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Abstract

An exclusion region for a triangulation is a region that can be placed around each edge of the
triangulation such that the region cannot contain points from the set on both sides of the edge.
We survey known exclusion regions for several classes of triangulations, including Delaunay,
Greedy, and Minimum Weight triangulations. We then show an exclusion region of larger area
than was previously known for the minimum weight triangulation, which signi�cantly speeds
up an algorithm of Beirouti and Snoeyink. We also show that no exclusion region exists for
the general class of locally optimal triangulations, in which every triangulation edge optimally
triangulates the region determined by its two incident triangles. ? 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Given a �nite set S of points in the plane, a triangulation is a maximal set of
non-intersecting line segments that join points in S. Triangulations are of interest in
areas such as �nite element methods and interpolation of numerical bivariate data,
where each triangle de�nes a facet along which a projection of each point can be used
in piecewise linear interpolation [19]. Of the many possible triangulations, in this paper
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we look at four particular classes of triangulations that come from optimizing some
criterion: Delaunay, minimum weight, Greedy, and locally optimal triangulations.
In the rest of this section, we de�ne these classes more precisely. In Section 2,

we de�ne exclusion regions and survey those that are known. Section 3 establishes
larger exclusion regions for the minimum weight triangulation than were previously
known. Section 4 shows that the class of locally optimal triangulations does not have
an exclusion region.

1.1. Some optimal triangulations

The Delaunay triangulation (DT) of a �nite set S of points in the plane is the
triangulation of S in which the interior of the circumscribed circle for any triangle is
free of points from S. The DT is dual to the Voronoi diagram, and is used in many
proximity problems [19]. Computation of the Delaunay triangulation can be done in
O(n log n) time by a number of algorithms, including divide and conquer methods
[19]. When the point set is drawn at random from certain probability distributions, it
is possible to compute the DT in O(n) expected time and space.
The DT also has the following interesting property: If the angle sequence for a trian-

gulation is the list of all angles of the triangles in increasing order, then the Delaunay
triangulation is the triangulation with the maximum angle sequence, where angle se-
quences are compared lexicographically. Thus, the DT maximizes the minimum angle.
For some applications, it is useful to consider the triangulation that minimizes the

total length of all edges in the triangulation (where the length of an edge is the distance
between its endpoints measured by the standard Euclidean metric). Such a triangulation
is referred to as the minimum weight triangulation (MWT).
The problem of �nding the MWT for n-vertex simple polygons can be solved in

O(n3) time [14,10], but it is not known how to e�ciently compute the MWT of a
general set of points S. In fact, the complexity of �nding an MWT — whether it is
polynomial time or NP-hard — is one of the few questions that remains open from
Garey and Johnson’s classic book on NP-completeness [11,12]. Some approaches to
computing the MWT for general point sets have used the method of �nding sets of
edges that are subsets of the MWT. These subsets include the Beta-skeleton (a subset
of the DT) [13] and the LMT-skeleton [9], which uses a local de�nition of minimality.
The current fastest implementations use exclusion regions as �lters before computing
a variant of the LMT-skeleton [2,3,9].
The greedy triangulation (GT) is the triangulation de�ned procedurally by a greedy

algorithm that starts by sorting all
( n
2

)
pairs of points by lengths of the segments con-

necting each pair. The algorithm then builds the GT one edge at a time by examining
each edge e in increasing order of length: adding edge e if e crosses no previously
added edges, or discarding e otherwise.
The greedy algorithm as described takes 
(n2 log n) time to sort all O(n2) possible

edges. Research on computing the GT by other methods have yielded an algorithm
with O(n log n) worst-case time [20] and an algorithm with expected linear time and
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space usage [6,17]. These approaches utilize the constrained Delaunay triangulation or
e�cient computation of a superset of the GT of size o(n2).
The GT has been proposed as an approximation to the MWT. For point sets on a

convex polygon and point sets taken from a uniform distribution, the GT is expected
to approximate the MWT within a constant factor [17], although in the worst case it
may be o� by a factor of �(

√
n) [15,16].

