes

problems in the noisy case. In the next section we will discuss ways to overcome this problem for many
practical channels. For many channels, the modi&cations of the Basic Subspace algorithm derived in
Section 4, works quite well. In our simulations we use an ill-conditioned H matrix and the modi&ed
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algorithm and show that the estimates obtained by using the modi&ed algorithm are in fact very close
to the actual result.
If we assume that the H matrix is indeed invertible, it can be shown that the second assumption is

almost never violated. We now prove the following theorem.

Theorem 3.1. For every non-trivial 5 communication system, if H is invertible then the probability that
� has a one-dimensional null space tends to 1 as the observation interval increases. The rate of
convergence is at least exponential if the symbols are independent.

Theorem 3.1 ensures that as the observation interval increases, the probability of the violation of the
second assumption tends to zero very fast and therefore even with a very small observation interval we
can use the Basic Subspace algorithm to estimate the channel. Similar conditions based on persistently
exciting sequences for the identi&ability of a FIR channel have been discussed in [7].
We will now prove Theorem 3.1. In proving this theorem, we will also discover a very elegant

approach to the Basic Subspace algorithm.
Let s�i and s�i be the bottom M − 1 and top M − 1 elements of the vector si. Then we know that

s�0 = s�1 ; s�1 = s�2 ; : : : ; s�J−3 = s�J−2 ; s�J−2 = s�J−1 :

It is therefore clear that of the 2J vectors s�i and s�i , we only have J+1 di2erent vectors s�0 ; s�0 ; s�1 ; : : : ; s�J−1

and for convenience we will call them B0;B1; : : : ;BJ , respectively.

Lemma 3.1. If H is invertible and the J + 1 vectors B0;B1; : : : ;BJ , are linearly independent, then the
matrix � has a one-dimensional null space.

Proof. From (9) and (12) we get

�=[B1 B2 · · · BJ ]H; �=− [B0 B1 · · · BJ−1]H:

Using this relation in �, we get

�=%H̃; (13)

where

H̃=




H 0 0 · · · 0
0 H 0 · · · 0
0 0 H · · · 0
...

...
...

...
...

0 0 0 · · · H



;

and

%=



B1B2 · · ·BJ B0B1 · · ·BJ−1 0 · · · 0 0

0 B1B2 · · ·BJ B0B1 · · ·BJ−1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · B1B2 · · ·BJ B0B1 · · ·BJ−1


 :

Since H is invertible, H̃ is also invertible. Therefore � will have a one-dimensional null space if %
has a one-dimensional null space. Lemma 3.2 con&rms that % does have a one-dimensional null space
under the hypothesis of Lemma 3.1 and therefore we have proved Lemma 3.1.

5 A trivial communication system is one in which all the future transmitted symbols are decided by a &nite number of
transmitted symbols and this is clearly not a very useful communication system!
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Lemma 3.2. If the J + 1 vectors B0;B1; : : : ;BJ are linearly independent, then the matrix % has a
one-dimensional null space and

N(%)= {c[e1 e2 e3 · · · eJ ]T: c∈R};
where ei=[0 0 · · · 1 0 · · · 0] (1 is in the ith position).

Proof. Let the vector � be a vector in the null space of % where

�=[�1;1; �2;1; : : : ; �J;1; �1;2; �2;2; : : : ; �J;2; : : : ; �1; J ; �2; J ; : : : ; �J;J ]
T:

Then

%�=0:

From this equation, and, using the fact that since the vectors B0;B1; : : : ;BJ are linearly independent, a
linear combination of them cannot be zero unless all the corresponding coePcients are zero, we get the
following equations:

�1; i=0 for all i=2; 3; : : : ; J − 1; J;

�1; i − �2; i+1 =0 for all i=1; 2; 3; : : : ; J − 1;

�2; i − �3; i+1 =0 for all i=1; 2; 3; : : : ; J − 1

...
...

...
...

