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Abstract

In this paper we consider the problem of estimation of the frequencies and damping factors of exponential signals in
the presence of noise. We propose a non-iterative method based on using forward–backward linear prediction and the
notion of extended order modeling. In addition to providing estimators of the unknown parameters in the model, the
proposed method can be used to specify initial values in any standard minimization algorithm to obtain the least-squares
estimators. For the undamped exponential model, it is well known that any estimator is inconsistent under the usual
de5nition of consistency. We rede5ne the model so that the sampling interval is 5nite, and prove the consistency
and asymptotic normality of the least-squares estimators under this new assumption. It is observed that the dispersion
matrix of the least-squares estimators attains the Cramer–Rao bound. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the model where the complex response
at time t, yt is composed of a sum of M super-
imposed damped exponential signals and additive
noise, i.e.

yt =
M∑
k=1

�k e(−�k+j!k )t + et ; for t=1; : : : ; n:

(1)

This model is referred to as the multiple sinusoid
model. Here �k’s are the damping factors of the sig-
nals assumed to be positive, �k’s are the amplitudes
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of the signals which are unknown complex val-
ued parameters assumed to be diGerent from zero,
and j=

√−1. The frequencies of the signals !k’s
are distinct and assumed to belong in the interval
[0; 2�]. The error random variables, et’s are inde-
pendent and identically distributed (i.i.d.) random
variables with mean zero and 5nite variance. We
assume that the number of signals, M , is known.
Given a sample of size n, the problem is to es-

timate the unknown parameters �’s, !’s, �’s and
in certain situations, the variance of the error term.
Note that for model (1) the parameters �k’s appear
as linear parameters while the !k’s and �k’s are
non-linear parameters. It is evident that the estima-
tion of the non-linear parameters is a much more
challenging problem. If we can obtain eKcient
estimates of the non-linear parameters, the es-
timation of the linear parameters reduces to the

0165-1684/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
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standard least-squares problem. This ability to
separate the linear and non-linear parameters was
introduced by Richards [14] and termed separable
regression. In this paper, we will address the prob-
lem of eKcient estimation of the non-linear param-
eters: the frequencies and damping factors of the
signals.
The multiple sinusoid model has been widely dis-

cussed and applied in the literature of Statistical
Signal Processing. For example, in electromagnetic
pulse (EMP) situations [15,16], the EMP pickup
can be characterized by a sum of complex exponen-
tials. The parameters provide a means of coding the
various pulse wave forms and the signal approxi-
mation thus obtained can be readily employed to
analyze responses in various subsystems under the
EMP environment. In system identi5cation prob-
lems, the characterization of the impulse responses
of a linear system by a sum of complex exponen-
tials and then identifying or approximating the com-
plex amplitudes and natural frequencies with high
degree of accuracy is of special importance.
There are several references in the literature deal-

ing with the estimation of the parameters for this
model. The review articles of Rao [13], Prasad et
al. [12] and also the paper by Stoica [17] provide
an extensive list of references. The estimation prob-
lem is well known to be numerically diKcult [2,11],
and it has been observed [7] that general purpose
algorithms such as the Gauss–Newton, Newton–
Raphson or their variants take a long time to con-
verge especially with poor initial values. There has
been considerable research [8] in the past 20 years
to provide iterative algorithms for obtaining the
maximum likelihood estimators. However, all these
methods are computationally complex and suGer
from dependence on the initial values, and conver-
gence to possibly undesirable local extrema.
In this paper, we propose a non-iterative algo-

rithm for estimation of the frequencies. It is ob-
served that the proposed estimators are not exactly
the least-squares estimators, but the mean squared
errors (MSEs) of these estimators are quite close to
those of the least-squares estimators (LSEs). The
basic idea of the proposed method can be traced to
Prony. We modify Prony’s method using the no-
tion of forward–backward linear prediction and us-
ing the singular value decomposition.