A triangulation is a locally optimal triangulation (LOT) if every quadrilateral formed
by two adjacent triangles is optimally triangulated with respect to the Euclidean metric.
That is, either the quadrilateral is non-convex, or the other diagonal is at least as long
as the diagonal that is in the triangulation.
It is not hard to see that the class of LOTs includes both the GT and the MWT.

(Many examples exist where the Delaunay triangulation is not locally optimal [18].)
Local optimality is one of the primary properties of the GT that is used in analyz-
ing its usefulness, and in developing algorithms to compute it. Relaxing the greedy
edge-ordering requirement, but still requiring local optimality may lead to triangulations
that are good MWT approximations, but are much simpler to compute. Empirical evi-
dence indicates that other locally optimal triangulations may be useful in applications [8].

2. Exclusion regions known for these triangulations

Das and Joseph [5] �rst observed that the edges of these globally-de�ned trian-
gulations may satisfy locally-de�ned criteria, which we call “exclusion regions”. An
exclusion region provides a way to show locally that an edge cannot be part of a
global triangulation. Speci�cally, the edge cannot be in the triangulation if there exist
two points in the set to be triangulated that lie within the exclusion region on opposite
sides of the segment.

De�nition 1. Let p and q be two points in the plane. The region R is an exclusion
region for edge pq for a given class of triangulations (e.g. MWT, GT, or LOT) if
no triangulation in that class contains pq when the set of points to be triangulated
contains p; q, and at least one point from region R on either side of pq.

Before considering the consequences of having an exclusion region, let us consider
some examples, in Fig. 1.
The empty-circle de�nition of the DT naturally leads to the observation that any

circle whose diameter is an edge e in the Delaunay triangulation has at least one of
its two semi-circles (separated by e) free of points from the set. In fact, we observe:

Lemma 1. For the Delaunay triangulation, the open disk with diameter pq is an
exclusion region, and no open region including the disk is an exclusion region.

Proof. For an edge e of the DT, take the empty circumcircle of one of its adjacent
triangles. If the center lies on e, then this circumcircle is the exclusion region and both



52 R.L. (Scot) Drysdale et al. / Discrete Applied Mathematics 109 (2001) 49–65

Fig. 1. Exclusion regions for Delaunay, minimum weight, and greedy triangulations.

semi-circles are empty. Otherwise, the semi-circle of the transformed exclusion region
on the same side of e as the center is contained inside the circumcircle and is therefore
empty.
For any larger region R′, choose a point c ∈ R′ that is outside the open disk

with diameter pq and another point d ∈ R′ just inside the disk so that rs goes
through the midpoint of pq. The triangles �pqr and �pqs form a DT, but R′ con-
tains points from S on both sides of pq. Therefore R′ is not an exclusion region for
edge pq.

Das and Joseph de�ne a diamond-shaped exclusion region for the MWT [5]. We
restate their result as the following lemma:

Lemma 2. The union of two triangles with a shared base pq and with base angles
�=8 is an exclusion region for the MWT.

In [7], Dickerson et al. give an exclusion region for the GT. We restate it here.

Lemma 3. A circle of diameter pq=
√
5 centered at the midpoint of pq is an exclusion

region for the GT.

Drysdale et al. [6] proved that this region could be enlarged by adding on the regions
bounded by tangents from p and q. Das and Joseph showed that their diamond-shaped
exclusion region for the MWT is also an exclusion region for the GT [5].
The fact that a class of triangulations has an exclusion region has two potential

bene�ts: First, for any exclusion region R, we can create a test for edges, where an
edge passes the test if at least one of R’s two subregions is free of points. Dickerson
et al. [7] show that for point sets taken from a uniform distribution over a convex
body, only O(n) pairs of points are expected to pass the exclusion region test. This
allowed faster algorithms for computing the GT by only considering edges that pass the
exclusion region test. Beirouti and Snoeyink [3] utilize the diamond-shaped exclusion
region and known subsets of the MWT to compute the MWT on sets of up to 40,000
uniformly distributed points in 5 minutes; our improvement of this exclusion region in
Section 3 cuts the time in half or lets them double the number of points. The exclusion



