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Abstract

Traditional quality measures for image coding, such as the peak signal to noise ra-
tio, assume that the preservation of the original image is the desired goal. However,
pre-processing images prior to encoding, designed to remove noise or unimportant
detail, can improve the overall performance of an image coder. Objective image
quality metrics obtained from the difference between the original and coded im-
ages cannot properly assess this improved performance. This paper proposes a new
methodology for quality metrics that differentially weighs the changes in the image
due to pre-processing and encoding. These new quality measures establish the value
of pre-processing for image coding and quantitatively determine the performance
improvement that can be thus achieved by JPEG and wavelet coders.

1 Introduction

In image coding, the artifacts introduced by standard coders are uncontrolled
or unpredictable in detail because the image representations are designed to
reduce statistical redundancy, rather than to provide progressive image degra-
dation. This characteristic may allow only a very small compression in order to
maintain acceptable image quality. One approach to a better control of image
quality, is to pre-process the image in an adaptive fashion so as to introduce
imperceptible or controlled degradations to the image [12,14]. In previous work
using this approach, an effective perceptually transparent coder was designed
[6]. The key to making such an alternative approach to image coding possi-
ble is the use of methods that provide the necessary local control of image
degradation. One recently developed technique, based on inhomogeneous dif-
fusion [12,14], does so effectively.

Such pre-processing, when combined with a standard lossy or lossless coder,
can also result in an improvement in overall coding performance [2,1,4]. At
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lower levels of quality, the adaptive filter allows controlled image simplification
so that the coder can compress it more effectively. However, if pre-processing is
applied, the original image is no longer a suitable numerical reference to which
the decoded image should be compared for an objective measure of image
quality. Measuring and optimizing this subjective performance improvement
at both high and lower levels of quality is the subject of this paper. It should
be noted that similar pre-processing methods have been used to improve the
performance of the MPEG coder [30].

Traditionally, objective measures of image quality are functions of the dif-
ference between the original and encoded image. Preserving the numerical
integrity of the original image is thus the implicit goal of the coder. If the
original image is processed prior to encoding, the changes introduced by such
processing will lead, for instance, to an increase in mean square error that may
be inferred to be a loss of subjective image quality, although no perceptible
changes may have been introduced by pre-processing. As an alternative, the
distortion introduced by the coder could be measured with respect to the pre-
processed image. In this case, no weight is given to perceptible degradations
introduced by pre-processing. Thus, both alternatives in are unsatisfactory
for objective measures of the overall subjective effect of pre-processing and
coding.

To assess the degradation caused by pre-processing, we use a human vision
system (HVS) model for the prediction of the threshold of visibility of im-
age degradations. In recent years, several HVS model based metrics have been
proposed for evaluating objective image quality [33,10,26,29,20]. In particular,
some HVS metrics are successful in predicting the perception of a wide range
of simple stimuli as well as artifacts introduced by image processing and cod-
ing [20,10,9]. In this work, we use the Visible Differences Predictor (VDP) [10]
developed by Scott Daly.

Using the VDP, we have developed two metrics which are applicable to the
problem. The objective quality metrics we use are variations of the Peak Signal
to Noise Ratio (PSNR) and the Picture Quality Scale (PQS) [23]. Using these
two global metrics, we study the effect of pre-processing on the performance
of JPEG and wavelet coders.

This paper is organized as follows: after this introductory section, we explain
preprocessing for image coding in Section 2. The diffusion based preprocessing
scheme is briefly described in Section 3. The VDP and PQS algorithms, on
which the objective quality metrics are based, are then briefly outlined in
Sections 4 and 5. In Section 6, we explain the methodology used to quantify
coder performance. Section 7 describes our simulation results using the two
metrics for the JPEG and wavelet coders. In Section 8, we compare coder
performance on pre-processed images. Finally, in Section 9, we discuss the



results and conclude.

2 Pre-processing and Image Coding

In the context of image coding, desirable effects of pre-processing are to remove
noise and simplify the image data in such a way that it is easier to encode. The
coder will remove noise, especially at low quality, by coarsely quantizing the
high frequency components. It will also simplify the image to decrease the bit
rate, and in the process introduce undesirable artifacts. A suitably designed
adaptive filter may provide better control, than increased compression, over
the visual degradation introduced.

