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Abstract

The continuous wavelet transform (CWT) is a common signal-processing tool for the analysis of nonstationary signals. We
propose here a new B-spline-based method that allows the CWT computation at any scale. A nice property of the algorithm
is that the computational cost is independent of the scale value. Its complexity is of the same order as that of the fastest
published methods, without being restricted to dyadic or integer scales. The method reduces to the 6ltering of an auxiliary
(pre-integrated) signal with an expanded mask that acts as a kind of modi6ed ‘9a trous’ 6lter. The algorithm is well-suited
for a parallel implementation. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The continuous wavelet transform (CWT) of a sig-
nal f with the wavelet  is de6ned as

W f(a; b) =
1√
a

∫ +∞

−∞
f(x) 

(
b− x
a

)
dx: (1)

It can be interpreted as the correlation of the input
signal with a time-reversed version of  rescaled by
a factor of a. For a 1-D input signal, the result is a
2-D description of the signal with respect to time b
and scale a. The scale a is inversely proportional to
the central frequency of the rescaled wavelet  a(x) =
 (x=a) which is typically a bandpass function; b rep-
resents the time location at which we analyze the
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signal. The larger the scale a, the wider the analyzing
function  a, and hence smaller the corresponding ana-
lyzed frequency. The output value is maximized when
the frequency of the signal matches that of the cor-
responding dilated wavelet. The main advantage over
the Fourier transform (FT) analysis is that the fre-
quency description is localized in time. The advantage
over the short-time Fourier transform (STFT) is that
the window size varies; low frequencies are analyzed
over wide time windows, and high frequencies over
narrow time windows, which is more eHective than to
use a 6xed-size analysis. Typical applications of the
CWT are the detection and characterization of singu-
larities [3,14], pattern recognition [6], image process-
ing [4,15], fractal analysis [2,12,23], noise reduction
[11] and the analysis of biomedical signals [7,10,25].

The main contribution of this paper is the develop-
ment of a fast algorithm for the computation of the
CWT at any real scale a and integer time localization
b. Mallat’s fast wavelet algorithm [12] uses the mul-
tiresolution properties of the wavelet to compute the
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CWT at dyadic scales a = 2i and time shifts b = 2ik,
k ∈Z [17]; it achieves an overall O(N ) complexity.
Other techniques compute the wavelet transform at
dyadic scales and integer time points with an ‘5a trous’
approach. Their complexity per scale is O(N ), the
same as Mallat’s algorithm, but with a larger leading
constant [3,5,9,16].

Despite their speed, these methods may not be pre-
cise enough for some applications, since a dyadic scale
progression cannot be 6ner than an octave sub-band
decomposition. To achieve a better scale resolution,
other approaches have been proposed, either based on
M -band decomposition inside an octave [17,24] or on
a generalization of the two-scale relation to general in-
teger N -scale relations [8,22]. However, none of these
algorithms can handle arbitrary scales.

Our purpose here is to develop a novel and fast
algorithm that works for any real value of a. It takes
advantage of a B-spline decomposition of the input
signal and of the mother wavelet. The method exploits
the fact that B-splines are compactly supported and
that the convolution of two B-splines can be expressed
analytically [13].

2. Operators and de�nitions

First, we introduce some operators and de6nitions
that will be helpful to solve our problem.

We express a B-spline of degree n as

�n(x) = �n+1 ∗ xn+
n!

∗ �
(
x +

n + 1
2

)
; (2)

where xn+ = max(x; 0)n is a one-sided power function;
�n+1 denotes the (n + 1)-fold iteration of the 6nite
diHerence operator � = �(x) − �(x − 1). This latter
operator also corresponds to a discrete convolution
(digital 6lter) whose z-transform is �(z) = 1 − z−1.
Likewise, �n+1(z) = (1 − z−1)n+1.

We have the equivalence

D−(n+1)f(x) =
xn+
n!

∗ f(x); (3)

where D−1 is the continuous integral operator de6ned
as D−1f(x) =

∫ x
−∞ f(t) dt. We are interested in the

analytic formula of the B-spline expanded by a factor
a. We will represent the expansion operator as .
We derive the expression by using the exchange rules
for the one-sided power functions and for the shift

Fig. 1. Exchange rule for xn+.