R.L. (Scot) Drysdale et al. / Discrete Applied Mathematics 109 (2001) 49–65 53

Fig. 2. New disk and diamond tests with dark shading; previous tests with light shading.

region helps by allowing them to consider only edges that produce at least one empty
semi-region.
Second, if the exclusion region has non-zero area, then for a uniformly distributed

set of points, the total length of all edges in the triangulation will be a constant factor
of the length of the MWT. This can be proved by extending the approach of [7].
This immediately implies that the Delaunay and greedy triangulations are constant

factor approximations to the MWT on uniformly distributed points, which was already
known [4,17]. The authors had hoped to use this fact to show that any LOT is expected
to be within a constant factor of the MWT for uniformly distributed points. However,
we instead showed that no exclusion region can be de�ned for edges in the class of
LOTs.

3. Improving the exclusion region for the MWT

We improve the diamond-shaped exclusion region for the MWT to have base angles
�=4:6, and show a disk-shaped exclusion region with diameter |e|=√2. The current and
former diamond-shaped exclusion regions for the MWT and the disk-shaped region for
the MWT and the disk-shaped region for the GT from [7] are shown in Fig. 2. We
note that Aichholzer [1] has shown an upper bound on the largest possible disk-shaped
exclusion region for the GT that is about 3% smaller than the disk-shaped region
proved for the MWT.
As the dashed lines in Fig. 2 illustrate, neither the diamond nor the disk contains the

other region. We focus on the diamond because it is more amenable to the bucketing
used by Beirouti and Snoeyink [3], even though the disk region, when extended to
include the regions between the disk and the tangents to the endpoints of e, has slightly
greater area.

Theorem 4. The disk of diameter |e|=√2 centered at the midpoint of e and the
diamond formed by the two isosceles triangles with base edge e and base angles
�=4:6 are exclusion regions for the MWT.
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Fig. 3. Notation.

Our proof follows the same lines as earlier proofs of tests for the greedy and mini-
mum weight triangulations [5,7], but tightens many cases. After some de�nitions and
lemmas establishing the structure of the triangulation around e, we show how the
assumption that a point from S lies within the exclusion region on each side of e
allows us to modify the triangulation to decrease its weight.
Assume, for the rest of this paper, that the length of edge e is two, and that e goes

horizontally from p on the left to q on the right, as in Fig. 3. Let C be the disk with
diameter e, and let D be the disk of radius d centered at the midpoint of e. (We will
specify values for d later). Let w be the intersection of tangents to D through p and
q; point w is the apex of the diamond test.
Let c=

√
1− d2, which is the length of the segment from p to the point of tangency

for the line tangent to D through p. We will use parameters c and d extensively,
because they help unify the arguments for the disk and diamond tests. Speci�cally, for
the diamond test we choose d = 0:631, which makes the base angles �=4:6 and apex
w be 0.815 above edge e. For the disk test we choose the radius d= 0:707.
We use the following lemma frequently.

Lemma 5. Let xv be a chord of circle C above pq that intersects the test region —

either a disk of radius d¡ 1=
√
2 or the diamond with d¡

√
(18− 3√3)=22 ≈ 0:646.

If x is the endpoint closer to p; then px¡xv.

Proof. For the disk test this is easy to establish: The minimum length for any chord
of C that crosses disk D is 2c. The maximum of px occurs when v = q and xv is
tangent to circle D, so px62d¡ 2c6xv.
For the diamond test, we show that x is always left of the perpendicular bisector to

pv by considering the positions of the apex w that allow x to be on this bisector, as
illustrated in Fig. 4. Let o be the midpoint of e and assume that segments pv and ox
are perpendicular, making �pvx isosceles. Apex w must be at or above the intersection
of xv with the dashed vertical line through point o.
Denote the measure of “pvx by  . Then “pqx=  and “pox=2 . We observe

that “wxo= �=2−  , “xow = �=2− 2 , and “owx = 3 . By the law of sines,

ow =
ow
ox
=
sin(�=2−  )
sin 3 

=
cos  
sin 3 

:
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Fig. 4. Height of apex w.