�J−1; i − �J; i+1 =0 for all i=1; 2; 3; : : : ; J − 1;

�J; i=0 for all i=1; 2; 3; : : : ; J − 1:

From these equations it can be concluded that �i; j for i �= j are all zero and �1;1 =�2;2 = · · ·=�J;J . This
means that the vector � is &xed up to a multiplication factor and since � is an arbitrary vector in the null
space of %, we infer that % has a one-dimensional null space generated by the vector [e1 e2 e3 · · · eJ ]T.

Therefore we come to the conclusion that if the H matrix is invertible, � does not have a one-
dimensional null space only if the J+1 vectors s�0 ; s�0 ; s�1 ; : : : ; s�J−1 are linearly dependent. This condition
forces the following matrix to have a non-trivial null space:

Q=[s�0 s�0 s�1 · · · s�J−1 ]:

This in turn trivially implies the following necessary condition.

Lemma 3.3. If H is invertible, then � does not have a one-dimensional null space only if

det



si si+1 · · · si+J
sj sj+1 · · · sj+J
...

...
...

...
sk sk+1 · · · sk+J


=0 ∀i; j; : : : ; k: i �= j �= · · · �= k:

Let the &rst 2J symbols {s0; s1; : : : ; s2J−1} take on a set of arbitrary values. Now we will look at the
only sequences for which it may be possible for the necessary condition to hold.
When we use the necessary condition for (i; j; : : : ; k)= (0; 1; : : : ; J ) we &x the value of s2J . When we

then apply the necessary condition for (i; j; : : : ; k)= (1; 2; : : : ; J + 1) we have no choice but to &x the
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value of s2J+1. Similarly applying the necessary condition successively we will &x the values of all
the symbols {s2J ; : : : ; sM}. Therefore there is only one sequence of length M with its &rst 2J elements
speci&ed that can possibly satisfy the necessary condition. It may also happen that for certain choices
of the 2J elements no sequence may satisfy the necessary condition in its entirety. (Note moreover the
fact that this is only a necessary condition and not a necessary and suPcient condition.)
In any rich communication system the probability that a particular sequence of length M is transmitted

given that the &rst 2J elements of the sequence take on a speci&ed values tends to zero as M increases.
In particular if the symbols are from a &nite set of size q then the number of possible values the &rst 2J
elements can take is q2J and the total number of sequences of length M are qM . If the transmitted symbols
are independent then the probability that the transmitted sequence satis&es the necessary condition is less
than or equal to q2J−M . Therefore we come to the conclusion that if H is invertible then

Prob(� has a one-dimensional null space)¿ 1− 1
qM−2J :

This means that as the observation interval M increases, the probability that the Basic Subspace algorithm
fails tends to zero exponentially and if the symbols are not from a &nite set, then clearly the probability
of failure is zero if M ¿ 2J and we have therefore proved Theorem 3.1.

The proof of Theorem 3.1 also opens up a new way of deriving the Basic Subspace algorithm. From
(13) we know that vectors in the null space of �, when pre-multiplied by H̃, produce vectors in the null
space of %. Conversely, vectors in the null space of %, when premultiplied by H̃

−1
, produce vectors

in the null space of �. This combined with the fact that the only vector (disregarding multiplication
factors) in the null space of % is [e1; e2; e3; : : : ; eJ ]

T implies that if � is a vector in the null space of �,
then H=�−1, where the matrix � is constructed by appropriately arranging the elements of the vector �
and then scaling it suitably. That this is indeed the case can be easily veri&ed by noting that the vector
[e1 e2 e3 · · · eJ ]T picks out the columns of the matrix H−1 from the matrix H̃