Fig. 2. Exchange rule for a shift by b.

Fig. 3. Diagram that shows how to derive the analytic expression
for the B-spline expanded by a factor a. (a) Substitution of �n by
its time-domain explicit expression. (b) Application of the scale
change rules for the one-sided power function and the shift (see
Figs. 1 and 2).

given in Figs. 1 and 2. The respective proofs can be
found in [13]. The result as shown in Fig. 3 is

1
a
�n
( x
a

)
= �n+1

a ∗ 1
an+1

xn+
n!

∗ �
(
x + a

n + 1
2

)
;

(4)

where �a is the rescaled 6nite-diHerence operator,

�n+1
a (x) =

n+1∑
k=0

(
n + 1
k

)
(−1)k︸ ︷︷ ︸

q(k)

�(x − ak): (5)

Using equivalence (3), the rescaled B-spline is
rewritten as

1
a
�n
( x
a

)
= �n+1

a ∗ 1
an+1 D

−(n+1)�
(
x + a

n + 1
2

)
:

(6)

From de6nition (2) of the B-spline and from equiv-
alence (3), we 6nd that the integral of a B-spline of
a given degree is a spline with the degree increased
by 1. It is given by the following expression (see [13]
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for the proof)

D−(n1+1)�n2 (x)

=�−(n1+1) ∗ �(n1+n2+1)
(
x − n1 + 1

2

)
; (7)

where �−1 is the inverse 6nite-diHerences operator
de6ned as �−1(x)=

∑
n¿0 �(x−n) whose z-transform

is �−1(z) = (1 − z−1)−1. It can be de6ned as the
running sum 6lter, (�−1s)k =

∑
n6k sn. Note that yk =

(�−1 ∗ s)k can be implemented very ePciently using
the recursive equation yk = yk−1 + sk .

Next, we consider the mixed convolution of a con-
tinuous signal v(x) with a discrete sequence pk when
the intersample distance is equal to a

g(x) =

(∑
k∈Z

pk�(x − ak)

)
∗ v(x)

=
∑
k∈Z

pkv(x − ak): (8)

The graphical interpretation of this formula is given
in Fig. 4. The mixed convolution is a weighted sum
of shifted replicates of the signal v(x) separated by a
distance a.

3. Fast continuous wavelet transform algorithm

3.1. Spline wavelets

Among all existing wavelet bases, B-spline
wavelets have the advantage of possessing an explicit
formula [1]; most wavelets are de6ned only implic-
itly by means of a re6nement 6lter. For example, the
well-known Haar wavelet is a weighted sum of two
B-splines of degree 0. Other wavelets, such as the
6rst derivative or the second derivative of a Gaussian
(Mexican hat wavelet), can be closely approximated
by linear combination of B-splines of suPciently high
degrees (n¿ 2) [19].

The description of wavelets on to B-spline basis al-
lows for an ePcient computation of the convolution
products of the CWT that takes advantage of the con-
volution properties of B-splines. Thus, we choose to
express our mother wavelet  on a B-spline basis of
order n1. The wavelet at scale a is represented by its

B-spline expansion

 
( x
a

)
=

K∑
k=−K

dk�n1

( x
a
− k
)
; (9)

where dk are the B-spline coePcients (see [21] for
additional information on how to choose their value).

3.2. CWT computation

3.2.1. Spline wavelet transform
Using the expression for the rescaled B-spline (6),

the CWT (1) for the wavelet (9) becomes

W f(a; b)

=
1√
a

(
f(·) ∗

K∑
k=−K

dk�n1

( ·
a
− k
))

(b)

=

(
1

an1+1=2

(
K∑

k=−K

dk�(· − ak)

)
∗ �n1+1

a (·)

∗ D−(n1+1)f
(
· + a

(
n1 + 1

2

)))
(b):

We see that the CWT can be calculated from the
application of a discrete convolution operator to the
(n1 +1)th integral of a shifted version of the analyzed
function f.