Traditionally, in estimating the parameters of the
damped exponential model, either the original data
(forward) or the conjugate (backward) of the data
is used. It has been observed that for the undamped
exponential model, if the original data and their
conjugates are combined, they produce better esti-
mates in terms of lower mean squared errors. Tufts
and Kumaresan observed this phenomenon in a
series of papers, (see, for example, [18] and ref-
erences therein). Kannan [6] observed that the
coeKcients in Prony’s method, when the damping
factors are absent, satisfy a conjugate symmetric
property. This symmetry property was exploited to
obtain more eKcient estimates in the undamped
exponential model in [6,7]. In this paper we observe
that even in the case of the damped exponential
model, the original and conjugate data can be uti-
lized to establish the conjugate symmetry property.
We also derive the asymptotic properties of the

least-squares estimators and the Cramer–Rao bound
of the unknown parameters. It can be established
from Wu [19] that any estimators of the unknown
parameters of model (1) are inconsistent (see [10])
in the usual sense. We rede5ne the model using
the technique of Kahn et al. [5] and Kundu [10],
and obtain the consistency and asymptotic distribu-
tion of the least-squares estimators of the rede5ned
model. It is observed that the asymptotic variance
of the least-squares estimators coincides with the
Cramer–Rao bound.
The rest of the paper is organized as follows. In

Section 2, we brieMy describe Prony’s algorithm and
discuss how the original and conjugate data can be
used in estimating the parameters of the damped ex-
ponential model. We apply the idea of extended or-
der modeling as developed by Tufts and Kumaresan
[18] to improve the performance of the modi5ed es-
timator. Asymptotic properties of the least-squares
estimators and the Cramer–Rao bound are discussed
in Section 4. The results of a simulation study are
provided in Section 5, and 5nal conclusions appear
in Section 6.

2. Prony’s algorithm and its modi�cations

Consider the model given by (1). If there is no
noise in the data, i.e., et =0 for t=1; : : : ; n, then
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it can be easily observed that there exist (M + 1)
complex valued constants g1; : : : ; gM+1, such that

g1y1 + · · ·+ gM+1yM+1 =0

...

g1yn−M + · · ·+ gM+1yn=0:

(2)

The constants g1; : : : ; gM+1 are the coeKcients of the
following polynomial equation:

g1 + g2z + · · ·+ gM+1zM =0; (3)

whose roots are e−�1+j!1 ; : : : ; e−�M+j!M . Here
g1; : : : ; gM+1 are unique up to a constant multiple.
From (2), it is clear that the conjugate data also
satis5es a system of linear equations,

Ng1 Ny 1 + · · ·+ NgM+1 NyM+1 =0

...

Ng1 Nyn−M + · · ·+ NgM+1 Nyn=0:

(4)

It can also be seen that the polynomial equation

NgM+1 + NgMz + · · ·+ Ng1z
M =0 (5)

has roots e�1−j!1 ; : : : ; e�M−j!M .
Tufts and Kumaresan [18] used only the conju-

gate of the data to obtain estimates of the damping
factors and the frequencies. We can combine the
systems of equations given by (2) and (4) into the
forward–backward prediction equations given by



y1 : : : yM+1 Nyn : : : Nyn−M

...
...

yn−M : : : yn NyM+1 : : : Ny 1







g1
...

gM+1

NgM+1

...

Ng1



= 0;

(6)

which may be written in a compact form as

[
Y : J NYJ

] [ g

J Ng

]
= 0: (7)

Here Y is an N −M ×M + 1 data matrix, ‘ N ’ de-
notes the conjugate of each element of a vector or

a matrix, and J is the M + 1 × M + 1 exchange
matrix de5ned as

0 : : : 1

...

1 : : : 0


 :

It can be easily seen that the rank of (Y : J NYJ) is
2M . Consider the following matrix:
 YH

J NY
H
J


 [Y J NYJ

]
=BHB (say); (8)

which is clearly also of rank 2M . Here H denotes
the complex conjugate transpose of a matrix. The
null space of this matrix can be generated by the
following vectors;[
g

0

]
;

[
0

J Ng

]
: (9)

This representation of the noise space of the
matrix in terms of these two vectors is exploited
to yield estimates of the parameters of the damped
exponential model even in the presence of noise.
From the observed data, we construct the ma-
trix BHB and obtain the eigenvector u, corre-
sponding to its smallest eigen value. Since BHB
is a centro-symmetric matrix, we know that its
eigenvectors must be either conjugate symmetric
(u=J Nu) or anti-conjugate symmetric (u= − J Nu),
(see [1]). Because of the centro-symmetric struc-
ture of BHB and the representation of its null space,
it is always possible to choose the vector u, such
that ĝ1¿ 0, and u is of the form:

u=[ĝ1; : : : ; ĝM+1; N̂gM+1; : : : ; N̂g1]
T: (10)