We use an adaptive, anisotropic filter, denoted the Corner Preserving Filter
(CPF) [14,12,13] as the pre-processor, with the number of iterations control-
ling the degree of pre-processing. The choice of the pre-processing filter is
very important. The CPF is based on a mean curvature diffusion algorithm
where the local image properties control the diffusion. It has been shown
that this filter preserves important image structure while effectively remov-
ing noise [12,4,14,13]. For compression, a standard JPEG coder [15] and the
best performing wavelet coder obtained from a previous study [19,3] are used.
The wavelet code computes a four level dyadic decomposition of the image
with the biorthogonal “9-7” wavelet of Barlaud [7], quantizes the coefficients
with a HVS based quantizer, and then losslessly encodes the quantized coef-
ficients [19,3]. The coder exploits the spatial dependencies between non-zero
coefficients by encoding a binary activity mask, using a context code similar
to JBIG [17], and then encodes the coefficient magnitudes by mapping them
onto a binary tree and encoding them with the same binary arithmetic encoder
(the QM-code) [17].

The analysis of the effect of pre-processing on coding performance is divided
into two parts:

(1) Perceptually Transparent Processing: evaluation of pre-processing for no
perceptible image degradation. The pre-processing was verified to be per-
ceptually equivalent on a calibrated monitor. The reduction in noise by
pre-processing improves the effectiveness of the coder.

(2) Perceptually Lossy Processing: comparison of the coder performance for
different levels of pre-processing. As the number of pre-processing iter-
ations is increased, perceptual transparency is no longer preserved, but
adaptive filtering preferentially preserves the integrity of visually signifi-
cant areas of the image. Here, the purpose of pre-processing is to control
the distribution of errors, so that they are less perceptible after coding,
and simplify the image, so that fewer bits are needed to encode it. Even-



tually, though, more pre-processing introduces clearly visible artifacts
which degrade the overall coder performance. Again, the quality metric
should reflect these observations, and indicate the best trade-off between
distortion due to the pre-processing and distortion due to compression.

For the objective determination of quality, we use two metrics:

(1) PSNR as modified by the VDP, denoted VPSNR.
(2) A measure based on the PQS methodology and distortion factor images,
also modified by the VDP, denoted VPQS.

Next, we describe the adaptive filtering technique used in this work.

3 Mean Curvature Diffusion and the Corner Preserving Filter

Selective noise removal, preservation of features and controlled degradation
of the perceived image quality is not possible using space invariant linear
filtering. Anisotropic diffusion based adaptive filtering achieve these objectives
effectively, by making use of local image properties.

3.1 Anisotropic diffusion

In adaptive noise reduction [25], an interactive data dependent filtering algo-
rithm is used. It can be shown that filtering with a family of Gaussian kernels
with variance parameter ¢ is equivalent to solutions of the partial differential
diffusion (heat) equation

I, = V%I = (I, + I,) (1)

where the subscripts denote partial derivatives and V? is the Laplacian. In
anisotropic diffusion, we allow the conduction coefficient, c(z,y,t), to vary
with respect to space and time, so that

L=V [c(x,y,t)VI] = c(a:,y,t)Vzl +Ve- VI (2)

where V represents the gradient operation and V-, the divergence. Typically,
¢ = g(VI), where g is a nonlinear function to be specified. The mean curvature
diffusion (MCD) of [12] is defined by choosing

¢ = g(VI) = ————— (3)

J1+AVIP



where A is a scaling parameter that controls the convergence properties of
the algorithm. As such, it can be shown [12] that the local rate of diffusion is
equal to twice the mean curvature, H, of the image surface about each pixel.
This leads to a very effective, adaptive, iterative noise reduction technique.
MCD preserves image structure, characterized by regions of consistently high
gradients, and substantially reduces independent, random noise. It, however,
also tends to round corners and other features characterized by higher order
structure, such as edge intersections.

