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Abstract

The Laplacian-of-Gaussian (LoG) (lter is an optimal edge detector, but it is computationally ine3cient. In this paper, we
propose the bilevel Laplacian-of-Gaussian (BLoG) (lter to approximate the LoG (lter. This approximation is formulated as
an optimization problem and solved by the gradient descent algorithm. Only two multiplications per pixel are required in
convolving with the BLoG (lter. The computation is fast and it produces satisfactory results. The applications of 1D BLoG
(lter to corner detection and 2D BLoG (lter to edge detection are also presented. ? 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Edge detection is an important topic in the research
area of image analysis. Many optimal (lters for edge
detection based on di<erent cost functions have been
proposed [2,8,11,12]. Dickey and Shanmugam [2]
derived an optimal (lter by maximizing the portion
of output image energy in the vicinity of the edge
location for a given resolution requirement. Marr and
Hildreth [8] found that the Laplacian-of-Gaussian
(LoG) (lter minimizes the product of spatial localiza-
tion and bandwidth. Shen and Castan [11] proposed
an optimal (lter based on one-step model (a step
edge and the white noise). This (lter can be realized
by (rst-order recursive algorithm and executed e3-
ciently. Siuzdak [12] derived a novel 2D (lter based
on three conditions: (1) circular symmetry, (2) zero
mask correlation with a constant background, and (3)

∗ Corresponding author. Fax: +886-2-23671909.
E-mail address: pei@cc.ee.ntu.edu.tw (S.-C. Pei).

maximizing the ratio of the mask correlation with an
edge to the noise output variance.
The LoG (lter proposed by Marr and Hildreth [8]

is a famous edge detector. The input image was con-
volved with LoG mask. Then, zero-crossings of the
(ltered image were detected as the edges. It has two
additional advantages. Firstly, the LoG (lter is an
orientation-independent operator. Secondly, the de-
tected edges form closed curves. The LoG (lter has
shortcomings. Ulupinar and Medioni [14] proposed
a simple test to eliminate false zero-crossings and a
technique to correct the position of zero-crossings.
Gunn [5] analyzed the sampling and truncation ef-
fects of the LoG (lter and proposed a discrete formu-
lation for implementation. In addition, the LoG (lter
is computationally ine3cient. Many algorithms have
been proposed to improve the speed of convolution
[1,4,6,7,10,13,15].
Previous implementations [4,6,10] have relied on

approximating the LoG operator by a di<erence of
two Gaussian functions (DoG) having di<erent space

0165-1684/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
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constants. The DoG (lter has the advantage of sep-
arability, but it is only an approximation to the LoG
(lter. Instead of approximation, Wiejak [15] showed
that the LoG (lter may be decomposed into sum of
two separable (lters:

LoG(x; y) =−G′′(x)G(y)− G(x)G′′(y); (1)

where G and G′′ are the 1D Gaussian and the second
derivative of 1D Gaussian, respectively. The number
of multiplications per pixel is twice that of the DoG
approximation. However, this (lter exactly equals to
the LoG (lter.
Huertas and Medioni [7] reduced the image res-

olution by a factor K . Then, the reduced image
was convolved with a smaller LoG (lter with a
space constant of �=K . The result is very similar to
the result of convolving the full resolution image
with the LoG (lter with space constant �. How-
ever, this method introduces the aliasing e<ect. To
improve this method, Chen et al. [1] decomposed
the LoG (lter into a Gaussian and a smaller LoG
(lter. The Gaussian (lter was applied before dec-
imation to control aliasing. Sotak and Boyer [13]
further improved this method by implementing
a separated LoG (lter, establishing a criterion
for selecting reconstruction constant, and estab-
lishing limits on the LoG and Gaussian mask
sizes.
In this paper, the bilevel Laplacian-of-Gaussian

(BLoG) (lter is proposed to approximate the LoG
(lter. Only two levels are allowed in the (lter
impulse response. This approximation is formu-
lated as an optimization problem. The parameters
of the BLoG (lter are adapted to minimize er-
ror norm of the approximation. The BLoG (lter
is just an approximation of the LoG (lter, but it
can be computed very e3ciently, because only two
multiplications are required for computing each
pixel.
The design method of 1D BLoG (lter is pro-

posed in Section 2. Two methods of 2D (lter de-
sign are given in Section 3. The performance of
the BLoG (lter in applying to the corner and edge
detections are discussed in Section 4. In Section
5, the computational complexity of the proposed
BLoG (lter is analyzed. Conclusions are presented in
Section 6.