Replacing �n1+1
a by its de6nition (5), the CWT is

expressed as a mixed convolution

W f(a; b)

=

((
n1+1+K∑
k=−K

pk�(· − al)

)
∗ v(·)

)
(b); (10)

where

pk =
1

an1+1=2 (d ∗ q)k

=
1

an1+1=2

n1+1∑
l=0

d(k − l)q(l); (11)

ql being the 6nite diHerences coePcients in (5) and

v(x) = D−(n1+1)f
(
x + a

(
n1 + 1

2

))
: (12)
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Fig. 4. Graphical interpretation of the mixed convolution between a discrete sequence pk and a continuous signal v(x), with a = 8.

3.2.2. Spline input signal
We assume that the continuous input signal f(x)

is a spline that interpolates the discrete input samples
f(k). Thus, we have f(x)=

∑
k∈Z ck�n2 (x− k) with

c = f ∗ (bn2 )−1, where (bn2 )−1 is the inverse 6lter
of the B-spline interpolation 6lter bn2 = �n2 (x)|x=k , as
shown elsewhere [20]. Then, we rewrite v(x) as

v(x) = c ∗ D−(n1+1)�n2

(
x + a

(
n1 + 1

2

))
: (13)

Using the integral formula for a B-spline (7), we get

v(x) = g ∗ �n1+n2+1(x +  ) (14)

where  =(a−1)((n1 +1)=2) is a shift factor and g is
a discrete sequence obtained by iterative summation
of the interpolation coePcients

g = �−(n1+1) ∗ c: (15)

We introduce this relation in the CWT expression (10)
which yields,

W f(a; b) =
K+n1+1∑
k=−K

n1+n2+1∑
i=0

gi+i0wa;b(k; i); (16)

where i0 = �b− ak +  − (n1 + n2 + 2)=2� and where

wa;b(k; i) =
1

an1+1=2 pk�n1+n2+1(b− ak − i − i0 +  ):

(17)

We have used here the compact-support property of
B-splines to reduce the number of terms of the sum
over i. In this way, the computation of the CWT re-
duces to the inner product with the coePcients gi of
a series of precalculated weights wa;b(k; i) (which we
can store in a look-up table).

In practice, we are typically only interested in the
values of b that correspond to the time locations of the

Fig. 5. Spatial structure of the 6lter wa: ‘clusters’ of weights
separated by a distance a of each other. Parameters: n1 =3, n2 =3,
K = 1, a = 16 and b = 128.

original samples, that is, for integer b. Then, we can
use the fact that wa;b(k; i)=wa;0(k; i−b) if b∈Z. The
algorithm (16) is then equivalent to a discrete convolu-
tion. This reduces considerably the number of weights
to be precalculated, since only the values wa;0 = wa

are required.
Note the interesting spatial structure of the 6lter

wa (see Fig. 5). The CWT computation consists in
6ltering the coePcients g with (2K+n1+2) ‘clusters’
of length (n1 + n2 + 2), each cluster being separated
from its neighbors by a distance a. This can be seen
as a kind of modi6ed ‘5a trous’ 6lter.

3.3. Fast implementation

Let us now describe the fast algorithm based on the
expansion (16). In the initialization step, the B-spline



A. Muñoz et al. / Signal Processing 82 (2002) 749–757 753

Fig. 6. Schematic representation of the fast wavelet transform:
(bn2 )−1, computation of the interpolation coePcients c; �−(n1+1),
calculation of the (n1 + 1)-fold integral of c; wai (k; i), look-up
table calculation where k ∈ [−K; K + n1 + 1], i∈ [0; n1 + n2 + 1]
and ai ∈ [a1; aN ]; N is the number of scales; wai , 6ltering with
the mask calculated for each scale; W f(ai; b), wavelet transform
of f for scale ai at position b.

expansion coePcients c of the sampled signal f are
calculated, and the running-sum operator �−1 is ap-
plied (n1 + 1) times; it is computed recursively by
iterating (2) (see Section 3.4 for the implementation
details). The intermediate result g does not depend
on the scale a. For a given scale a, we compute the
weights wa and store them in a 2-D look-up table of
dimensions (2K + n1 + 2)(n1 + n2 + 2). These values
are then convolved with the precomputed sequence g.
The values wa and the inter-cluster distance for the 6l-
tering depend on a, but the computational complexity
is constant and does not depend on a. Moreover, the
values wa do not depend on the signal f. Thus, the
computational complexity per point only depends on
the values of K , n1 and n2. Note that the independence
between scales allows for a straightforward parallel
implementation (Fig. 6).

