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Modeling electricity loads in California:
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Abstract

In this paper we address the issue of modeling electricity loads. After analyzing
properties of the deseasonalized loads from the California power market we fit an
ARMA(1,6) model to the data. The obtained residuals seem to be independent
but with tails heavier than Gaussian. It turns out that the hyperbolic distribution
provides an excellent fit.
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1 Introduction

During the last decade we have witnessed radical changes in the structure of electricity
markets world-wide. For many years it was argued convincingly that the electricity in-
dustry was a natural monopoly and that strong vertical integration was an obvious and
efficient model for the power sector. However, recently it has been recognized that compe-
tition in generation services and separation of it from transmission and distribution would
be the optimal long-term solution. Restructuring has been designed to foster competition
and create incentives for efficient investment in generation assets [7,12,16].

While the global restructuring process has achieved some significant successes, serious
problems – some predictable, others not – have also arisen. The difficulties that have
appeared were partly due to the flaws in regulation and partly to the complexity of the
market.

When dealing with the power market we have to bear in mind that electricity cannot
simply be manufactured, transported and delivered at the press of a button. Moreover,
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electricity is non-storable, which causes demand and supply to be balanced on a knife-
edge. Relatively small changes in load or generation can cause large changes in price and
all in a matter of hours, if not minutes. In this respect there is no other market like it.

Californians are very well aware of this. In January 2001 California’s energy market was
on the verge of collapse. Wholesale electricity prices have soared since summer 2000, see
the top panel of Fig. 1. The state’s largest utilities were threatening that they would
be bankrupted unless they were allowed to raise consumer electricity rates by 30%; the
California Power Exchange suspended trading and filed for Chapter 11 protection with the
U.S. Bankruptcy Court. How could this have happened when deregulation was supposed
to increase efficiency and bring down electricity prices? It turns out that the difficulties
that have appeared are intrinsic to the design of the market, in which demand exhibits
virtually no price responsiveness and supply faces strict production constraints [4,13].

Another flaw of deregulation was the underestimation of the rising consumption of elec-
tricity in California. The soaring prices and San Francisco blackouts clearly showed that
there is a need for sophisticated tools for the analysis of market structures and modeling
of electricity load dynamics [2,9]. In this paper we investigate whether electricity loads in
the California power market can be modeled by ARMA models.

2 Preparation of the data

The analyzed database was provided by the University of California Energy Institute
(UCEI, www.ucei.org). Among other data it contains system-wide loads supplied by Cal-
ifornia’s Independent (Transmission) System Operator. This is a time series containing
the load for every hour of the period April 1st, 1998 – December 31st, 2000. Due to a very
strong daily cycle we have created a 1006 days long sequence of daily loads. Apart from
the daily cycle, the time series exhibits weekly and annual seasonality, see the bottom
panel of Fig. 1. Because common trend and seasonality removal techniques do not work
well when the time series is only a few (and not complete, in our case ca. 2.8 annual
cycles) cycles long, we restricted the analysis only to two full years of data, i.e. to the
period January 1st, 1999 – December 31st, 2000, and applied a new seasonality reduction
technique [15].

The seasonality can be easily observed in the frequency domain by plotting a sample
analogue of the spectral density, i.e. the periodogram
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where {x1, ..., xn} is the vector of observations, ωk = k/n, k = 1, ..., [n/2] and [x] denotes
the largest integer less then or equal to x. In the top panel of Fig. 2 we plotted the
periodogram for the system-wide load. It shows well-defined peaks at frequencies corre-
sponding to cycles with period 7 and 365 days. The smaller peaks close to ωk = 0.3 and 0.4
indicate periods of 3.5 and 2.33 days, respectively. Both peaks are the so called harmonics
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Fig. 1. California Power Exchange daily average market clearing prices (top panel) and California
power market daily system-wide load (bottom panel) since January 1st, 1999 until December 31st,
2000. The annual and weekly seasonalities are clearly visible.

(multiples of the 7-day period frequency) and indicate that the data exhibits a 7-day pe-
riod but is not sinusoidal. The weekly period was also observed in lagged autocorrelation
plots [14].