−1
and arranges them

one below the other to form the vector �.
We still have to show that it is possible (under certain conditions) to use this algorithm to identify

a general FIR channel of length JT exactly (in the noiseless situation) with an observation length of
just (J + 2)T . To show this, all we need to show is that when the observation length is (J + 2)T , for
certain input sequences, � has a one-dimensional null space. But from the proof of Theorem 3.1, we
know that � will have one-dimensional null space, whenever the J + 1 vectors s�0 ; s�0 ; s�1 ; : : : ; s�J−1 . are
linearly independent. Since the observation interval is J +2, the dimension of each of these J +1 vectors
is J +1. So we have (J +1) (J +1)-dimension vectors. But these vectors can be chosen to be linearly
independent even with a constellation size of two. Therefore, under the condition that the J + 1 vectors
s�0 ; s�0 ; s�1 ; : : : ; s�J−1 are linearly independent, it is possible to exactly identify (in the noiseless case) the
channel using this algorithm with an observation interval of just (J + 2)T .
In the noisy situation, the same algorithm can be applied with the small modi&cation that in solving

for �, instead of &nding the null space of �, we &nd the singular vector corresponding to the smallest
singular value of �.

4. The least-squares Subspace algorithm

In this section we will attack the important problem of the H matrix being ill-conditioned. Before that
we &rst look at the Exhaustive LS-Search algorithm, a conceptual algorithm for solving the blind iden-
ti&cation problem. In the classical identi&cation procedures, which use a training sequence, the problem
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is often solved in this way: Assuming that the received signal is sampled at the baud rate, we have the
following matrix equation:

Sh+ n= y; (14)

where

S=




s1 s2 · · · sJ−1 sJ

s2 s3 · · · sJ sJ+1

s3 s4 · · · sJ+1 sJ+2

...
...

...
...

...

sM−J+1 sM−J+2 · · · sM−1 sM



;

h=[hJ−1; hJ−2; : : : ; h1; h0]
T; hi= h(iT );

n=[nJ ; nJ+1; nJ+2; : : : ; nM ]
T; ni= n(iT );

y=[yJ ; yJ+1; yJ+2; : : : ; yM ]
T; yi= x(iT ):

Since we know the S matrix, we can &nd the least-squares solution for the vector h which minimizes
the norm-square error ||Sh − y||2. In the blind identi&cation problem, we do not know the matrix S,
because we do not know the transmitted sequence. But if the transmitted symbols are from a &nite set
(of say size 2, i.e. si=± 1) then we do know that the symbols {si}Mi=1 can take one of 2M possibilities.
For each of these possibilities we will have a S matrix. For each of these possible S matrices we can
&nd the least-squares solution for h and also the corresponding error ||Sh− y||2. We can then choose as
our ‘best’ S, the one which minimizes the error and therefore our estimate of h will be the least-squares
h corresponding to the ‘best’ S. It seems very likely that since in most cases the ‘best’ S that we
obtain will be close to the actual transmitted S, our estimates of the channel impulse response h will be
almost the same as that obtained by sending a training sequence and so will provide us with an excellent
estimate of the channel impulse response. We performed a few simulation runs to check this fact and
they con&rmed this.
But the main problem with this exhaustive-search approach is that we will have to perform the

least-squares estimate 2M times and this makes the practical implementation of this algorithm impossible.
But if we could somehow get a reasonable estimate of the actual transmitted sequence, then we would
need to search for the ‘best’ S only in the vicinity of the estimated S. This will considerably reduce the
computational cost and if the estimate is very good (as it is when we use the Basic Subspace algorithm)
then the computational cost may even be much lesser than the cost for other standard blind identi&cation
algorithms which make use of the statistics of the received signal.

4.1. The LS-Subspace algorithm

Since the Basic Subspace algorithm provides a way of directly &nding the transmitted sequence, we
will use it to estimate S. But the problem is that H is ill-conditioned and so we will not be able to
use the Basic Subspace algorithm. But for many practical channels there is a way of circumventing this
problem as we now illustrate.
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Fig. 1. A three-ray multipath channel impulse response.