In a more recent work, El-Fallah [4] proposed a modification to MCD by
choosing

1

Vel t RE(V - 1)

(4)

to better preserve corners. Using this filter, denoted the corner preserving
filter (CPF), more iterations are allowed (yielding more noise reduction) while
maintaining high image quality and/or perceptual transparency [14].

In the continuous case, anisotropic diffusion corresponds to a solution of the
heat equation and takes continuous surfaces into minimal surfaces. As such, it
enhances edges and preserves their location and sharpness. This is in contrast
to isotropic filtering operations which often blur and smooth important image
features. In the discrete case, anisotropic diffusion is implemented as a spatially
and temporally adaptive filter. Figure 1 illustrates and compares isotropic and
anisotropic diffusion techniques for lossy processing. For processing close to
perceptual transparency, in flat portions of the image, ten CPF iterations
result in more than 10 dB of noise reduction and a significant decrease in
entropy, while introducing no perceptible changes. Note that, for noisy images,
adaptive noise removal may actually improve the appearance or subjective
image quality, by reducing perceptible noise in flat regions and increasing the
apparent edge contrast.

Next, we describe the VDP algorithm which we use to predict perceptible
changes to the image introduced by pre-processing.

4 Visible Differences Predictor

The VDP algorithm proposed by Scott Daly [8] is a multichannel human vision
model which takes an image processing approach to quality prediction. The
inputs to the algorithm are the original and distorted images and the viewing
conditions. The output is a map showing the error detection probabilities.



(a) 25 iterations of isotropic diffusion (b) 100 iterations of CPF filtering.
(Gaussian blurring).

Fig. 1. Comparison of isotropic and anisotropic diffusion. The original image was
corrupted by Gaussian noise with variance 20 and both techniques remove the same
amount of noise.

The model describes threshold perception only; all suprathreshold errors are
mapped to a probability of 1.

The overall model (Figure 2) is implemented as a cascade of sub-models to
incorporate the known properties of the human visual system. The main com-
ponents of the model are:

(1) perceptual nonlinearity,

(2) contrast sensitivity function (CSF),

(3) orientation and frequency selective cortex bands,
(4) masking properties,

(5) psychometric function, and

(6) probability summation.

Complete details are given in [8,10]. The algorithm has been shown to be in
agreement with several psychophysical experiments [9]. In addition, the model
has been successfully used to measure many imaging artifacts, e.g. compression
distortions, banding, blur and tone-scale changes, etc. [10].

We now summarize the main components of the algorithm. A shift invariant
nonlinearity models the light adaptive property of the retina. A display cal-
ibration model is used to map the gray levels into luminance values on the
monitor. These two transformations have been combined into a transformation
denoted perceptual nonlinearity.
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Fig. 2. VDP construction.

The CSF quantifies the visual response as a function of the spatial frequency.
The cortex bands block implements the spatial frequency and orientation se-
lectivity of simple cells in the cortex. The decomposition into multiple spatial
frequency and orientation tuned channels is achieved by a cascade of frequency
selective filters (denoted as difference of mesa (DOM) filters [10]) and orien-
tation selective fan filters based on the cortex transform [27]. This selectivity
yields specific frequency and orientation tuned bands called cortex bands.

The DOM filters have octave bandwidths and are symmetric on a log frequency
axis. The fan filters have a tuning bandwidth of 30 degrees. The present im-
plementation has 5 DOMs and 6 fans yielding a total of 31 cortex bands,
including the baseband. Making use of results from sinusoidal masking and
noise experiments, Daly proposed a masking function of the form

o=

T. = (1 + (k1 (kamn)*)%)®, (5)

where the masking effect due to the image activity is evaluated for each cor-
tex band. Threshold elevation due to masking is a nonlinear function of the
normalized mask contrast m,. Here, s is the learning effect slope and takes
values between 0.7 and 1, k; = 6~7/3, ky = 61%/% and b = 4 [10].

The contrast difference of the errors for each location in a band is mapped
through a psychometric function of the form

Ple)=1—¢ & (6)

where c¢ is the contrast of the error, a the contrast threshold, and (§ the
slope of the psychometric function. This yields a detection probability map
for each band. Since the channels are assumed to be independent, an error
above threshold in any of the cortex bands would be perceivable. Hence, the
probability maps for all 31 bands are combined to give a single map of the



error detection probability, as a function of location in the image, using

P,(m,n)=1-— II @@= P(m,n)) (7)

k=0..5,=1..6

where k = 0 corresponds to the baseband.