3.4. Boundary conditions

To minimize boundary artifacts, we extend our sig-
nal {sk}k=0; :::;N−1 using symmetric mirror boundary
conditions de6ned as s−k = sk , and sN−1−k = sN−1+k ,
for k = 0; 1; : : : ; N − 1. The boundary conditions de-
6ned above are repeated on further extensions to yield
a (2N − 2) periodic signal. To implement the running
sums (inverse 6nite diHerence operator) in a consis-
tent manner, we apply it to zero-mean signals, which
is perfectly acceptable since the DC-component is 6l-
tered out by the wavelet (vanishing moments) any-
way. Thus, assuming that s is zero mean, the inverse
6nite diHerences operator is given by

(�−1 ∗ s)k =
k mod(2N−2)∑

l=0

sl: (18)

For zero-mean signals, the application of the above
operator reverses the symmetry of the bound-
ary conditions. That is to say, if the input sig-
nal has symmetric boundary conditions, the output
will have anti-symmetric boundary conditions de-
6ned as sk = −s−k−1, and sN−1+k = −sN−2−k , for
k =0; 1; : : : ; N −1. An antisymmetric signal is always
zero mean. Thus, in our implementation, we alternate
between symmetric and anti-symmetric input bound-
ary extensions depending on the parity of the iteration
number.

Finally, the boundary conditions—either symmet-
ric or antisymmetric—of the (n1 + 1)-fold integrated
interpolation coePcients will be handled accordingly
by the rest of the algorithm (in our case, convolution
with the sequence of precalculated weights).

4. Results

Here, we discuss the implementation of our fast
CWT algorithm and compare its execution time with
a FFT-based implementation. As an example of appli-
cation, we show the analysis of a biomedical signal.

4.1. Comparison with FFT-based computation

The FFT has an overall O(N logN ) complexity and
is therefore asymptotically slower than our method
which has an O(N ) complexity. This can be observed
from the experimental comparison of the computation
times shown in Fig. 7. We see that, for long input sig-
nals, our method is indeed faster. The interpolation
degree for the input signal was zero. The CWT was
computed over four octaves with 12 scales per octave.
The wavelet was the second derivative of the quintic
(see Fig. 8(b)), quartic and cubic B-spline, respec-
tively [22]. The FFT-based method used a radix-2 al-
gorithm when the signal length was a power of 2 and
a mixed-radix method for other signal lengths (MAT-
LAB’s FFT algorithm). The region where the algo-
rithm is faster than the FFT-radix 2 method with zero
padding is colored in gray. The time required to com-
pute the wavelet in the time domain before its FFT
computation was neglected. A parallel implementation
for the scale-dependent part of each algorithm would
speed up the computations.
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Fig. 7. Comparison of the experimental computation times of the
FFT and of our B-spline-based method to calculate the CWT.

4.2. Analysis of a biomedical signal

We have applied our method to the analysis of
bowel movements. A magnetically active capsule was
swallowed and its gastrointestinal transit was moni-
tored. The measures consisted of its three spatial co-
ordinates and the angles that describe its orientation
[18].

Fig. 10(a) corresponds to the x-coordinate of the
capsule. The sampling time was 70 ms. We have ana-
lyzed it using both the real (Fig. 10(b)) and the com-
plex CWT (Fig. 10(c)) for cubic spline interpolation
of the input signal. The y-axis corresponds to a nor-
malized scale in seconds; it is given by a0 = a=f0,
where f0 is the central frequency of the wavelet. In
the real case, the wavelet was the 6rst derivative of a
quartic spline expanded by a factor of 2 as shown in
Fig. 8(a). A visual inspection highlights the band of
period 3 s, which corresponds to the breathing of the
patient. We chose to calculate the complex CWT by
an extension of the method proposed by Unser [19] for
integer scales. The analysis wavelet is the Morlet-like
wavelet �3(x)e−4"xj (Fig. 9).