Why is it that in many channels the H matrix is ill-conditioned? Fig. 1 shows a typical channel
response. The tail of the response is very long and has a very small magnitude. The kth column of H
is hk ; 16 k6 J , where

hk =[hJ (J−1)+k−1 hJ (J−2)+k−1 · · · hJ+k−1 hk−1]
T

where hi= h(iT=J ). Near the tail ends the magnitude of the response is very small and so all the hi
which are obtained by sampling the impulse response near its tails are very close to zero and hence
to each other. As can be seen these hi’s occupy the ends of the vector hi. Two vectors become very
“similar” to each other if the number of almost-equal-elements becomes much more than the number
of di2erent elements and therefore a matrix composed of these vectors becomes ill-conditioned. It is
therefore because of these end-elements that the H matrix becomes ill-conditioned. If we can get rid of
the end-elements then we could use the Basic Subspace algorithm (for a small H matrix).
We now note that the tail of the impulse response contributes very little to the actual received signal

and so we can neglect its contribution for our purpose (though it will be used in &nding the transmitted
sequence once the full impulse response is estimated). If we neglect the tail, the total length of the
impulse becomes much less than it was before. Therefore the e6ective length of the impulse response is
reduced from the original JT to the smaller J ′T . We therefore need to sample the received signal at J ′

times the baud rate and perform the Basic Subspace algorithm under the assumption that the length of
the response is only J ′T . This will give us an estimate of the transmitted sequence ŝk and an estimate
of the shortened impulse response ĥs. We can then use the estimate of the transmitted sequence ŝk
to obtain a very good estimate of the full (unshortened) impulse response by solving the matrix least
squares estimation problem of minimizing ||SH − Y|| over all matrices H. We could either solve of H
by using the estimated S matrix directly or by adopting one of following search-approaches to improve
the estimate of the S matrix and using the ‘best’ S matrix thus obtained.
Below we present the EC-LS-Subspace algorithm, a modi&cation of the Basic Subspace algorithm,

which makes use of the ideas discussed above. This modi&cation allows us to use the Basic Subspace
algorithm even in cases when the H matrix is ill-conditioned, but when the impulse response can be
shortened and the H matrix for the shortened impulse response is well-conditioned.
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4.2. Error correcting LS-Subspace algorithm

Once we have a &rst estimate of the transmitted symbols using the shortened channel, we can then
improve the estimate of sk and hence obtain a very good estimate of the complete impulse response h.
We propose the following method for improving the estimate.
Using the shortened impulse response hs we can &nd the estimates ŝi of the vectors si. These vectors

are then thrown into the symbols set S by hard-limiting. But since the vectors si have overlapping
elements, we have the problem of choosing the right value in case the overlapping elements of ŝi do
not coincide.
To illustrate this point let us look at the following example in which S= {±1} and we have the two

‘transmitted vectors’

s0 = [1; 1;−1;−1; 1; 1;−1; 1]; s1 = [1;−1;−1; 1; 1;−1; 1;−1]
and also the two ‘received’ estimates

ŝ0 = [0:9; 0:8;−0:5;−0:4; 0:5; 0:2;−0:1; 0:4]; ŝ1 = [0:3;−0:4;−0:7; 0:8;−0:1;−0:3; 0:1;−0:8];
which hard-limit to