For the present work, we ignore the sign of the error and compute a binary
map where all errors that have a detection probability greater than 0.9 are
mapped to a value of 1, and categorized as supra-threshold errors. It is this
map that we use to drive our new quality metrics.

In addition to the threshold map provided by the VDP, our quality metrics
rely on the PSNR and PQS supra-threshold metrics, which are outlined next.

5 Picture Quality Scale

The PQS metric is based on the perceptual properties of human vision and on
extensive engineering experience with the observation of image disturbances
due to image coding [23,22]. Coding distortions can be typically identified as
blurring, ringing, blocking, etc. The severity of these distortions to a human
observer differs according to specific spatial structure of the artifacts. Hence,
different distortions should be combined reflecting their degree of subjective
visibility [23,31]. The PQS identifies five important coding distortions and
combines them to give a global numerical quality measure [23,22]. The PQS
metric has been successfully used in several applications, such as the design of
an electro-optical imaging system [24], the optimization of coders [5], and the
comparison of coder performance [19]. In related work, Xu et al. [32] proposed
a segmentation based error metric using a similar method based on correlation
with an impairment scale, and Davies et al. [11] developed a similar metric
using a nonlinear neural network. All of these methods consider the distortions
from a ‘high level’ perspective by identifying the structure in the errors. Similar
methods have also been applied to video [28].

A simple overview of the algorithm is now presented. Complete details are
given in [23]. Figure 3 summarizes the steps used in the construction of PQS.
First, the image signal is transformed into one which is proportional to the
visual perception of luminance using a power law and then the frequency
weighted errors e,(m,n) are obtained by filtering with a CSF-like function
)(Sa). Perceived image disturbances are identified and the corresponding ob-
jective quality factors which quantify each image degradation are computed
as functions of e, (m,n). The perceived disturbances lead to numerical mea-
sures in terms of distortion factors F;. At the first stage, factor images f;(m,n)
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Fig. 3. PQS construction.

are obtained by performing local computations on e, (m,n). Next, distortion
factors F; are obtained by pooling the corresponding factor images. !

The PQS makes use of five factors, the first two factors account for random
errors, the third for blocking artifacts, and the last two factors, dominant at
high quality, correspond to structured errors and masked errors near edges.
The global value for PQS is given by the linear combination of the principal
components, {Z;}, computed from the distortion factors, {F}}, so that

J
PQS=by+Y b -Z; (8)

j=1

where {b;} are parameters to be determined.

PQS is designed to be in good correspondence with the subjective evalua-
tion of image quality. The subjective assessment of quality is performed under
controlled viewing conditions, using the impairment scale of ITU-R recom-
mendation 500, resulting in a Mean Opinion Score (MOS) that ranges from 1
to 5 [16]. The coefficients, {b;}, are computed using multiple regression anal-
ysis (MRA) [18] between the distortion factors and the experimentally deter-
mined, subjective MOS ratings. The applicability of the MRA weights depend
on the suitability of the dataset used in the regression. In the present ver-
sion of PQS, the dataset consists of five different images which were distorted
using JPEG and standard wavelet and subband coders [23]. The correlation
coefficient between PQS and the MOS scores, R = 0.92, which represents a
great improvement as compared to a correlation of R = 0.54 when only the
frequency weighted MSE (F3) is used. A detailed description of PQS and its
performance for the full range of quality can be found in [23].

1 Note that factor F; does not make use of the same source transformations as the
other factors. It is included in PQS because it is a commonly used CSF weighted
distortion.



Fig. 4. Error visibility map for Lena: (left) CPF50 preprocessed image, (right) over-
layed VDP mask.

6 New Quality Metrics

We now develop two new objective quality metrics that combine threshold
visibility maps, as indicated by the VDP output, with the supra-threshold
objective quality measures, PSNR and PQS.

