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Abstract

The quadratic assignment problem (QAP) maybe was for a long time the one among the
prominent A/P-hard combinatorial optimization problems about which the fewest polyhedral
results had been known. Recent work of Rijal (1995) and Padberg and Rijal (1996) has on the
one hand yielded some basic facts about the associated quadratic assignment polytope, but
has on the other hand shown that “naive” investigations even of the very basic questions (like
the dimension, the affine hull, and the trivial facets) soon become extremely complicated.
In this paper, we propose an isomorphic transformation of the “natural” realization of the
quadratic assignment polytope, which simplifies the polyhedral investigations enormously.
We demonstrate this by giving short proofs of the basic results on the polytope that indicate
that exploiting the techniques developed in this paper deeper polyhedral investigations of
the QAP now become possible. Moreover, an “inductive construction” of the QAP-Polytope
is derived that might be useful in branch-and-cut algorithms.

Keywords: Quadratic Assignment Problem, Polyhedral Combinatorics, QAP-Polytope
MSC Classification: 90C09, 90C10, 90C27

1 Introduction

The methods of polyhedral combinatorics have yielded structural results and practical solvability
of many combinatorial optimization problems over the past 30-40 years. The most prominent
examples among the AP-hard problems might be the traveling salesman problem, the max
cut problem, the linear ordering problem, or the stable set problem. If one compares this list
with the list of AN"P-hard problems that are usually considered “classical” one might miss the
quadratic assignment problem, which we consider in the formulation
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of Lawler (1963), who slightly generalized the original formulation of Koopmans and Beckmann
(1957). And in fact, while the literature concerning polyhedral investigations of the other men-
tioned problems is vast, one finds only a few occurences of the quadratic assignment polytope.

Basically, this polytope was investigated only twice. First, it is treated in the work of
Barvinok (1992) as an example for the connection between the theory of representations of finite
groups and combinatorial optimization polyhedra. Exploiting that deeply developed theory
Barvinok derives the dimension and some first facets of the quadratic assignment polytope.
However, this method seems to apply only to these very basic questions. The second polyhedral
investigations were done by Rijal (1995) and Padberg and Rijal (1996). They derived basically
the same results as Barvinok, using “classical” methods of polyhedral combinatorics. However,
their treatment revealed that dealing with the quadratic assignment polytope as it is defined
naturally leads to enormous technical difficulties of the following kind.

If one starts to investigate the structure of a polytope defined as the convex hull of some
points, one is very soon confronted with tasks like computing the rank of a subset of these
points or showing that such a subset spans a certain subspace. In both cases, one has to deal
with linear combinations of the vertices of the polytope. Working with the natural realization
of the quadratic assignment polytope, it turns out that such combinations with well-structured,
sparse supports (i.e., nonzero components) are hard to obtain. This is mainly due to the facts
that the coordinate vectors of the vertices look all the same up to certain permutations of the
coordinates, and that there are no pairs among them having only slightly different supports.

In this paper, we describe how to overcome this “nastiness” by mapping the polytope iso-
morphically into a lower dimensional vector space, where the vertices allow some nice and
simple linear combinations. This transformation seems to be crucial for the success of theo-
retical investigations of the quadratic assignment polytope. Without the simplifications of the
proof-techniques that it yields, deeper results on the facial structure of the quadratic assignment
polytope might be hard to derive. We demonstrate the power of our transformation by deriving
in a relatively simple way the dimension, the affine hull, and the trivial facets of the polytope.
Furthermore, our transformation gives insight into an interesting “inductive construction” of
the quadratic assignment polytope, which might be exploited effectively in branching strategies
of branch-and-cut algorithms.

The paper is organized in the following way. In Section 2 we introduce a new way of
formulating the quadratic assignment problem in graph theoretical terms and give the definition
of the quadratic assignment polytope within this notational setting. Section 3 is the central
part of the paper, where we develop the “star-transformation”, and finally, we give short proofs
for the dimension, the affine hull, and the trivial facets of the quadratic assignment polytope in
Section 4.2.

2 The Polytope QAP,

2.1 Formulation as a Graph Problem

The set {1,...,n} will be used so frequently that it receives an own symbol. We will always
denote N' = {1,...,n}. Let G, = (V,r,&,) be the graph with node set V,, = {(:,5) | 4,5 € N'}

and edges
€n = {{(z’,j),(k,l)} © <Vz>

(where (VQ”) is the set of all subsets of V,, having cardinality two). Figure 1 shows an example of
such a graph. For ease of notation we define [i, 7, k, 1] = {(4,7), (k, 1)} for all edges {(4, j), (k,1)} €

En. We call the subset row!™ = {(i,7) | 7 € N'} the i-th row of V,, (for i € N'). The subset
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Figure 1: The graph G, and an example of an n-clique in it.

colgn) = {(i,j) | 2 € N'} is called the j-th column of V, (for j € N). If the context preserves
from any ambiguity, then we usually omit the superscript and simply write row; and col;.