s̃0 = [1; 1;−1;−1; 1; 1;−1; 1]; s̃1 = [1;−1;−1; 1;−1;−1; 1;−1]:
As can be seen s̃1 has an error in the 5th bit, but the corresponding bit in s̃0 (i.e. the 6th bit) is correct.
So there is clearly a contradiction and this signals the fact that there is an error in one of the estimates.
If we use the arithmetic average of the two estimates s̃0 and s̃1 we will get zeros in places where the two
estimates do not match. If there are d places in which we get zeros, then the correct estimate (at least
in those d positions) is clearly one of the 2d possible sequences (with ±1 in the zero-positions). We
can therefore apply the LS-search algorithm to this smaller search area and since we would expect d to
be quite small, the LS-search algorithm is quite practical. For instance in our simulations d was in most
cases 1 or 2, and in rare cases went up to maximum of 6 and therefore in all cases the LS-search added
only a small computational cost. Therefore the &rst step in all the versions in the sequel is compensating
for these inherently self-detected errors. These represent something analogous to receiving an erasure—we
know that there is an error in that position and so it does not take too much e2ort to correct it. Let the
estimate after correcting for the erasures be the sequence {ŝk}. Now we can incorporate di2erent levels
of sophistication into the algorithm depending on the purpose for which it is needed. The following are
some of the levels of sophistication that we propose:
Level 1: We need not make any correction at all. Just use the arithmetic average of the J estimates

for {sk} to construct the matrix S and &nd the LS estimate for h. We do not search for the
‘best’ LS estimate. We just use the S matrix that we get. The advantage is that this has a
small computational cost. This will be useful in applications in which computational cost is a
much bigger criteria as compared to the accuracy. But at any rate even here the accuracy of
the estimate is much better than the conventional algorithms.

Level 2: We can just correct the erasures by the procedure already discussed. This will increase the
computational cost a little but increases the accuracy of the estimate. We will hence-forth refer
to this algorithm as the Erasure-correcting LS-Subspace algorithm or the ERC-LS-Subspace
algorithm.

Level 3: We can introduce one more level of correction by correcting for single errors. For this we search
for the LS-minimum over the space of all matrices S for which the corresponding sequence
{sk} di2ers from the estimate {ŝk} in at most one position. By this procedure we can &nd the
best LS estimate if it lies within a distance of a single bit from the erasure-corrected estimate.
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Level 4: We can generalize Level 3 by correcting for n-errors. For this we will have to expand the
search area to cover all the matrices S for which the corresponding sequence {sk} di2ers from
the estimate {ŝk} in at most n positions.

The problem with the last method is that the computational cost increases almost exponentially as n
increases, but the corresponding increase in accuracy is not so signi&cant since in most cases there are
very few errors. Even with one-error or two-error correcting procedure the estimate becomes very close
to the exhaustive search LS algorithm, which is asymptotically the ‘best’ possible estimate we can have.
We can avoid the increasing computational cost with increasing n by adopting the following method
which is by far the best method we have come across both in maintaining a low computational cost
as well as in achieving an estimate almost as good as the exhaustive search LS algorithm. By ‘&rst
estimate’ we shall mean the sequence obtained by correcting for the erasures i.e. the sequence obtained
at the end of Level 2.
The EC-LS-Subspace algorithm

1. First let the search area be all the sequences which di2er from the ‘&rst sequence’ in one position.
2. Find the ‘best’ sequence in this area.
3. If this sequence is the same as the ‘&rst sequence’ then stop and decide that this is the ‘best’ estimate.
4. If this sequence is not the same as the ‘&rst sequence’ then replace the ‘&rst sequence’ by this

sequence and start all over again from step 1.
Why will this method work? The reason is that in most cases if the actual ‘best’ sequence di2ers from the
estimated sequence in n positions then the ‘best’ sequence can be reached from the estimated sequence
in steps and the corresponding sequences in the intermediate steps will be ‘best’ sequences in their
respective local areas. It is very clear that this method reduces the computational complexity since at
each stage we only test the sequences which di2er in one position (if the number of symbols is m then
it means m LS-computations) and we will have in most cases, n stages if there are n positions which
have errors. This means we will totally have mn LS-computations in contrast to

n∑
i=0

(
m
i

)