Using u, we solve the polynomial equation

N̂gM+1 + N̂gMz + · · ·+ N̂g1z
M =0 (11)

to obtain roots of the form

e�̂1−j!̂1 ; : : : ; e�̂M−j!̂M ;

where �̂1; : : : ; �̂M are estimators of the damping
factors and !̂1; : : : ; !̂M are estimators of the
frequencies.
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3. Extended order modeling

In this section, we use the idea of extended order
modeling proposed by Tufts and Kumaresan [18]
to obtain more eKcient estimators of the parame-
ters. Again, assuming that there is no noise in the
data, we can show that there exists b1; : : : ; bL, such
that



y1 : : : yL+1 Nyn : : : Nyn−L

...
...

yn−L : : : yn NyL+1 : : : Ny 1







1

b1
...

bL
NbL
...

Nb1

1




= 0: (12)

It can be easily shown [18] that the polynomial
equation

zL + Nb1zL−1 + · · ·+ NbL=0 (13)

has roots given by

e�1−j!1 ; : : : ; e�M−j!M ;

whenever M6L6N −M . These zeros are called
the signal zeros and have magnitudes all greater
than 1 since �1¿ 0; : : : ; �M ¿ 0. If L¿M , clearly
the equation has L − M additional zeros, usually
called extraneous zeros. For L¿M , (12) has more
than one solution. We can use the unique minimum
norm solution to (12) i.e., the solution that mini-
mizes ||b||2, where b=( Nb1; : : : ; NbL). For the
minimum norm solution, Kumaresan [9] has
shown that the L − M extraneous zeros have
magnitudes all less than one, and thus pro-
vides a way of separating the signal and ex-
traneous zeros. This idea can be used even
when there is noise in the data as follows:
Note that (12) can be written in the following

form:




y2 : : : yL+1 Nyn : : : Nyn−L+1

...
...

yn−L+1 : : : yn NyL+1 : : : Ny 2







b1
...

bL
NbL
...

Nb1




=



y1 + Nyn−L

...

yn−L + Ny 1


 (14)

or

Ab=−Y (say):

We need to solve (14) to obtain an estimate of b.
Using the ideas of Tufts and Kumaresan [18], we
propose an estimate of b using the singular value
decomposition as follows:

b̂=
2M∑
k=1

�−1
k [uHk Y]vk ; (15)

where �1¿�2¿ · · ·¿�2L are the singular values
of A, uk and vk are the eigenvectors of AHA and
AAH, respectively. Note that it is always possible
to choose uk and vk such that they are conjugate
symmetric. Since Y is also conjugate symmetric,
this guarantees the conjugate symmetric nature of
b̂. Therefore it is possible to write

b̂
T
= [b̂1 : : : ; b̂L; N̂bL; : : : ; N̂b1]:

We use N̂b1; : : : ; N̂bL in Eq. (13) to obtain estimates of
(�1; !1); : : : ; (�M ;!M ).

4. Least-squares estimators and Cramer–Rao
bound

In this section we rede5ne the model (1) in the
manner of Kahn et al. [5] or Kundu [10] to allow
us to establish the standard consistency property of
the least-squares estimators for large samples. The
new model will coincide with model (1) for 5nite
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samples. The reason for this rede5nition is because
any estimator of the parameters of this model are
inconsistent in the usual sense, i.e. as n tends to
in5nity.
We rede5ne the model (1) as follows:

yni=
M∑
k=1

�ke(−�k+j!k )tni + eni; (16)

where �k’s, �k’s and !k’s have the same de5nitions
as before. Here tni= a+(b−a)=(n−1)(i−1) where,
tn1 = a, the initial sampling point and tnn= b, the
extreme sampling point. The {eni} for i=1; : : : ; n
and n=1; 2 : : : is a double array of random vari-
ables, with {eni}; i=1; : : : ; n assumed to be i.i.d.
with mean zero. It is important to observe that the
models (1) and (16) are equivalent for any 5nite n,
although asymptotically they are diGerent.
Suppose �Rk and �Ik are the real and imag-

inary parts of �k and de5ne �4(k−1)+1 = �Rk ,
�4(k−1)+2 = �Ik , �4(k−1)+3 = �k and �4k =!k . Let
X=(�1; : : : ; �4M ) be the vector of unknown param-
eters and

�(�; t)=
M∑
k=1

�ke(−�k+j!k )t (17)

represent the constant term in the model. In
order to establish the large sample properties of the
least-squares estimators, we need to make the
following assumption.