Using complex analysis (Fig. 10(c)), we dis-
covered three relevant frequency bands: 6rst,
the breathing with a period close to 3 s; then,
two more bands with periods around 12 and
20–25 s due to the contractions of the stomach.

Fig. 8. (a) First derivative of the quartic B-spline enlarged by a
factor 2. (b) Second derivative of the quintic spline wavelet.

5. Discussion: integer scale method

In a previous paper [22], Unser et al. describe a fast
algorithm for the CWT computation at integer scales
using B-splines as basis functions. Their method can
be shown to be equivalent to ours when a is an integer.
This follows from the identity

�−(n1+1)(z)�n1+1
a (z) =

(
1 − za

1 − z

)n1+1

=

(
a−1∑
k=0

zk
)n1+1

= (U 0
a (z))n1+1:



A. Muñoz et al. / Signal Processing 82 (2002) 749–757 755

Fig. 9. Gabor-like wavelet �3(x)e−4"xj.

Next we summarize the two ways of computing the
CWT at integer scales. We start with the method of
Unser et al. for which we write

W s(a; b)

=f ∗ (bn2 )−1 ∗ bn1+n2+1︸ ︷︷ ︸
initialization

∗ (u0
a)

n1+1 ∗ [d]↑a;︸ ︷︷ ︸
scale-dependent

where the upsampling operator [ · ]↑a is de6ned as

[d]↑a(k) =
{

d( k
a ) if a divides k;

0 elsewhere

and the z-transform of the sequence u0
a is given by

U 0
a (z) = z(a−1)=2 ∑a−1

k=0 z−k . We then summarize our
method by

W s(a; b) = f ∗ (bn2 )−1 ∗ �−(n1++1)︸ ︷︷ ︸
initialization

∗ bn1+n2+1 ∗ �n1+1
a ∗ [d]↑a:︸ ︷︷ ︸

scale-dependent

In the 6rst approach, u0
a can be computed recursively

by a moving-sum method that requires only one addi-
tion and one subtraction per point. For the 6rst method
(not taking into account the initialization) we need
2(n1 + 1) additions for the computation of (u0

a)
n1+1

and (2K + 1) multiplications and 2K additions per
point for the convolution with the upsampled version
of the sequence d, [d]↑a. Then, for one point, one
needs (2(n1 + 1) + 2K) additions and (2K + 1) mul-
tiplications in total.

Fig. 10. Trajectory of a magnet within the digestive track (x
component). (b) Real CWT using the wavelet in Fig. 8(a). (c)
Complex CWT using the Morlet-like wavelet shown in Fig. 9.

In the second method (not taking into account the
initialization step either) we need (2K + n1 + 2)(n1 +
n2 +2) multiplications and (2K +n1 +1)(n1 +n2 +1)
additions per point, corresponding to the 6ltering of g
with the weights wa.

Thus, the fast implementation of Unser et al. out-
performs ours for integer scales and is therefore
preferable in this particular setting. Our method, on
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the other hand, is more versatile and can be used for
arbitrary scale progressions.

6. Conclusions

We have presented a novel B-spline-based CWT al-
gorithm that is able to compute the CWT at any real
scale, making it possible to use arbitrary scale progres-
sions. The computational complexity per computed
coePcient is O(1), as is the case with the most ePcient
wavelet algorithms for dyadic or integer scales. The
overall operation count only depends on the wavelet
shape and on the degrees of the B-spline basis on
which the wavelet and the input signal are described,
but is independent of the value of the scale. Thanks to
the good approximation properties of B-splines, virtu-
ally any wavelet can be used (either via their B-spline
interpolation or projection). Moreover, the algorithm
lends itself well to a parallel implementation as it is
not iterative across scales.

The price to pay for the generality of this algorithm
is that the leading constant in the O(N ) complexity can
be large (typically 56 for a cubic spline Mexican-hat
wavelet and cubic interpolation of the input signal).
Thus, the method really starts paying oH when the
size of the signal is large (say N¿ 1000 samples).
For smaller sizes, it may be more ePcient to use a
simpler FFT-based method. Note, however, that the
specialized version of the algorithm for integer scales
beats the FFT in all cases.

A demonstration of our method is available on the
web at http://bigwww.epG.ch/demo/cwtspline.
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