LS-computations if we use a search area with an ability to correct n errors. We will henceforth call this
algorithm the Error-correcting-LS-Subspace algorithm or the EC-LS-Subspace algorithm.
An important point to note here is that we have used the intuitively clear fact that in most cases

if the starting point is quite close to the global minimum, then the global minimum of a set can be
reached by &nding the successive local minimums in smaller subsets (where the successive subsets are
chosen properly depending on the previous local minimum). This point is very well illustrated by the
Fig. 2 where each search area is a circle centered at the local minimum of the previous search area.
The stopping condition of the algorithm is reached when the local minimum lies in the interior of its
subset—this condition is analogous to the condition in elementary calculus, that, when a function attains
its minimum or maximum, the derivative of the function is zero. The great reduction in the computational
cost results because of a two-fold e2ects:
• In the n-error correcting algorithm the original area is of size

n∑
i=0

(
m
i

)

as compared to a maximum search area for the EC-LS-Subspace algorithm (i.e. mn).
• The n-error correcting algorithm is designed for the worst case (i.e. n errors) and even if there
are fewer errors the whole area will have to be searched whereas the EC-LS-Subspace algorithm is
designed to be iterative and so when there are fewer errors (as is most often the case) it searches
only a correspondingly smaller area.
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Fig. 2. Graphical demonstration of the fact that the global (interior) minimum can often be reached through successive local
(boundary) minimums.

But since this is an iterative method it may be argued that it will have the associated problems of
convergence and will not be able to &nd the global minimum if one of the local minimums lies in the
interior of its subset. It may either need too many iterations or may not converge if the global minimum
cannot be reached by moving through successive local minimums. But our simulation studies have shown
that in almost all the cases (in fact in all the cases in our simulations) this method converges without any
problems. We can take care of even the rare cases when there are convergence problems, by specifying
an upper limit to the number of iterations, and, if the algorithm has not ended before the upper limit is
reached, we can either discard the result obtained and look for a fresh set of samples, or, simply use the
original estimate without corrections for &nding h. But these are merely technical issues, since, as our
simulation results in the next section show, this algorithm is very good on all counts—low computational
cost, high accuracy of estimate, and small observation interval.

5. Simulation results

We did extensive simulations using the EC-LS-Subspace algorithm, the algorithm by Tong et al.
[1], the algorithm by Moulines et al. [7], the algorithm by Xu et al. [16] and the algorithm by Liu
and Xu [17], and made a comparative study. Here we present one simulation example which uses
the same channel as used in the simulation example of [1]. The impulse response is shown in Fig. 1
and in Table 1. The source symbols were drawn from a BPSK signal constellation with a uniform
distribution.
A simulation of 100 independent trials was conducted for each algorithm under the same simulation

scenario. Figs. 3a and b show 100 estimates of the channel obtained by using the EC-LS-Subspace
algorithm with 30 and 100 symbols, respectively. In both cases the SNR is 30 dB. Similarly Figs. 4a
and b, 5a and b, 6a and b and 7a and b show 100 estimates of the channel obtained by using the
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Table 1
Channel impulse response

n 1 2 3 4 5 6

h(n) −0:02788 −0:01556 0.009773 0.0343 0.04142 0.0216
n 7 8 9 10 11 12
h(n) −0:01959 −0:06035 −0:07025 −0:0241 0.08427 0.2351
n 13 14 15 16 17 18
h(n) 0.3874 0.4931 0.5167 0.4494 0.3132 0.152
n 19 20 21 22 23 24
h(n) 0.01383 −0:06754 −0:08374 −0:05137 −0:001258 0.03679

Fig. 3. 100 estimates, EC-LS-Subspace algorithm, 30 and 100 symbols, SNR= 30 dB.

Fig. 4. 100 estimates, algorithm by Tong et al. [1], 30 and 100 symbols, SNR=30 dB.

algorithms in [1,7,16,17], respectively (the SNR is 30 dB and 30 symbols are used to obtain plots (a)
and 100 symbols are used for obtaining plots (b)).
Figs. 8a–d show the 100 estimates for the EC-LS-Subspace algorithm for SNR=20; 15; 10 and 5 dB,

respectively. Simulations showed that even the few aberrations that occur in Figs. 8b and d vanish if
the number of symbols used in the estimation is increased slightly. These aberrations occur because the
EC-LS-Subspace algorithm is not able to converge to the correct sequence as the starting sequence was
very di2erent from the correct sequence. The starting sequence is very di2erent from the correct sequence
because the � matrix does not have a one-dimensional null space. We proved in Section 3, that the
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Fig. 5. 100 estimates, algorithm by Moulines et al. [7], 30 and 100 symbols, SNR= 30 dB.