Assumption 1. {eni} for i=1; : : : ; n and n=1; 2; : : :
is a double array of complex valued random vari-
ables with mean zero and 5nite variance �2=2 for
both the real part and the imaginary part which are
assumed to be independent. For each n, en1; : : : ; enn
are i.i.d. random variables. We assume X∈* where
the parameter space * is a compact subset of R4M ,
and the true parameter value X0 is an interior point
of *.

Note that the function

R(X)=
∫ b

a
|�(X; t)− �(X0 ; t)|2 dt

has a unique minimum at X= X0 if at least two of
the �k’s or two of the !k’s are diGerent.

Theorem 1. Under Assumption 1; the LSEs; X̂ of
X in the model (16) are strongly consistent and
√
n(X̂− X0 ) → N (0; �2(2A)−1):

Here ‘ → ’ means converges in distribution and
A=((aij)) with

aij=
1

b− a
∫ b

a
�′i(X; t)�′j(X; t) dt and

�′i(X; t)=
@
@�i
�(X; t):

Proof. Consider

R(X) = 1
n

n∑
i=1

|yni − �(X; tni)|2

=
1
n

n∑
i=1

|�(X0 ; tni)− �(X; tni)|2 + 1
n

n∑
i=1

|eni|2

+
2
n
Re

(
n∑
i=1

[eni(�(X; tni)− �(X0 ; tni)]
)
:

It can be shown that

1
n

n∑
i=1

|�(X0 ; tni)− �(X; tni)|2

→
∫ b

a
|�(X0 ; t)− �(X; t)|2 dt

uniformly. The second term on the right-hand side
of R(X) converges to �2 almost surely and the third
term converges to zero almost surely. Therefore, us-
ing the same kind of arguments as in [4] or [10] the
consistency of the least-squares estimator follows.
To prove the asymptotic normality of �̂, let us

write

Q(X)= nR(X)=
n∑
i=1

|yni − �(X; tni)|2 (18)

and

Q′(X) =
(
@
@�1
Q(X); : : : ; @

@�4M
Q(X)

)

= (Q′
1(X); : : : ; Q′

4M (X)): (19)
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Then,
√
n(Q′(X̂)−Q′(X0 ))=

√
n(X̂− X0 )Q′′( NX); (20)

where Q′′( NX) is a 4M × 4M matrix, such that

Q′′(X)= ((Q′′
ij(X)))=

((
@2

@�i@�j
Q(X)

))
(21)

and NX is a point between X̂ and X0 . Since Q′(X̂)=0,
(20) can be written as

−√
n(Q′(X0 ))=

√
n(X̂− X0 )Q′′( NX)

or
√
n(X̂− X0 ) =−√

n(Q′(X0 ))[Q′′( NX)]−1

=− 1√
n
Q′(X0 )

[
1
n
Q′′( NX)

]−1

: (22)

Observe that

lim
n→∞

1
n
Q′′( NX)= lim

n→∞
1
n
Q′′(X0) → 2A (23)

and
1√
n
Q′(X0 ) → N (0; 4�2A): (24)

From (23) and (24), the result follows immediately.
Note that �2(2A)−1 is the Cramer–Rao lower bound
and the Cramer–Rao lower bound obtained by
Kumaresan [9] is the discrete version of it.

5. Numerical experiments

In this section we present some simulation results
to see how the proposed methods behave for diGer-
ent signal-to-noise ratios and for diGerent choices
of L. We consider the following model:

yt =2:0e(−:02+i2:0)t + 2:0e(−:01+i1:5)t + et ;

t=1; : : : ; 25: (25)

Here et’s are i.i.d. complex valued normal ran-
dom variables with mean zero and variance 1

2�
2

for both the real and imaginary parts. The real
and imaginary parts are taken to be indepen-
dent. We consider diGerent signal to noise ratios
(SNR=10 log10 1=�

2) varying from 10 to 25 dB.
For each SNR, we generate random samples of

size 25 from model (25) and compute the Prony es-
timators (PEs) as discussed in Section 2. We also
compute the extended ordered estimators (EOEs)
as discussed in Section 3 for diGerent choices of
L, viz. L=6; 8; 10; 12; 14; 16; 18; 20; 21. Finally, we
compute the least-squares estimators using the pro-
posed estimators as initial guesses, the backward
linear prediction estimators of Tufts and Kumare-
san [18] and also the matrix pencil method of Hua
and Sarkar [3]. For the backward linear prediction
estimators, we choose L=3 ∗ n=4 ≈ 18 and for the
matrix pencil method we take L=2 ∗ n=3 ≈ 17 as
they provide the best results in the respective cases
(see [3,18]). The number of simulations is 1000,
and we compute the average value of all the esti-
mates and the average mean squared errors (MSEs).
Since the results are quite similar for both the �i’s
and !i’s, we report the results only for �1 and !1.
The results for the PEs and the EOEs for diGerent
values of L, and for diGerent SNR are reported in
Table 1 and the results for the LSEs, the backward
linear prediction estimators (BLPEs) and the ma-
trix pencil methods (MPEs) are reported in Table
2. For comparison purposes, in Table 2 we report
the Cramer–Rao lower bound (CRLB) and also the
results of the EOEs for the best choice of L. The
5rst 5gure in each box represents the average es-
timate of �1 and the corresponding MSE is repre-
sented within bracket. Similarly, the second 5gure
represents the average estimate of !1 and the cor-
responding MSE is represented within bracket.
From Tables 1 and 2, for all the methods the

MSEs decrease as the SNR increases (�2 de-
creases). This illustrates the consistency (an alter-
native de5nition of consistency proposed by Kahn
et al. [5]) of all the estimators as �2 goes to zero.
From Table 1, we observe that the PEs de5ned
in Section 2 do not work very well at least for
low signal-to-noise ratio. Similarly as L increases,
the performances of the EOEs become better in
terms of the biases and the mean squared errors.
The MSEs and biases are lowest for L=20 and
then they start increasing. Therefore, it seems for
L=4n=5, the EOEs provide the best results. Now
comparing the results in Table 2, it is clear that in
most cases, the proposed EOEs for L=20 behave
better than the best possible backward linear pre-
diction estimators or the best possible matrix pencil
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Table 1
The PEs and the EOEs of �1 and !1 for diGerent SNRs are reporteda

SNR=10 SNR=15 SNR=20 SNR=25

PE 0.0233(9.999E-4) 0.0282(9.815E-4) 0.0254(9.237E-4) 0.0256(9.127E-4)
2.0570(1.080E-3) 2.0572(8.412E-4) 2.0164(7.833E-4) 2.0060(1.193E-4)

L=6 0.0251(9.981E-4) 0.0257(9.797E-4) 0.0278(9.156E-4) 0.0160(9.052E-4)
1.9561(8.901E-4) 1.9620(7.397E-4) 1.9623(6.230E-4) 1.9552(7.093E-5)

L=8 0.0249(9.554E-4) 1.9716(9.333E-4) 0.0266(8.999E-4) 0.0117(3.885E-5)
1.9516(6.333E-4) 2.0331(5.390E-4) 2.0255(4.705E-4) 1.9579(2.963E-5)

L=10 0.0254(8.385E-4) 0.0296(7.330E-4) 0.0284(5.561E-4) 0.0259(8.374E-5)
2.0718(2.439E-4) 2.0639(2.413E-4) 2.0546(1.415E-4) 2.0422(3.249E-5)

L=12 0.0239(5.609E-4) 0.0222(5.498E-4) 0.0285(4.414E-4) 0.0218(7.928E-5)
1.9387(2.231E-4) 1.9204(2.200E-4) 2.0441(9.809E-5) 1.9914(2.505E-5)

L=14 0.0189(2.881E-4) 0.0192(2.136E-4) 0.0182(2.036E-4) 0.0186(2.012E-5)
1.9584(2.101E-4) 1.8914(2.000E-4) 1.8806(7.567E-5) 1.8766(9.204E-6)

L=16 0.0076(2.023E-4) 0.0087(1.869E-4) 0.0108(1.794E-4) 0.0155(1.058E-5)
2.0792(1.063E-4) 2.1701(1.001E-4) 2.1284(9.592E-5) 2.0761(8.117E-6)

L=18 0.0201(1.465E-4) 0.0163(2.172E-4) 0.0218(1.567E-4) 0.0205(8.136E-6)
1.9729(9.280E-5) 1.9305(9.075E-5) 1.9774(8.273E-5) 2.1775(7.334E-6)

L=20 0.0197(8.711E-5) 0.0194(6.345E-5) 0.0179(3.636E-5) 0.0183(1.667E-6)
1.9785(5.690E-5) 1.9766(6.271E-5) 1.9739(7.876E-5) 1.9726(3.895E-6)

L=21 0.0206(1.534E-4) 0.0169(1.985E-4) 0.0192(1.898E-4) 0.0201(7.098E-6)
1.6142(9.119E-5) 1.9435(8.986E-5) 1.9609(9.174E-5) 1.6314(6.167E-6)

aThe sample size is 25. In each box, the 5gure in the 5rst line represents the average estimate of �1 and the 5gure within the
bracket represents the corresponding MSE. Similarly, the results of !1 are presented in the second line.