To remove the weekly cycle we used the moving average technique [5]. For the vector of
daily loads {x1, ..., x731} the trend was first estimated by applying a moving average filter
specially chosen to eliminate the weekly component and to dampen the noise:

m̂t =
1

7
(xt−3 + ... + xt+3), (2)

where t = 4, ..., 728. Next, we estimated the seasonal component. For each k = 1, ..., 7,
the average wk of the deviations {(xk+7j − m̂k+7j), 4 ≤ k + 7j ≤ 728} was computed.
Since these average deviations do not necessarily sum to zero, we estimated the seasonal
component sk as

ŝk = wk −
1

7

7
∑

i=1

wi, (3)

where k = 1, ..., 7 and ŝk = ŝk−7 for k > 7. The deseasonalized (with respect to the 7-day
cycle) data was then defined as

dt = xt − ŝt for t = 1, ..., 731. (4)
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Fig. 2. Periodogram of the California power market daily system-wide load since January 1st,
1999 until December 31st, 2000 (top panel). The annual and weekly frequencies are clearly visible.
Periodogram of the load returns after removal of the weekly and annual cycles (bottom panel).
No dominating frequency can be observed.

Finally we removed the trend from the deseasonalized data {dt} by taking logarithmic
returns rt = log(dt+1/dt), t = 1, ..., 730.

After removing the weekly seasonality we were left with the annual cycle. Unfortunately,
because of the short length of the time series (only two years), the method applied to
the 7-day cycle could not be used to remove the annual seasonality. To overcome this we
applied a new method which consists of the following [15]:

(i) calculate a 25-day rolling volatility [8] for the whole vector {r1, ..., r730};
(ii) calculate the average volatility for one year, i.e. in our case

vt =
v1999t + v2000t

2
; (5)

(iii) smooth the volatility by taking a 25-day moving average of vt;
(iv) finally, rescale the returns by dividing them by the smoothed annual volatility.

The obtained time series (see the top panel of Fig. 3) showed no apparent trend and
seasonality (see the bottom panel of Fig. 2). Therefore we treated it as a realization
of a stationary process. Moreover, the dependence structure exhibited only short-range
correlations. Both, the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) rapidly tend to zero (see the bottom panels of Fig. 3), which suggests
that the deseasonalized load returns can be modeled by an ARMA-type process.
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Fig. 3. Load returns after removal of the weekly and annual cycles (top panel). The ACF (bottom

left panel) and PACF (bottom right panel) for the mean-corrected deseasonalized load returns.
Dashed lines represent the bounds ±1.96/

√
730, i.e. the 95% confidence intervals of Gaussian

white noise.

3 Modeling with ARMA processes

The mean-corrected (i.e. after removing the sample mean=0.0010658) deseasonalized load
returns were modeled by ARMA (Autoregressive Moving Average) processes

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ... + θqZt−q, t = 1, ..., n, (6)

where (p, q) denote the order of the model and {Zt} is a sequence of independent, iden-
tically distributed variables with mean 0 and variance σ2 (denoted by iid(0, σ2) in the
text).

The maximum likelihood estimators φ̂ = (φ̂1, ..., φ̂p), θ̂ = (θ̂1, ..., θ̂q) and σ̂2 of the parame-
ters φ = (φ1, ..., φp), θ = (θ1, ..., θq) and σ2, respectively, were obtained after a preliminary
estimation via the Hannan-Rissanen method [5] using all 730 deseasonalized returns. The
parameter estimates and the model size (p, q) were selected to be those that minimize
the bias-corrected version of the Akaike criterion, i.e. the AICC statistics

AICC = −2 lnL+
2(p+ q + 1)n

n− p− q − 2
, (7)

where L denotes the maximum likelihood function and n = 730.
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Fig. 4. The residuals obtained from the ARMA(1,6) model (top panel). The ACF (bottom left

panel) and the PACF (bottom right panel) of the residuals. Dashed lines represent the bounds
±1.96/

√
730.

The optimization procedure led us to the following ARMA(1,6) model (with θ4 = θ5 = 0)

Xt=0.332776Xt−1 +

+Zt − 0.383245Zt−1 − 0.12908Zt−2 − 0.149307Zt−3 − 0.0531862Zt−6, (8)

where t = 1, ..., 730 and {Zt} ∼ iid(0, 0.838716). The value of the AICC criterion obtained
for this model was AICC=1956.294.