Fig. 6. 100 estimates, algorithm by Xu et al. [16], 30 and 100 symbols, SNR= 30 dB.

Fig. 7. 100 estimates, algorithm by Liu and Xu [17], 30 and 100 symbols, SNR=30 dB.

probability that the � matrix does not have a one-dimensional null space decreases exponentially with
an increase in the number of symbols. Therefore if the number of symbols increases even a little, the
probability that the starting sequence is very di2erent from the correct one decreases rapidly and hence
the aberrations vanish.
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Fig. 8. 100 estimates of the channel for (a) SNR= 20 dB (b) SNR= 15 dB (c) SNR= 10 dB and (d) SNR= 5 dB for the
EC-LS-Subspace algorithm. In all cases the number of symbols used for each estimate is 30.

To obtain a performance measure of the channel estimation, the normalized root-mean-square error
(NRMSE) of the estimator is de&ned by

NRMSE=
1

||h||

√√√√ 1
M

M∑
i=1

||ĥ(i) − h||2

where M is the number for independent trials (100 in our case), and ĥ(i) is the estimate of the channel
from the ith trial. Fig. 9 shows the NRMSE’s of the di2erent algorithms versus SNR in a series of 100
independent runs using 35 symbols for each estimate. It can be seen that the EC-LS-Subspace algorithm
converges to a much smaller NRMSE than the algorithm in [16,17] or [1]. The asymptotic performance
of the algorithm by Liu and Xu [17], seems to be quite close to that of the EC-LS-Subspace algorithm,
although at lower SNR, the EC-LS-Subspace algorithm performs much better than the algorithm by Liu
and Xu [17].
We also compared the bit error rate (BER) against the SNR for each of the algorithms under

consideration. Fig. 10 shows the average bit error rate vs. SNR curves for the EC-LS-Subspace algorithm
and for the algorithms in [1,7,16,17]. These curves were obtained by &rst using 30 symbols for chan-
nel identi&cation and then evaluating the bit error rate using the identi&ed channel. The average bit
error rate was obtained by averaging the BERs thus obtained over several channel
estimates.
Fig. 11 describes the computational complexity of the di2erent algorithms under consideration. The

&gure shows the plot of the number of Xoating point operations (FLOPS) used in the MATLAB program
as a function of the number of symbols used for the estimate for each of the algorithms. These plots
give us a general idea of the complexity of each algorithm. The algorithms were not optimized for the
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Fig. 9. NRMSE versus SNR, 100 independent runs were used for the estimates and each estimate of the channel used 35
symbols.

Fig. 10. Bit error rate versus SNR. 30 symbols were used to estimate the channels.

number of operations and so the estimates shown are slightly more than the actual complexity. A glance
at the plots shows that at small observation intervals (which will be the running condition in practice)
the complexity of the EC-LS-Subspace algorithm is even less than Tong’s algorithm.
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Fig. 11. Number of FLOPS per estimate versus number of symbols used for each estimate. SNR= 30 dB.

6. Conclusions

In this paper, we have proposed a new method for blind identi&cation using subspace and least-square
techniques. By exploiting the inherent structure in the received signal and using the ability to correct
errors we are able to obtain a fast identi&cation procedure which uses very few symbols. The proposed
method leads to a very accurate estimate of the impulse response with a small observation interval. Also,
the algorithm is very robust, has a low complexity and performs quite well even under low SNR. So it
can be used in practical applications which use rapidly varying channels with very low SNR’s.
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