Fig. 5. Regions A and B.

The derivative of ow with respect to  ,

d
d 

cos  
sin 3 

=− sin  sin 3 + 3cos  cos 3 
sin2 3 

;

=−cos 4 + 2cos 2 
sin2 3 

;

=−2 cos
2 2 − 1 + 2 cos 2 

sin2 3 
;

is zero when cos 2 = 1
2(
√
3 − 1), at which point ow attains its minimum value. Us-

ing trigonometric relations, we determine that when ow¡ 1
3

√
3 + 2

√
3, triangle �pvx

cannot be isosceles and px¡xv.

Now, suppose that the test region — diamond or disk — contains points a′ above
e and b′ below e, as shown in Fig. 5. Then segment a′b′ induces an ordering on the
triangles that it intersects. Let A be the set of triangles encountered when tracing a′b′

toward a′, starting from edge e and stopping with the �rst triangle that has a vertex
inside disk C. Let a be the vertex found inside C — if all else fails, then a = a′.
Similarly, let B be the triangles encountered when tracing from e toward b′ until a
vertex b is inside C.
The boundary edges of A are grouped naturally into two chains, one from p to a

and one from q to a. Although non-adjacent edges can conceivably share endpoints
(A need not be simple polygon), we can still de�ne a sequence of interior angles and
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Fig. 6. Limiting direction
*
st.

vertices for these chains by repeating shared endpoints. We treat a specially, and omit
it from both chains of boundary vertices.
We prove the next two lemmas for the chain of A containing p; by symme-

try they apply to that containing q and to chains of B. The �rst lemma is tech-
nical, but necessary to prove that triangulations that we de�ne in Lemmas 7–9 are
valid.

Lemma 6. If a chain of boundary vertices from p has no three consecutive vertices
r; s; and t with sq¿ tq that form an internal angle of less than �; then the clockwise
(cw) limit on the directions of the boundary edges is perpendicular to

←→
qw ; the tangent

from q to D.

Proof. If the internal angle at s is less than � — in other words, points r; s; t form
a right turn — then, by the hypothesis of the lemma, point t is outside of the circle
Cs centered at q through s, as illustrated in Fig. 6. Since all edges are below the line
←→
qw tangent to D, the limiting direction cw is perpendicular to

←→
qw .

The �rst edge is similarly limited, since its endpoints lie below
←→
qw and outside of

circle C. Finally, when the internal angle at s is ¿�, then the direction is limited by
that of the previous edge. This establishes the lemma.

Lemma 7. If the chain of boundary vertices from p has three consecutive vertices r;
s; and t with sq¿tq that form an internal angle of less than �; then the weight of
triangulation T (S) can be decreased by retriangulating A.

Proof. Let us assume that r; s; and t are the �rst triple that satisfy the conditions of
the lemma when adding triangles to form region A starting from edge e. This may
involve swapping the roles of p and q.
Let v1; v2; : : : ; vk be the opposite endpoints of chords from s, listed in order along the

boundary chain from q to a; the chords are shown dashed in Fig. 7 (Recall that point
a is not in either chain; in particular, t 6= a.) We retriangulate the fan of triangles in-
cident on s by replacing these chords with rt; tv1; tv2; : : : ; tvk−1, shown solid in Fig. 7.
We must show that this gives a valid triangulation of the fan having smaller
weight.
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Fig. 7. Retriangulating the fan.

Fig. 8. rst and v when sq62.