In order to check the goodness of fit of the model to the set of data we compared the
observed values with the corresponding predicted values obtained from the fitted model.
If the fitted model was appropriate, then the residuals

Ŵt =
Xt − X̂t(φ̂, θ̂)
√

ςt−1(φ̂, θ̂)
, t = 1, ..., 730, (9)

where X̂t(φ̂, θ̂) denotes the predicted value of Xt based on X1, ..., Xt−1 and ςt−1 = E(Xt−
X̂t)

2/σ2, should behave in a manner that is consistent with the model. In our case this
means that the properties of the residuals should reflect those of an iid noise sequence
with mean 0 and variance σ2.

The residuals obtained from the ARMA(1,6) model fitted to the mean-corrected deseason-
alized load returns are displayed in the top panel of Fig. 4. The graph gives no indication
of a nonzero mean or nonconstant variance. The sample ACF and PACF of the residuals
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Table 1
Test statistics and p-values for the residuals.

Test Test statistics value p-value

Portmanteau 15.03 (0.7747)

Turning point 464 (0.0609)

Difference-sign 361 (0.6536)

Rank 131090 (0.5529)

fall between the bounds ±1.96/
√
730 indicating that there is no correlation in the series,

see the bottom panels of Fig. 4. Recall that for large sample size n the sample autocor-
relations of an iid sequence with finite variance are approximately iid with distribution
N(0, 1/n). Therefore there is no reason to reject the fitted model on the basis of the
autocorrelation or partial autocorrelation function. However, we should not rely only on
simple visual inspection techniques. For our results to be more statistically sound we per-
formed several standard tests for randomness. The results of the portmanteau, turning
point, difference-sign and rank tests are presented in Table 1. Short descriptions of all
applied tests can be found in the Appendix.

As we can see from Table 1, if we carry out the tests at commonly used 5% level, the tests
do not detect any deviation from the iid behavior. Thus there is not sufficient evidence to
reject the iid hypothesis. Moreover, the order p = 0 of the minimum AICC autoregressive
model for the residuals also suggests the compatibility of the residuals with white noise,
see the Appendix. Therefore we may conclude that the ARMA(1,6) model (defined by eq.
(8)) fits the mean-corrected deseasonalized load returns very well.

4 Distribution of the residuals

In the previous Section we showed that the residuals are a realization of an iid(0,σ2) se-
quence. But what precisely is their distribution? The answer to this question is important,
because if the noise distribution is known then stronger conclusions can be drawn when
a model is fitted to the data. There are simple visual inspection techniques that enable
us to check whether it is reasonable to assume that observations from an iid sequence are
also Gaussian. The most widely used is the so-called normal probability plot, see Fig. 5.
If the residuals were Gaussian then they would form a straight line. Obviously they are
not Gaussian – the deviation from the line is apparent. This deviation suggests that the
residuals have heavier tails.

However, we have to bear in mind that in order to comply with the ARMA model as-
sumptions the distribution of the residuals must have a finite second moment. In the class
of heavy-tailed laws with finite variance the hyperbolic distribution seems to be a natural
candidate.

The hyperbolic law was introduced by Barndorff-Nielsen [1] for modeling the grain size
distribution of windblown sand. It was also found to provide an excellent fit to the distri-

7



−5 −4 −3 −2 −1 0 1 2 3 4

0.001
0.003

0.01 
0.02 

0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 

0.98 
0.99 

0.997
0.999

P
ro

ba
bi

lit
y

Residuals

Fig. 5. The normal probability plot of the residuals obtained from the ARMA(1,6) model. If the
residuals were Gaussian then they would form a straight line.

butions of daily returns of stocks from a number of leading German enterprises [6,10]. The
name of the distribution is derived from the fact that its log-density forms a hyperbola.
Recall that the log-density of the normal distribution is a parabola. Hence the hyperbolic
distribution provides the possibility of modeling heavy tails.

The hyperbolic distribution is defined as a normal variance-mean mixture where the
mixing distribution is the Inverse Gaussian law. More precisely, a random variable has
the hyperbolic distribution if its density is of the form

f(x;α, β, δ, µ) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
{

−α
√

δ2 + (x− µ)2 + β(x− µ)
}

, (10)

where the normalizing constant K1(t) =
1

2

∫

∞

0 exp{−1

2
t(x + 1

x
)}dx, t > 0, is the modified

Bessel function with index 1, the scale parameter δ > 0, the location parameter µ ∈ R
and 0 ≤ |β| < α. The latter two parameters – α and β – determine the shape, with α
being responsible for the steepness and β for the skewness.