2. Design of FIR bilevel LoG �lter

The LoG (lter is de(ned by

LoG(n; �) =
1√
2	�3

(
1− n2

�2

)
exp

(
− n2

2�2

)
; (2)

where � is the (lter scale (space constant). The BLoG
is speci(ed by the four parameters N1, N2, F1, and F2,
and is de(ned by

BLoG(n; N1; N2; F1; F2) =



F1; |n|6N1;

F2; N1¡ |n|6N2;

0; |n|¿N2:
(3)

Our purpose is to determine the parameters appropri-
ately, so that the BLoG (lter best approximates the
LoG (lter.
In conventional optimal FIR (lter design tech-

niques, the (lter coe3cients are adapted to minimize
the error between frequency response of the FIR (l-
ter and the desired frequency response. It requires
an FFT computation to obtain frequency response
of the FIR BLoG (lter from its (lter parameters.
Therefore, an FFT computation is required for each
adaptation of the (lter parameters. This is very time
consuming.
The desired impulse response in our problem

has the property of good locality, which is com-
pletely di<erent from the impulse response of any
ideal frequency-selective (lter in conventional de-
sign problems. So that, the approximation error
between impulse responses of the BLoG (lter and
the LoG (lter can be calculated easily. In this pa-
per, the approximation criterion for the optimiza-
tion procedure is to minimize the error between
impulse responses of the BLoG (lter and the LoG
(lter. This will save the time for computing the
FFT. The optimization problem is formulated as
follows:
Determine the parameters N1, N2, F1, and F2 of

the BLoG (lter to minimize the error function

Ep(N1; N2; F1; F2)

=‖BLoG(n; N1; N2; F1; F2)− LoG(n; �)‖p; (4)
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Fig. 1. Illustration of the gradient descent algorithm.

where ‖ · ‖p is the p-norm, subject to the constraint
that the BLoG (lter has zero DC response.
This is a highly nonlinear problem. A discrete ver-

sion of the gradient descent algorithm is developed to
minimize the error function. We adapt N1, N2, and
F1 to minimize the error function. F2 is reserved to
meet the constraint of zero DC response. As shown
in Fig. 1, the parameter space of N1, N2, and F1
is quantized into discrete cells. Each cell has a cor-
responding error value. We guess an initial state of
the parameters. Then, apply the gradient descent al-
gorithm to minimize the error value. The initial guess
plays a very important role in the convergence of the
gradient descent algorithm. An unsuitable initial state
may trap the process into local minimum of the error
function. An proper initial guess is given as follows:
1. N1 = �. If � is not an integer, round to its nearest

integer.
2. F1 is determined by di<erent optimization criteria:

• L1-norm

F1 = LoG
(
N1
2
; �
)
: (5)

• L2-norm

F1 =
1

2N1 + 1

N1∑
n=−N1

LoG(n; �): (6)

• L∞-norm

F1 = 1
2LoG(0; �): (7)

3. N2 is given by

N2 = 3N1: (8)

4. F2 is given by

F2 =
−F1(2N1 + 1)
2(N2 − N1) : (9)

N1 = � is the zero-crossing of the LoG (lter. The
values of F1 are optimal provided that N1 =� is (xed.
To obtain zero DC response, F2 is determined by the
equation

(2N1 + 1)F1 + 2(N2 − N1)F2 = 0: (10)

The initial states corresponding to di<erent optimiza-
tion criteria are plotted in Fig. 2, where the LoG (lter
with � = 10 is approximated.
As shown in Fig. 2(a), the L1-norm of approxima-

tion error is the sum of Regions I, II, and III. Its min-
imum value occurs at F1 = LoG(N1=2; �), where the
lower boundary length of Region III equals to sum
of the upper boundary lengths of Regions I and II.
A lower or a higher F1 value will lead to a positive
sum of incremental areas. The optimal values of F1
corresponding to L2-norm criterion can be obtained
by

d{∑N1
n=−N1 [F1 − LoG(n; �)]2}1=2

dF1
= 0;

d
∑N1

n=−N1 [F1 − LoG(n; �)]2

dF1
= 0;