Lemma 6 applies to the chain from q and limits the direction of the fan’s boundary
edges so that none have direction between svi and tvi. Thus, the fan boundary does
not obstruct chord tvi. Moreover, chord rt remains in a convex region bounded by the
lowest chord out of t, the highest chord out of r, the edges rs and st, and segment of
C on the right side. Thus, we have a valid retriangulation.
To see that weight decreases, notice that the direction of st is also constrained so

that each vertex vi is closer to t than to s — the perpendicular bisector of st intersects
pq. Thus, svi¿tvi for all i¡ k, and the lemma will be established once we show that
svk ¿ rt.
In the rest of the proof, we investigate the worst placements of r; s; t and vk , and

show that svk ¿ rt holds. Since all chords cross the test region, points r; s and t lie left
of C between the rays vkp* and vkw* , where the later is the tangent to the test region.
Let v be the intersection of wvk with C. If vk is not v, and we replace vk with v, then
the region in which r; s and t may lie becomes strictly larger and svk¿sv (see Figs. 8
and 9)
Next, �x the circle Cs through s and centered at q; note that point t is inside Cs.

Let x and y be the points where vw* intersects the circles C and Cs, as shown in Fig. 8.
When sq¿ 2, let z denote the intersection of vp* and Cs, as shown in
Fig. 9.
If point r is outside of Cs, as in Fig. 8, the choice of rst as the �rst triple that

satis�es the hypothesis implies that the entire chain from p to s has all internal angles
¿� and lies inside Cp, the circle of radius 2 centered at q.
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Fig. 9. Maximum zx=yx when z = p.

Therefore, we can upper bound rt by the maximum of lengths yx; px; py, and, when
sq¿ 2; pz; zy; zx. We therefore show that sv is greater than each of these. In many
cases we use the observation that sv¿yv.
Case yx: This is easy, sv¿yv¿xy.
Case px: From Lemma 5, sv¿yv¿xv¿px.
Case py: sv¿yv=yx+xv¿yx+px¿py by Lemma 5, and the triangle inequality.
Case pz: zx¿pz since “zpx is obtuse. Hence, this case reduces to the zx

case.
Case zy: If angle “vyz is obtuse, then zx¿ zy, so we need not consider this

case. But when “vyz is not obtuse, then the fact that “zvy¡ �=4 implies sv¿
yv¿zy.
Case zx: We �rst show that the zx=yz is smallest when z=p; then we show that it

is less than one.
Let  denote the angle “zvy. The law of cosines gives us the following equations:

sq2 = zv2 + qv2;

sq2 = yv2 + qv2 + 2yv× qv sin  ;

zx2 = xv2 + zv2 − 2xv× zv cos  

To know whether zx¡yv, we check whether their squared ratio is less than unity,
applying the previous equations to simplify the ratio. In the last line we use the
abbreviation � = xv=2 cos  .

zx2

yv2
=

xv2 + zv2 − 2xvzv cos  
zv2 − 2yvqv sin  ;

= 1 +
xv2 − 2xvzv cos  + 2yvqv sin  

zv2 − 2yvqv sin  ;

= 1 +
2xv(� − zv) cos  + 2yvqv sin  

zv2 − 2yvqv sin  :

We can show that the numerator of this last fraction is negative by showing that

zv− �
yv

¿
qv sin  
xv cos  

:
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For a �xed v, the right-hand side is constant; it is enough to check where the left-hand
side takes on its minimum value. The derivative

d
dyz

zv− �
yv

=
d
dyz

√
yv2 + 2yvqv sin  − �

yv
;

=

−yvqv sin  √
yv2+2yvqv sin  

+ �

yv2
;

=
�zv− yvqv sin  

yv2zv

is positive over its range, since zv¿yv and xv¿qv from Lemma 5 implies that
xv¿qv sin 2 or �¿qv sin  . Thus, the minimum occurs when the point z = p.
Now, yv=px¿xv=px¿ 1 by Lemma 5. Therefore, sv¿yv¿zx. This completes the

zx case.
To conclude, in all con�gurations svk¿sv¿ rt, so the weight of the triangulation

decreases.

Now, we can retriangulate regions A and B and, unless they are fairly special fan-like
triangulations, decrease the weight.