The VDP predicts areas of an image where distortions will be perceptible.
This suggests that the binary mask produced by the VDP be integrated into
the quality evaluation methodology of encoders for pre-processed images. We
apply the VDP to the difference between the original and the pre-processed
images. The VDP mask will thus indicate portions of the image where the
processing has introduced perceptible changes with respect to the original.
Figure 4 shows the Lena image after 50 iterations of the CPF (lossy pre-
processing) and the resulting VDP mask. Areas where the pre-processing in-
troduces suprathreshold errors (mask values of 1) are mapped to white and
overlaid on the original image for comparison. Note that the striped appear-
ance of the VDP mask is mainly due to ignoring the sign of the supra-threshold
€rrors.

6.1 VPSNR: extension of PSNR using VDP

Let M(m,n) be the binary mask produced by the VDP, where 1 is assigned
to areas of the image where the errors are perceptible. Let I,(m,n) be the
original image, I,(m,n) the pre-processed image, and I.(m,n) the encoded
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image. We can now compute two error images

Iio(m,n) = M (m,n)[I.(m,n) — I,(m,n)] (9)

and

Lgp(m,n) = [1 = M(m,n)][le(m,n) — I(m,n)] (10)

where [1— M (m,n)] is the complement of M (m,n) and the subscripts indicate
the reference image used.

I;,(m,n) only includes errors in areas where the VDP indicates pre-processing
has introduced perceptible changes. In such areas, the encoding distortions
should be evaluated with respect to the original image as indicated. On the
other hand, I4,(m,n), evaluated in areas where pre-processing does not intro-
duce perceptible errors, uses the pre-processed image as a reference.

We now evaluate the performance of the coders by adding the contributions

due to Ij,(m,n) and Ig(m,n). Thus, a modified mean-square error is given
by

MSE = Y " I7 (m,n) + Igp(m, n), (11)

m,n

and the (V)PSNR is computed as usual.

6.2 VPQS: extension of PQS using VDP

Using a similar approach, we compute the PQS value based on the two domains
M(m,n) and [1 — M (m,n)]. As described in Section 4, the factor images are
are obtained from local computations on the error image. Here, two such error
images are computed, [I.(m,n) — I,(m,n)] and [I.(m,n) — I,(m,n)], from
which two sets of factor images are obtained, respectively, {f;,(m,n)} and
{fip(m,n)}. Each pair of factor images is combined to obtain

le(mv n) = M(mvn)in(m7 n) + [1 - M(m7 n)]flp(m7 n)? (12)

which are normalized and pooled to obtain the global PQS distortion factors
and the VPQS value, using exactly the same methodology as used in PQS
(and shown in Figure 3).
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7 Experiments and Results: Distinct Coders

First, for clarity, we characterize the performance of the JPEG and wavelet
coders separately. In the next section, we compare the performance of the two
coders in the pre-processing framework.

In our study, we considered the four images shown in Figure 5, i.e. Bldg,
Lena, Wheel and Smile. The subjective evaluation of images used a Super
Match monitor which had a gamma of 2 and a peak luminance of 72 cd/m?.
Ambient light levels were reduced to a minimum. The viewing distance was
4 times the picture height and all other viewing conditions met the ITU-R
recommendations [16]. In this experiment, the original and pre-processed im-
ages were compared side by side. The presentation time was 12 seconds, and
the three subjects were asked if the two images were perceptually equivalent.
The number of iterations for perceptual transparency was consistent across
subjects, but was image dependent. However, 5 iterations resulted in percep-
tual transparency for all images and observers. The perceptual equivalence of
the CPF5 images with the originals was also verified by computing the corre-
sponding VDP maps which, in all cases, indicated that the errors were at, or
below, the visual threshold.

Hence we consider CPF5 to be a noise reduced image which is perceptually
equivalent to the original image (CPF0). We also performed 10, 20, 30 and
50 iterations of the CPF in our study of the effect of lossy pre-processing on
coder performance. In all the experiments, the JPEG coder was used at quality
settings between 5 and 90 in steps of 5. We roughly characterize the range for
quality settings 5 to 40 as low quality and 45 to 90 as high quality. For the
wavelet coder, we use a scaling parameter ranging from 1 to 70. This scales
the HVS based quantization matrix [19,3] and results in a range of bit-rates.
Visually, we roughly characterize the range from 5 to 25 as high quality and
30 to 70 as low quality.