N1∑
n=−N1

2[F1 − LoG(n; �)] = 0;

N1∑
n=−N1

F1 =
N1∑

n=−N1
LoG(n; �);

F1 =
1

2N1 + 1

N1∑
n=−N1

LoG(n; �):

(11)

The optimal values of F1 corresponding to L∞-norm
criterion can be obtained by

min
F1

[|F1 − LoG(0; �)|; |F1 − LoG(N1; �)|]

=min
F1

[|F1 − LoG(0; �)|; |F1 − 0|];

F1 = LoG(0; �)=2: (12)
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Fig. 2. The initial states for di<erent optimization criteria: (a) L1-norm. (b) L2-norm. (c) L∞-norm.

The discrete version of gradient descent algorithm
is summarized as follows:
1. Set initial state according to the above formula.
2. Quantize the parameter space (N1; N2; F1) into dis-

crete cells.
3. Calculate the error values for the 3× 3× 3 neigh-

boring parameter cells.
4. Move to the minimum error state among the 3 ×

3× 3 parameter cells.
5. If the state is changed, go to step 3; else, stop.
The parameters N1 and N2 are discrete. Therefore,

the only parameter to quantize is F1. The size of pa-

rameter cell relates to the precision of F1. In order to
obtain the accurate value of F1 e3ciently, we recur-
sively reduce the step size of F1 until a prede(ned ac-
curacy. The initial step size of F1 is ten percent of its
initial value. Then, each time when the gradient de-
scent process converges, the step size is reduced to ten
percent of the current size. This recursion proceeds
until the step size is smaller than the error tolerance.
A design example of approximating the LoG (lter

with �=10 is shown in Fig. 3. The impulse responses
of the resulting BLoG (lers for di<erent optimization
criteria are plotted in Fig. 3(a), (c), and (e). Their
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Fig. 3. Impulse and frequency responses of the BLoG (lter obtained by di<erent optimization criteria. In all cases, the LoG (lter with
� = 10 is approximated. (a), (b) L1-norm criterion. (c), (d) L2-norm criterion. (e), (f) L∞-norm criterion.
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Table 1
The initial and optimal parameter values of the 1D BLoG (lter for di<erent optimization criteria. The 1D LoG (lter with � = 10 is
approximated

Criterion N1 ini N2 ini F1 ini F2 ini N1 opt N2 opt F1 opt F2 opt

L1-norm 10 30 2.64 −1:39 8 27 3.04 −1:36
L2-norm 10 30 2.30 −1:21 8 28 2.71 −1:15
L∞-norm 10 30 1.99 −1:05 8 31 2.52 −0:93

×10−4 ×10−4 ×10−4 ×10−4

Table 2
The initial and optimal parameter values of the 1D BLoG (lter for approximating di<erent scales of 1D LoG (lter. The L1-norm optimization
criterion is applied

Scale N1 ini N2 ini F1 ini F2 ini N1 opt N2 opt F1 opt F2 opt

7 7 21 6.65 −3:56 6 19 7.22 −3:61
8 8 24 5.16 −2:74 6 21 6.22 −2:69
9 9 27 3.24 −1:71 8 24 3.43 −1:82
10 10 30 2.64 −1:39 8 27 3.04 −1:36
11 11 33 1.81 −0:95 9 29 2.14 −1:02
12 12 36 1.53 −0:80 10 32 1.57 −0:75

×10−4 ×10−4 ×10−4 ×10−4

corresponding frequency responses are plotted in Fig.
3(b), (d), and (f), respectively. The desired impulse
response or frequency response is also provided in
each (gure. The parameters of the resulting BLoG
(lters are listed in Table 1. Because the initial states are
properly assigned, only several iterations are required
in all cases. The parameters of the BLoG (lters for
approximating the LoG (lters with di<erent � values
under L1-norm criterion are provided in Table 2.