Lemma 8. Suppose that region A contains the triangle �pqv and that; without loss
of generality; vertex a is not adjacent to q. Then A can be retriangulated so that its
weight decreases or; when A is a fan with all chords incident to vertex p; its weight
increases by at most qa−pv. Furthermore; when A is a fan incident to p; triangles
�pqa and �qva are in the new triangulation and va intersects the exclusion region.

Proof. We can apply Lemma 7 to retriangulate and decrease the weight unless no
boundary chain has three consecutive vertices r; s and t with |sq|¿ |tq| that form an
internal angle of less than �.
When Lemma 7 does not apply, we retriangulate by removing all chords from region

A and retriangulating with a fan from vertex a to all vertices of the boundary chains.
Lemma 6 implies that each new chord from a remains in the interior of A, so this
retriangulation is valid.
To bound the change in weight, we pair removed chords with inserted chords of

equal or smaller length. (see Fig. 10) List the original chords of A in the order that
they intersect the line through a that is perpendicular to pq, with those that intersect
the line closer to pq coming before those that intersect further from pq. Except for
qa, each new chord au′ is paired with the last original edge incident on u′. This pairs
every original chord except for the last one, uv∗. We thus pair qa with uv∗.
For each original chord u′v′, we have the weight u′v′¿u′ a since u′v′ crosses C

above pq and a is inside C above u′v′. The remaining pairing of qa with uv∗ may
increase weight but we claim qa− uv∗¿pv−pa; that is, the increase is less than the
amount saved by pairing pa with the �rst removed chord pv.
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Fig. 10. Pairing chords A.

To justify this claim, note that the following movements neither decrease pa + qa
nor increase pv+ uv∗: First, move a up until w lies on ua or v∗a, then move a to an
intersection of C with

←→
wa . Next, move u and v∗ to the intersections of C with

←→
wa ,

then move v to v∗. Thus, the worst con�guration has v= v∗, both u and v on the circle
C, and a at u or v, and the inequality is reduced to either qv¡uv or pu¡uv, both
of which were established by Lemma 5.
Finally, when A is a fan, the unpaired edges are the last triangle’s base, pv∗, and

the �rst triangle’s chord, qa. Since Lemma 7 does not apply, the chords of the fan
cannot decrease in length, thus the increase in weight qa− pv∗6qa− pv.
To complete the proof of the lemma, we need to verify the last statement — that

va intersects the region. In order to have qa− pv¿ 0, we must have va intersect the
exclusion region.

There remain cases in which both regions A and B are fans and retriangulating either
does not decrease the cost. In a �nal lemma, we reduce these to the cases of pentagons
and hexagons and, with the assistance of the algebra package Mathematica, establish
that they can be retriangulated at lower cost.

Lemma 9. When both A and B are fans; then we can retriangulate and decrease the
cost.

Proof. If A and B each consist of a single triangle, then we can replace pq by ab,
decreasing the cost. Thus, assume without loss of generality that A is a fan with at least
two triangles incident on p. From Lemma 8, we can retriangulate A at a cost qa−pv.
If this cost is negative, then we are done; if the cost is zero, then retriangulating turns
A into a single triangle, and we exchange the roles of A and B.
Therefore, we can assume that A is a fan with qa¿pv. There are now three cases

to consider for B, illustrated in Fig. 11. Either (i) B is a fan on vertex p with qb¿pu,
or (ii) B is a single triangle, or (iii) B is a fan on vertex q with pb¿qu. For each
case, we have a pentagon or hexagon for which some retriangulation will decrease the
total weight.
(i) B is a fan on vertex p with qb¿pu: Apply Lemma 8 to retriangulate A and B,

then replace pq with ab. The weight increases by at most

qa− pv+ qb− pu+ ab− pq6qa− pv+ qb− pu+ (pa+ pb)− 2 (1)

= (pa+ qa− pv− 1) + (pb+ qb− pu− 1): (2)
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Fig. 11. Three cases for retriangulating fans.