Table 2
The BLPEs, the EOEs, the LSEs, the MPEs and the Cramer–Rao lower bounds of �1 and !1 for diGerent SNRs are presenteda

SNR=10 SNR=15 SNR=20 SNR=25

CRLB 0.0200(9.096E-6) 0.0200(2.877E-6) 0.0200(9.099E-7) 0.0200(2.877E-7)
2.0000(6.988E-6) 2.0000(2.209E-6) 2.0000(6.987E-7) 2.0000(2.209E-7)

LSE 0.0196(9.565E-6) 0.0199(2.928E-6) 0.0199(9.971E-7) 0.0200(2.889E-7)
1.9895(5.036E-6) 2.0000(2.345E-6) 2.0000(7.414E-7) 2.0000(2.344E-7)

MPE 0.0193(2.216E-5) 0.0191(6.254E-5) 0.0186(1.740E-5) 0.0177(4.569E-6)
1.9749(3.434E-3) 1.9879(1.119E-3) 2.0004(1.559E-5) 2.0006(6.015E-6)

BLPE 0.0182(1.112E-4) 0.0187(6.283E-5) 0.0195(1.756E-5) 0.0198(5.524E-6)
1.9711(1.574E-2) 1.9984(1.340E-3) 2.0004(1.952E-5) 2.0001(6.142E-6)

EOE 0.0197(8.711E-5) 0.0194(6.345E-5) 0.0179(3.636E-5) 0.0183(1.667E-6)
(L=20) 1.9785(5.690E-5) 1.9766(6.271E-5) 1.9739(7.876E-5) 1.9726(3.895E-6)

aThe sample size is 25. In each box, the 5gure in the 5rst line represents the average estimate of �1 and the 5gure within the
bracket represents the corresponding MSE. Similarly, the results of !1 are presented in the second line.



2350 N. Kannan, D. Kundu / Signal Processing 81 (2001) 2343–2351

estimators. Although the gain is not that signi5cant
at high SNR, for low SNR the EOEs behave much
better than the backward linear prediction estima-
tors or the matrix pencil estimators. Matrix pencil
estimators behave almost similarly as the back-
word linear prediction estimators in most of the
cases. Sometimes it behaves slightly better than the
backward linear prediction estimators. Moreover,
the EOEs can be used quite eGectively as initial
guesses for computing the least-squares estimators
and the MSEs of the least-squares estimators as
expected are quite close to the Cramer–Rao lower
bound as obtained in Section 4.
In terms of computational complexities of the dif-

ferent methods, the matrix pencil method involves
the generalized eigenvalues computations of two
matrices and the other three estimators, namely the
PEs, backward linear prediction estimators and the
EOEs, involve computing the singular value de-
composition of a complex matrix. For a given n
and M , the matrix pencil method involves comput-
ing the generalized eigenvalues of two n=3 × 2n=3
matrices, the Prony estimators involve computing
the singular value decomposition of a 2M × 2M
matrix, whereas backward linear prediction estima-
tors require the singular value decomposition of a
3n=4× 3n=4 matrix and the EOEs involve the com-
putation of a 4n=5× 4n=5 singular value decompo-
sition of a matrix. Therefore for large n, the pro-
posed estimators are computationally more inten-
sive than the backward linear prediction estimators
or the matrix pencil estimators, but for small n the
diGerence is not that great.

6. Conclusions

In this paper we consider the estimation of the
parameters of a damped exponential model in pres-
ence of additive errors. We propose a non-iterative
method to estimate the non-linear parameters using
both the original data and their conjugates. To the
author’s knowledge, this use of forward and back-
ward data has never been attempted before for the
damped exponential model. We observe that the
proposed estimators work quite well and perform
better than the backward linear prediction estima-
tors or the matrix pencil estimators in most cases.

The proposed estimators can be used as eGective
initial guesses for the least-squares estimators. Nu-
merically, it is observed that the performances of
the proposed estimators are best for L=4n=5, al-
though at present it is not possible to aGord any
theoretical justi5cations for that choice. More work
is needed in this direction to determine the optimal
order of the model.
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