3. Design of 2D FIR bilevel LoG �lter

To design the 2D BLoG (lter, two approaches are
proposed. The (rst is to generalize the algorithm for
1D case. The second is to perform theMcClellan trans-
formation of the 1D impulse response.

3.1. Generalizing the 1D algorithm

The 2D LoG (lter is given by

LoG(x; y; �)

=
1

2	�4

(
2− x2 + y2

�2

)
exp

(
−x

2 + y2

2�2

)
: (13)

The 2D BLoG (lter is speci(ed by the four parameters
R1, R2, F1, and F2 (see Fig. 4), and is de(ned by

BLoG(x; y; R1; R2; F1; F2)

=



F1; x2 + y26R21;

F2; R21¡x2 + y26R22;

0; x2 + y2¿R22:

(14)

The error function for the 2D (lter design is de(ned
by

Ep(R1; R2; F1; F2)

=‖BLoG(x; y; R1; R2; F1; F2)− LoG(x; y; �)‖p: (15)

According to the same concepts with the 1D case,
the initial states for di<erent criteria are provided as
follows:
1. R1 =

√
2�. If

√
2� is not an integer, round it to the

nearest integer.
2. F1 is determined by di<erent optimization criteria:

• L1-norm

F1 = LoG
(
R1√
2
; 0; �

)
: (16)
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Fig. 4. The two-dimensional BLoG (lter: (a) top-view, and
(b) the cross section of y = 0.

• L2-norm

F1 =

∑∑
x2+y26R21

LoG(x; y; �)∑∑
x2+y26R21

1
: (17)

• L∞-norm

F1 = 1
2LoG(0; 0; �): (18)

3. R2 is given by

R2 = 2R1: (19)

4. F2 is given by

F2 =
−F1

∑∑
x2+y26R21

1∑∑
R21¡x

2+y26R22
1
: (20)

The gradient descent algorithm is then applied to
adapt the parameters R1, R2, and F1. The 2D LoG

(lter with �=10 is plotted in Fig. 5(a). The impulse
responses of the resulting 2D BLoG (lers for di<erent
optimization criteria are plotted in Fig. 5(b), (c), and
(d). The parameters of the resulting 2D BLoG (lters
are listed in Table 3. Because the initial states are
properly assigned, only several iterations are required
in all cases. The parameters of the 2D BLoG (lters for
approximating the LoG (lters with di<erent � values
under L1-norm criterion are provided in Table 4.

3.2. Using the McClellan transformation

The McClellan transformation [3] is a transforma-
tion that converts an 1D zero-phase FIR (lter into a
multidimensional one through a substitution of vari-
ables. Assume that the impulse response h[n] of the
1D zero-phase FIR (lter is real. Then, h[− n] = h[n]
and the frequency response can be written as

H (!) = h[0] +
N∑
n=1

h[n][exp(−j!n) + exp(j!n)]

=
N∑
n=0

a[n] cos(!n)

=
N∑
n=0

a[n]Tn[cos(!)]; (21)

where

a[n],

{
h[0]; n= 0;

2h[n]; n¿ 0

and Tn[ · ] is the nth Chebyshev polynomial given by
T0[x] = 1;

T1[x] = x;

Tn[x] = 2xTn−1[x]− Tn−2[x]:

If we make a substitution of variables

F(!x; !y) → cos(!); (22)

we obtain the 2D frequency response

H (!x; !y) =
N∑
n=0

a[n]Tn[F(!x; !y)]: (23)

Note that, the contours of F(!x; !y) are also the con-
tours of H (!x; !y).
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Fig. 5. Impulse response of the 2D BLoG (lter obtained by di<erent optimization criteria. The 2D LoG (lter with �=10 is approximated:
(a) The 2D LoG (lter with � = 10; (b) L1-norm criterion, (c) L2-norm criterion, and (d) L∞-norm criterion.