These terms are symmetric, so it su�ces to prove that pa+ qa¡pv+ 1.
For simplicity, we would like a to lie outside of the exclusion region, with either
pa or av crossing the region. We thus move a up perpendicular to pq until a
is outside of the region. Note that this increases pa + qa, so will not make
our inequality easier to prove. However, this movement may cause a situation
where neither pa nor av crosses the region. This happens precisely when a passes
through w, the apex of the region. To avoid this, if a lies directly below w, we
instead �rst move a a small amount to the left or to the right (whichever direction
increases pa+ qa) and then directly up as before.
To minimize pv, we can assume that v is at the intersection of

*
aw with circle

C; to maximize pa + qa we can move a along
*
vw until either qa = pv or a is

also on C. In the former case, the inequality reduces to pa¡ 1, which holds for
the chosen w: the maximum of pa, which occurs when va is horizontal through
w, is less than 0.92. In the later case, the maximum of pa+ qa− pv when a is
constrained to lie on the circle actually occurs at the same location.

(ii) B is a single triangle: This is the case that determines our choice of angle �=4:6.
Assuming that bv¿pq=2, we show that ba+ qa¡pv+2 so that segments ba
and qa can replace pq and pv.
As in case (i), we would like a to lie outside of the region, so we move a
perpendicularly away from bq, adjusting analogously to above if a passes through
w.
Consider the positions of a; b, and v that make the inequality as tight as possible.
We can assume that bv = 2 with v on

*
aw, because this minimizes pv. We can

assume that b is on the circle C; if not, moving b while preserving bv = 2 will
only increase ba.
The point a on

*
vw that maximizes ba+qa either has qa=pv, or is the intersection

of C and
*
vw. In the former case, the inequality reduces to pq¿ba, which is true.

In the later case, we must verify that pv+2− ba− qa is positive, where a and b
are parameterized by angle and v is determined by the locations of a and b. When
the diamond is chosen to have angle �=4:6, calculations in Mathematica show that
the minimum value of this function, which occurs with a at 2.85 radians and b
at 4.92 radians, is indeed positive.
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Fig. 12. Upper bounds on disk and diamond test regions.

(iii) B is a fan on vertex q with pb¿qu: We have saved the most slippery case for
the last. We will show that qa + au¡ 2 + pv so that segments qa and au can
replace pq and pv.
As in the previous cases, we would like a to lie outside of the region, so we
move a perpendicularly away from qu, adjusting as above if a passes through w.
We can assume, without loss of generality, that the angle from a to the x-axis is
not more than the angle from b to the x-axis — equivalently, that the origin is
on or above ab. To minimize pv, move v to the intersection of circle C with

*
aw.

(Possibly ignoring the constraint uv¿2, which does not play a role in this case.)
Now, the placement of b restricts the placement of u since bu intersects the test
region. Placing b on

*
ao makes the region for u as large as possible; placing u

on
*
bw with qu = pb makes au as large as possible. (Note that rays

*
bu and

*
va

diverge.)
Finally, to maximize qa+ua, we can move a on

*
vw until qa=pv or a is also on

the circle C. In the former case, the inequality reduces to ua¡ 2. Here we can
be fairly sloppy. The angle for v determines the position of a. The angle for a
determines and angle for b and thus a maximum pb¿qu. The maximum position
for u with qu intersecting the test region has au¡ 2.
For the later case, even dropping the constraint that qu intersect the test region,
we get a function pv + 2 − qa − ua parameterized by the angle of a and length
of b that we can demonstrate is positive.

This completes the case analysis for the lemma.

3.1. Upper bounds on exclusion region size

We suspect that the analysis of the previous section is not tight — for one thing, it
does not necessarily use the points inside the test region when constructing a smaller
triangulation.
Fig. 12 shows two examples of minimum weight triangulations using edge pq that

give upper bounds on the test region size: The diagram at left shows an MWT of
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six points with one inside a disk of radius d = 0:759. Points puqv form a rectangle
inscribed in circle C so that sides pv and qu just enter the circle D at their midpoints.
Thus, a can be considered as lying in�nitesimally above pv. The minimum weight
triangulation uses pq; pv, and qu; its competitors are symmetric to the triangulation

using pv; vb, and pb, which is greater whenever d¿
√
(1 +

√
13)=8 ≈ 0:759, and the

triangulation using vb; ab, and au, which is greater whenever d¿ (15 +
√
17)=26 ≈