Given a sample of independent observations all four parameters can be estimated by the
maximum likelihood method. In our studies we used the ’hyp’ program [3] to obtain the
following estimates

α̂ = 1.671304, β̂ = −0.098790, δ̂ = 0.298285, µ̂ = 0.076975.

The empirical probability density function (PDF) – to be more precise: a kernel estimator
of the density – together with the estimated hyperbolic PDF are presented in Fig. 6.
We can clearly see that, on the semi-logarithmic scale, the tails of the residuals’ density
form straight lines, which justifies our choice of the theoretical distribution. The adjusted
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Fig. 6. The empirical probability density function (a kernel estimator of the density) and the
approximating hyperbolic PDF on the semi-logarithmic scale.

Kolmogorov statistics K =
√
n supx |F (x) − Fn(x)|, where F (x) is the theoretical and

Fn(x) is the empirical cummulative distribution function, returns the value K = 1.5652.
This indicates that there is not sufficient evidence to reject the hypothesis of the hyberbolic
distribution of the residuals at the 1% level. For comparison we fitted a Gaussian law to
the residuals as well. In this case the adjusted Kolmogorov statistics returned K = 1.8019
causing us to reject the Gaussian hypothesis of the residuals at the same level.

5 Conclusions

Due to limited monitoring in a power distribution system its loads usually are not known
in advance and can only be forecasted based on the available information. In this paper
we showed that it is possible to model deseasonalized loads via ARMA processes with
heavy-tailed hyperbolic noise. This method could be used to forecast loads in a power
market. Its effectiveness, however, still has to be tested and will be the subject of our
further research.

Appendix: Tests for randomness

The portmanteau test. Instead of checking to see if each sample autocorrelation ρ̂(j)
falls inside the bounds ±1.96/

√
n, where n is the sample size, it is possible to consider a

single statistic introduced by Ljung and Box [11] Q = n(n+2)
∑h

j=1 ρ̂
2(j)/(n−j), whose

distribution can be approximated by the χ2 distribution with h degrees of freedom. A
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large value of Q suggests that the sample autocorrelations of the observations are too
large for the data to be a sample from an iid sequence. Therefore we reject the iid
hypothesis at level α if Q > χ2

1−α(h), where χ2
1−α is the (1 − α) quantile of the χ2

distribution with h degrees of freedom.
The turning point test. If y1, ..., yn is a sequence of observations, we say that there is
a turning point at time i (1 < i < n) if yi−1 < yi and yi > yi+1 or if yi−1 > yi and
yi < yi+1. In order to carry out a test of the iid hypothesis (for large n) we denote the
number of turning points by T (T is approximately N(µT , σ

2
T ), where µT = 2(n− 2)/3

and σ2
T = (16n−29)/90) and we reject this hypothesis at level α if |T−µT |/σT > Φ1−α/2,

where Φ1−α/2 is the (1 − α/2) quantile of the standard normal distribution. The large
value of T−µT indicates that the series is fluctuating more rapidly than expected for an
iid sequence; a value of T − µT much smaller than zero indicates a positive correlation
between neighboring observations.

The difference-sign test. For this test we count the number S of values i such that
yi > yi−1, i = 2, ..., n. For an iid sequence and for large n, S is approximately N(µS, σ

2
S),

where µS = (n−1)/2 and σ2
S = (n+1)/12. A large positive (or negative) value of S−µS

indicates the presence of an increasing (or decreasing) trend in the data. We therefore
reject the assumption of no trend in the data if |S − µS|/σS > Φ1−α/2.

The rank test. The rank test is particularly useful for detecting a linear trend in the
data. We define P as the number of pairs (i, j) such that yj > yi and j > i, i =
1, ..., n− 1. For an iid sequence and for large n, P is approximately N(µP , σ

2
P ), where

µP = n(n − 1)/4 and σ2
P = n(n − 1)(2n + 5)/72. A large positive (negative) value

of P − µP indicates the presence of an increasing (decreasing) trend in data. The iid
hypothesis is therefore rejected at level α if |P − µP |/σP > Φ1−α/2.

The minimum AICC AR model test. A simple test for whiteness of a time series is
to fit autoregressive models of orders p = 0, 1, ..., pmax, for some large pmax, and to
record the value of p for which the AICC value attains the minimum. Compatibility of
these observations with white noise is indicated by selection of the value p = 0.
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