Table 3
The initial and optimal parameter values of the 2D BLoG (lter for di<erent optimization criteria. The 2D LoG (lter with � = 10 is
approximated

Criterion R1 ini R2 ini F1 ini F2 ini R1 opt R2 opt F1 opt F2 opt

L1-norm 14 28 0.97 −0:32 11 29 1.69 −0:28
L2-norm 14 28 1.20 −0:40 11 31 1.70 −0:24
L∞-norm 14 28 1.59 −0:53 10 38 2.07 −0:16

×10−5 ×10−5 ×10−5 ×10−5

The proposed 1D BLoG (lter is a 1D zero-
phase FIR (lter with real impulse response. If
we perform McClellan transformation of the
1D BLoG (lter with the transformation

function

F(!x; !y) = 1
2 [− 1 + cos(!x) + cos(!y)

+ cos(!x) cos(!y)]; (24)
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Table 4
The initial and optimal parameter values of the 2D BLoG (lter for approximating di<erent scales of 2D LoG (lter. The L1-norm optimization
criterion is applied

Scale R1 ini R2 ini F1 ini F2 ini R1 opt R2 opt F1 opt F2 opt

5 7 14 1.54 −0:50 6 15 2.35 −0:45
×10−4 ×10−4 ×10−4 ×10−4

8 11 22 2.36 −0:78 9 23 3.90 −0:71
10 14 28 0.97 −0:32 11 29 1.69 −0:28

×10−5 ×10−5 ×10−5 ×10−5

Fig. 6. Illustration of the McClellan transformation: (a) the con-
tours of the transformation function, and (b) the frequency re-
sponse of the 2D (lter obtained by the McClellan transformation.

we obtain a 2D (lter. Fig. 6(a) gives the contours of
the transformation function. The frequency response

of the resulting 2D (lter along the horizontal or the
vertical axes is exactly the same as that of the 1D
BLoG (lter. The frequency response of the resulting
2D (lter is plotted in Fig. 6(b). Realization of the
2D (lter designed by the McClellan transformation is
shown in Fig. 7, which is a special case of the network
proposed by McClellan and Chan [9]. In this example,
the impulse response of the 1D (lter is given by

h[n] =



h+; |n|6 3;

h−; 3¡ |n|6 6;

0; |n|¿ 6:

(25)

The convolution mask of the network block F in
Fig. 7 is given by

+1
8 +1

4 +1
8

+1
4 − 1

2 +1
4

+1
8 +1

4 +1
8

:

Only three power-of-two multiplications and eight ad-
ditions per pixel are required in convolving with this
mask. Although the resulting 2D (lter is not a BLoG
(lter by de(nition, it operates in a way that is similar
to the BLoG (lter. That is, only two multiplications,
except for power-of-two multiplications, are required
for computing each pixel.

4. Applications

Corner detection and edge detection are analogue
problems. Corners are the abrupt changes of tangent
angle in the 1D arc length space, while edges are the
abrupt changes of intensity in the 2D image space.
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Fig. 7. Realization of the McClellan transformation. In this example, the parameters of the 1D (lter are N1 =3, N2 =6, F1 = h+, F2 = h−.

Fig. 8. Comparison of edge images detected by di<erent (lters: (a) a gray level image of two leaves, (b) the edges detected by 2D LoG
(lter with �=10, (c) the edges detected by 2D BLoG (lter, and (d) the edges detected by the McClellan transformation of 1D BLoG (lter.
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Fig. 9. Comparison of the corners detected by LoG and BLoG (lters: (a) A leaf boundary extracted from (b), (b) the tangent angle versus
arc length, (c) the applied 1D LoG and BLoG (lters, and (d) the detected corners, where crosses represent the corners obtained by LoG
(ltering and circles represent the corners obtained by BLoG (ltering.

The LoG (lter is a band-pass (lter that can detect
abrupt changes of a signal and suppress noise in the
high-frequency band. The 1D LoG (lter can be ap-
plied to detect corners, while the 2D LoG (lter can be
applied to detect edges. We verify the applicability of
the proposed BLoG (lter by applying to the detection
of corners and edges.