0:736.
The diagram in right of Fig. 12 shows an MWT of eight points with one inside a

diamond of angle �=4:23. Points a and v are chosen on a horizontal line just below w,
which is 0.91933 above pq; a is chosen on the circle C, and v on a circle of radius
1.0833. The minimum weight triangulation uses edges av; aq; pq, and their reections
through the origin. Edges for competing triangulations are labeled with their lengths.
In contrast, the best upper bound known for a diamond-shaped exclusion region for

the GT is �=4:51 [1].
We summarize these results as a theorem.

Theorem 10. No disk-shaped exclusion region for the MWT centered on the midpoint
of an edge e can have radius larger than 0:759|e|. No diamond-shaped exclusion region
for the MWT can have base angles larger than �=4:23.

4. Locally optimal triangulations and exclusion regions

In this section, we show that no exclusion region exists for the general class of
locally optimal triangulations (LOTs). Given a segment and two points on opposite
sides of the segment, we can create an LOT including the segment and those points.

Lemma 11. For any segment pq and any pair of points a and b lying on opposite
sides of pq it is possible to create a set of points S including p; q; a; and b and
a locally optimal triangulation of S that includes edge pq. Therefore no exclusion
region can be de�ned for locally optimal triangulations.

Proof. Let e=pq, and let R be a region satisfying the conditions of the lemma. Orient
the plane so that e is horizontal and p is to the left of q. Let C be the circle with
pq as diameter. Consider points a and b in the region R that lie above and below pq,
respectively. If“apq¿“bqp, then rotate to swap the roles of a and b, and of p and q.
If the quadrilateral paqb is not convex, as in Fig. 13(1), or if pq6ab, as in Fig.

13(2), then the triangulation using �pqa and �pqb is locally optimal.
Otherwise, pq¿ab. We add four points to the set. Choose a point w that lies in

“apq, outside of C, but inside the circle centered at p with radius pq. Choose a point
x lying in “apw, and outside of the pw-radius circle centered at q. This guarantees
that pw¡qx. De�ne w′ and x′ to be reections of w and x through the midpoint of
pq. The placement of these relative to circles and angles involving b and q is the same
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Fig. 13. Constructed counterexample.

as the points above the line relative to a and p, since a was initially assumed to make
the smaller angle with pq.
We now triangulate this set of points with the following edges, as illustrated in

Fig. 13(3): pq; pw; px; pa; xw; xa; aw; qw, and the symmetric edges below pq: qw′; qx′;
qb; x′w′; x′b; bw′, and pw′. We may need to complete the triangulation with edges
needed on the convex hull, if w or w′ lie within quadrilateral paqb. As necessary, add
edges aw′; pb; bw, and qa. Note that at most two of these edges will be added, since
pq¿ab.
The edges in this triangulation are on the convex hull or are diagonals of a non-convex

quadrilateral, with the exceptions of pq; pw; and qw′. By construction, each of these
three edges is shorter than the other diagonal of its quadrilateral. Hence, the triangula-
tion that was constructed is locally optimal.

Thus, we �nd that for any region, we can place points on both sides of an edge
pq such that neither semi-region is empty, but there still exists a locally optimal
triangulation that contains edge pq.

5. Conclusion

This paper increases the size of the known exclusion regions for the MWT. These
larger exclusion regions help algorithms that compute the MWT by allowing them to
eliminate more edges from consideration. For example, simply enlarging the angle of
the diamond-shaped region from �=8 to �=4:6 cut the running time of Beirouti and
Snoeyink’s algorithm in half and allowed them to handle twice as many points in
core memory — the MWT for 80,000 points chosen uniformly at random could be
computed in less than 5 min. We have also shown by counterexample that there exists
no exclusion region for the more general class of locally optimal triangulations.
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