7.1 Perceptually Transparent Pre-Processing

We first verified that the conventional PSNR and PQS using the original
image as a numerical reference show an increase in distortion, and thus do not
illustrate the value of pre-processing. However, as discussed, we also visually
verified that CPF5 pre-processing is perceptually transparent. Thus, the new
quality metrics are necessary to quantify the gain achieved by pre-processing
for such imperceptible changes to the image. Figure 6 illustrates the benefits
of pre-processing for both coders, using CPF0 and CPF5, as measured using
VPSNR and VPQS, for the Lena image. It is apparent from the graphs that

12
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Fig. 5. Test Images. From left to right, then top to bottom: Bldg, Lena, Wheel, and
Smile.

pre-processing is beneficial at higher levels of quality for both coders. For
example, at 40 dB VPSNR, the bit rate required by the wavelet coder is
reduced from 1.04 bpp to 0.69 bpp. Using the more perceptually correct VPQS
measure, at a VPQS value of 4.6, indicates a decrease from 1 bpp to 0.83 bpp.

7.2 Comparison for Increased Pre-Processing

We now investigate whether pre-processing beyond perceptual transparency
provides an improvement in coder performance. As mentioned, we use the
adaptive filter for controlled image simplification so as to obtain better coding
performance. However, we expect that, as we increase the number of itera-
tions, pre-processing will eventually degrade the perceived image quality as
it introduces visually significant artifacts without a commensurate gain in

13
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Fig. 6. Coder performance for perceptually transparent pre-processing (Lena image).

bitrate.

7.2.1 VPSNR

We observe that for both coders, the effect of pre-processing depends on both
the number of CPF iterations and on the target bit rate. Note, in particular,
that the graphs for different levels of pre-processing intersect (Figures 7(a)
and 7(c)). As a general rule, 20 iterations (CPF20) gives the best overall per-
formance. This can be considered to be the best compromise between the con-
trolled distortion and simplification due to pre-processing and the additional
degradations introduced by the coder. Table 1 summarizes of the VPSNR im-
provement results obtained for both coders using the best CPF filter. The
performance improvement is computed with respect to the CPF5 result. The

14



45

VPSNR

bpp

(b) JPEG: VPQS

o
=z
n
[
>
! v----v CPF20
Ll I B R »——= CPF30|
1 +-=-+ CPF50
1 ‘ l
0.0 0.5 10 15
bpp bpp
(c) wavelet: VPSNR (d) wavelet: VPQS

Fig. 7. Coder performance for perceptually lossy pre-processing (Lena image). For
clarity, only every third data point is marked.

first four rows correspond roughly to lower quality images and the bottom
four rows to higher quality levels.

Concentrating on the wavelet coder, Table 2 shows representative percentage
decreases in the bitrate for a fixed value of VPSNR using the best CPF filter.
These results indicate that the gain is image dependent, and that significant
gains are possible for Lena, Wheel and Smile, at higher quality levels.

Note that for Smile, the best results are obtained at 10 CPF iterations, as
indicated in Figure 8. For this image, we have verified that additional pre-
processing produced clearly visible artifacts.

15



Wavelet JPEG Best

Image | rate | Improv. | rate | Improv. CPF
(bpp) | (dB) | (bpp) | (dB) | iterations

Bldg 0.32 0.22 0.60 0.4 20
Lena 0.20 0.84 0.40 1.0 30
Wheel | 0.15 0.23 0.40 0.5 20
Smile | 0.07 0.60 0.25 0.55 10
Bldg 1.00 0.46 1.20 0.5 20
Lena 0.80 2.25 1.00 2.0 20
Wheel | 0.55 1.25 1.00 14 20
Smile | 0.25 0.84 0.50 1.0 10

Table 1
Performance improvement over CPF5, as measured by VPSNR.

VPSNR | rate | rate decrease
Image | (dB) | (bpp) (%)
Bldg 40.0 0.99 4.3
Lena 40.9 0.80 28.8
Wheel 45.2 0.55 14.2
Smile 46.7 0.25 12.5

Table 2
Performance improvement over CPF5 for the wavelet coder, as measured by VP-
SNR.