4.1. Detecting edges of gray level image

A real image of two leaves captured by digital
camera is shown in Fig. 8(a). The image size is

338 × 347 pixels with 256 gray levels. This image is
convolved with the 2D LoG (lter with � = 10. Then,
zero-crossings of the resulting image are detected as
edge points. The edge image is shown in Fig. 8(b),
where the edges are represented by white pixels. The
edge images obtained by applying the 2D BLoG (l-
ter and the McClellan transformation of 1D BLoG
(lter are shown in Fig. 8(c) and (d), respectively. In
all three cases, the boundaries of the two leaves are
successfully detected. However, the 2D BLoG (lter
gives better result than the McClellan transformation
of 1D BLoG (lter in details.
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4.2. Detecting corners of planar shape

The boundary of the larger leaf in Fig. 8(b) is ex-
tracted and plotted in Fig. 9(a). The tangent angle ver-
sus arc length is plotted in Fig. 9(b). The 1D LoG
(lter with � = 10 and its approximating BLoG (lter
(see Fig. 9(c)) are convolved with the tangent angle
function of the leaf boundary. The zero-crossings of
the LoG and the BLoG (ltering results are marked by
small crosses and circles, respectively (see Fig. 9(d)).
As shown in the (gure, the corners detected by the
LoG and the BLoG (lter coincide with each other.

5. Computational complexity

In this section, a very e3cient edge detector called
the in(nite size symmetric exponential (lter (ISEF)
[11] is introduced (rst. Then, we compare the com-
putational complexity of the LoG (lter, the ISEF, and
the proposed BLoG (lter.

5.1. The in9nite size symmetric exponential 9lter

Although the ISEF is di<erent from the LoG (lter,
it is an e3cient edge detector that can be realized by
a recursive algorithm. The 1D ISEF is given by

fL(x) = Ca0(1− a0)|x| = f1(x) ∗ f2(x); (26)

where

f1(x) =
{
a0(1− a0)x; x¿ 0;
0; x¡ 0;

f2(x) =
{
0; x¿ 0;
a0(1− a0)−x; x6 0:

Supposing I(x) as the input signal, I1(x) = I(x) ∗
f1(x), and I2(x)= I(x)∗f2(x), we have the recursive
algorithm:

I1(x) = I1(x − 1) + a0(I(x)− I1(x − 1)); (27)

I2(x) = I2(x + 1) + a0(I(x)− I2(x + 1)): (28)

In convolving with f1(x) or f2(x), only one
multiplication and two addition operations are
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Fig. 10. Realization of the 1D ISEF.

required. The (rst and the second derivative Ix(x) =
@(I(x) ∗ fL(x))=@x and Ixx(x) = @2(I(x) ∗ fL(x))=@x2
are given by

Ix(x) = I(x) ∗ (f2(x)− f1(x)); (29)

Ixx(x) = I(x) ∗ (f2(x) + f1(x))

− 2I(x) ∗ f1(x) ∗ f2(x): (30)

The realization of the 1D ISEF is shown in Fig. 10.
For the 2D case, the (rst and the second derivative
Ix(x; y) = @(I(x; y) ∗ fL(x; y))=@x and Ixx(x; y) =
@2(I(x; y) ∗ fL(x; y))=@x2 are given by
Ix(x; y) = I(x; y) ∗ f1(y) ∗ f2(y)

∗(f2(x)− f1(x)); (31)

Ixx(x; y) = I(x; y) ∗ f1(y) ∗ f2(y) ∗ (f2(x)

+f1(x))− 2I(x; y) ∗ f1(x) ∗ f2(x): (32)

Similarly,

Iy(x; y) = I(x; y) ∗ f1(x) ∗ f2(x)

∗(f2(y)− f1(y)): (33)
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Fig. 11. Realization of the 2D ISEF.

Iyy(x; y) = I(x; y) ∗ f1(x) ∗ f2(x) ∗ (f2(y) + f1(y))

− 2I(x; y) ∗ f1(y) ∗ f2(y): (34)

The realization of the 2D ISEF is shown in Fig. 11. The
edges of an image can be detected from the maxima of
gradient or zeros of the second directional derivative
along the gradient by use of the di<erential operators
of exponential (lter.

Table 5
The comparison of computational complexity for the 1D LoG
(lter, the (ISEF), and the BLoG (lter. The numbers of addition
and multiplication operations for di<erent (lter scales are listed

Filter Window Addition Multiplication
scale size

1D LoG 5 20 40 41
10 40 80 81
15 60 120 121

ISEF — — 7 3

1D BLoG 5 13 5 2
10 27 5 2
15 41 5 2

5.2. Computational complexity

The numbers of addition and multiplication opera-
tions for the LoG (lter, the ISEF, and the proposed
BLoG (lter are listed as follows:

LoG
• The convolution with 1D LoG (lter of length 2N+1
requires 2N additions and 2N + 1 multiplications
per point.