7.2.2 VPQS

The results using this metric again establish the performance improvement due
to pre-processing (Figures 7(b) and 7(d) and Table 3). In general, this metric
indicates that the gain is more modest, as compared to the predictions by the
VPSNR metric. Table 3 shows the highest percentage improvement in bitrate
for a fixed value of VPQS using the best CPF filter and the wavelet coder, and
confirms significant gain for Lena, Wheel and Smile, at higher quality levels.

8 Experiments and Results: Comparison of coders

In this section, we compare the performance of both coders, using the best
CPF pre-processing results from the previous section. We use both metrics,

16



bpp

Fig. 8. JPEG coder performance for perceptually lossy processing (Smile image).
For clarity, only every third data point is marked.

VPQS | bitrate | rate decrease
Image (bpp) (%)
Bldg 4.7 1.0 5
Lena 4.5 0.8 17.5
Wheel | 4.6 0.5 15.8
Smile 4.0 0.25 10

Table 3
Performance improvement over CPF5 for the wavelet coder, as measured by VPQS.

VPSNR and VPQS, in the comparison.

In general, the wavelet coder performs better than the JPEG coder, specially
at lower bit-rates. Figures 9(a) and 9(c) compare the two coders, for the Lena
and Bldg images, using the VPSNR metric. Using this metric, we observe an
improvement of 42% for Lena at a bitrate of 0.40 bpp. For Bldg, the gain is 22%
at a bitrate of 0.60 bpp. Figures 9(b) and 9(d) show the same comparison using
the VPQS metric. The gains, in this case, are more modest, an improvement
of 27% at 0.40 bpp for Lena and 20% at 0.40 bpp for Bldg.

It can be seen that although both metrics are able to demonstrate the improve-
ment in performance, the VPQS measure more accurately characterizes the
wavelet coder gain over JPEG (as verified visually) at lower levels of quality.

17
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Fig. 9. Coder comparison using VPSNR and VPQS. Results are based on optimal
number of CPF iterations (for these images, 20).

9 Discussion and Conclusions

The methodology presented in this paper addresses, in part, the problem of nu-
merical evaluation of image quality resulting from an image filtering operation,
by differentiating between changes to the image that are perceptually benign,
from modifications that may be detrimental. For image coding at high quality,
large portions of the image do not undergo perceptually important changes
in either processing or encoding, and the method we have presented identi-
fies such regions. For lower quality levels, although we take the modifications
introduced by the filtering operation into account, we observe that there is a
coding gain due to the controlled image simplification prior to encoding.
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The use of an indicator mask for perceivable errors provides the proper method-
ology for the evaluation of the effect of pre-processing on the performance of
coders. Both the PSNR and the PQS metrics, when combined with the VDP
mask, are successful in predicting the performance improvement due to pre-
processing.

However both metrics have specific limitations. The VPSNR metric is, in
general, less robust and overestimates the improvement due to noise removal,
specially at high quality. This can be associated with the difficulty commonly
seen when using the PSNR as a quality metric; since it is a pixel-based distance
metric, which ignores the perceptual properties of the human visual system
(HVS) [21,23]. The HVS is more sensitive to disturbances in areas of structure
in the image. The VPSNR metric, however, gives importance to the magnitude
of the error and ignores the information about its location in the image.

The VPQS identifies five important coding distortions and combines them to
give a global value for quality based on weights obtained from the MRA. The
applicability of the MRA weights depends on the suitability of the dataset
used in the regression. In the present version of VPQS, the dataset consists of
five different images which were distorted using JPEG and standard wavelet
and subband coders [23].

Note that we did not consider other suprathreshold objective quality metrics,
based directly on HVS models, that have been published recently [33,26,29,20].
The choice of the objective quality metric used is not crucial in the sense that
the methodology can be used for any objective metric which uses a reference
image to compute image quality.

In conclusion, this paper not only gives a methodology for quantifying coding
performance for pre-processed images but shows that pre-processing prior to
using a standard coder gives considerable improvement in coding performance.
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