• The convolution with 2D LoG (lter of size
(2N + 1)× (2N + 1) requires 4N 2 + 4N additions
and 4N 2 + 4N + 1 multiplications per pixel.

ISEF
• The 1D ISEF requires only three multiplications
and seven additions per point.

• The 2D ISEF requires only 10 multiplications and
22 additions per pixel.

BLoG
• The convolution with 1D BLoG (lter of length
2N + 1 requires only 2N additions and two mul-
tiplications per point. If we incrementally compute
the signal points entering and leaving a constant re-
gion of the mask, it requires only (ve additions (two
points for inner region and four points for outer re-
gion) and two multiplications per point.

• The convolution with 2D BLoG (lter of size
(2N + 1) × (2N + 1) requires only 4N 2 + 4N
additions and two multiplications per pixel. If we
incrementally compute the image pixels entering
and leaving a constant region of the mask, it re-
quires only 4R2 + 8R1 additions (4R1 points for
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Table 6
The comparison of computational complexity for the 2D LoG (lter, the ISEF, the BLoG (lter, and the
McClellan (lter. The numbers of addition, multiplication, and shift operations for di<erent (lter scales are
listed

Filter scale Window size Addition Multiplication Shift

2D LoG 5 20 1680 1681 —
10 40 6560 6561 —
15 60 14640 14641 —

ISEF — — 22 10 —

2D BLoG 5 15 108 2 —
10 29 204 2 —
15 44 304 2 —

McClellan 5 13 129 2 40
10 27 269 2 82
15 41 409 2 124

inner region and 4R2 +4R1 points for outer region)
and two multiplications per pixel.

• The convolution with the McClellan transformation
of 1D BLoG (lter (see Fig. 8) requires only 10N−1
additions, 3N+1 power-of-two multiplications, and
two ordinary multiplications per pixel.

To illustrate this, some design examples are pre-
sented in Tables 5 and 6. In fact, the window size
of LoG (lter is larger than the window size of its
approximating BLoG (lter. Therefore, the number of
additions for the LoG (lter is larger than the number of
additions for its approximating BLoG (lter. The re-
gion of support for LoG (lter is given by 4�, and that
for BLoG (lter is automatically determined by the
design algorithm. In convolving with the 1D LoG (lter
with �=10, the region of support is 40, 80 addition and
81 multiplication operations are required. In convolv-
ing with its approximating 1D BLoG (lter, the region
of support is 27, (ve addition and two multiplication
operations are required. In convolving with 2D LoG
(lter with � = 10, 6560 addition and 6561 multipli-
cation operations are required. Only 204 addition and
two multiplication operations are required in convolv-
ing with its approximating BLoG (lter; 269 addition,
two ordinary multiplication, and 82 power-of-two
multiplication operations are required in convolving
with the corresponding 2D (lter designed by the
McClellan transformation. Considerable reduction in
computational complexity is achieved. In both 1D
and 2D cases, the ISEF requires more multiplications
and less additions than the new proposed BLoG (lter.

Note that although we compare the computational
complexity of the BLoG (lter and the ISEF, they are
di<erent in design criterion (see the Introduction).
The main di<erence is that the ISEF is an IIR (lter
while the LoG (lter is an FIR (lter. Therefore, the
ISEF does not have the property of (nite support. Its
edge detection result will be inNuenced by neighbor-
ing edges.

6. Conclusions

In this paper, the bilevel Laplacian-of-Gaussian (l-
ter and its design method are proposed. In convolving
with the BLoG (lter, only two multiplication opera-
tions per pixel are required. If the McClellan transfor-
mation is applied, the number of addition operations
can be largely reduced by performing a small number
of shift operations (power-of-two multiplications) in-
stead. The BLoG (lter is applied to detect corners of
planar curves and edges of gray level images, satis-
factory results are obtained.
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