The connection between the graph G, and the quadratic assignment problem comes from
the fact that the maximum cliques of G,, are the n-cliques, and these correspond precisely to the

n X n-permutation matrices (see Figure 1). Hence, given an instance (QAP)((:”(} of the quadratic

assignment problem, we weight the nodes and edges of G, by (¢/,d’) € RV" x Ré", where we

set c’(i].) = ¢;; for each node (4,7) € V, and d’[i].k 1= d;jr for each edge [i,j,k,1] € &,. Then,

solving (QAP)EB means to find a minimally node- and edge-weighted n-clique in the graph G,
weighted by (¢, d’).

2.2 Definition and Elementary Properties of QAP,

Now we are ready to introduce the quadratic assignment polytope. We denote the characteristic
vector of a subset W C V), of nodes by z'¥ € RY» and the characteristic vector of a subset
F C &, of edges by yI, i.e., we have

1 .
W ifoeWw and :1:5: 1 iffeF
0 otherwise 0 otherwise.

In particular, ommitting the brackets for singletons, z” (for v € V,,) and y° (for e € &,) are the
canonical unit vectors of RV» x Rén .

For a subset W C V,, we denote by &,(W) = {{v,w} € &, | v,w € W} the set of all edges
having both nodes in W. The incidence vector of an n-clique C' C V), in G, is the 0/1-vector
(2%, y°) = (2, y5 (D). We define the quadratic assignment polytope to be the convex hull

QAP,, = conv {(z,y“) | C is an n-clique of G, }

of all incidence vectors of n-cliques of G,,.

It can be shown that some well-known polytopes as the traveling salesman polytope or the
linear ordering polytope are certain projections of the quadratic assignment polytope. Further-
more, the quadratic assignment polytope is isomorphic to a face of the boolean quadric polytope
(introduced by Padberg, 1989), which is itself isomorphic to the cut polytope on the complete
graph (De Simone, 1989). From this, for example, it can easily be deduced that the diameter of
the quadratic assignment polytope equals one, since this holds for the cut polytope (Barahona
and Mahjoub, 1986).



An important property of the quadratic assignemnt polytope is the fact that it is invariant
under permuting the rows or columns of the node set V, and under “transposing” V,. That
means that these operations induce symmetries of QAP,,.

2.3 An Integer Linear Programming Formulation

For a vector z € RV» (y € Ré) and for any subset W C V,, (F C &,) we denote by (W) (y(F))
the sum Y 1 2y (3 .cp¥e). For two disjoint subsets S, T C V,, the set of all edges in &, with
one endpoint in S and the other one in 7" is denoted by (S : T'). In case of singletons S = {s}
we ommit the curly brackets.

Clearly, the equations
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Figure 2: The left-hand-side vectors of equations (3), where the solid lines indicate coefficients
+1 and the grey dots indicate coefficients —1. and (4).

In fact, it was observed by several authours (Johnson, 1992; Drezner, 1994; Rijal, 1995;
Padberg and Rijal, 1996) that a vector (z,7) € R¥» x R is a vertex of QAP,, if and only if it
satisfies (1), (2), (3), ¥y > 0, and = € {0,1}¥». Moreover, Johnson (1992) has proved that the
lower bound which one can compute by solving the linear program arising from (1), (2), (3),
and the nonnegativity constraints (z,y) > 0 is always at least as good as the Gilmore/Lawler
bound (Gilmore, 1962; Lawler, 1963). Extensive computational tests of Resende et al. (1995)
have shown that this bound also is very tight in practice.

3 A Different Representation: QAP.

3.1 An Isomorphic Projection of QAP,

The 2n + 2n%(n — 1) many equations (1), ... ,(4) that are valid for the polytope QAP,, indicate
some redundancy in the problem formulation. We will use this redundancy for finding another
representation of the quadratic assignment polytope via a certain projection.

Let A C RV" x R® be the affine subspace of RY» x R®" defined by the equations (1), ... ,(4).
We will show that the variables corresponding to vertices and edges involving the n-th row or



the n-th column (the same holds for any row and any column) are redundant for A in the sense
that the projection onto the linear subspace of the original space obtained by setting all these
variables to zero produces an isomorphic image of this affine subspace. Since the polytope under
consideration is contained in the affine subspace A, this implies that the projection yields an
isomorphic image of QAP,,.

Let W* = row” U col!” and F* = {e€ & | enW* # 0}, Defined = {(z,y) € RV» x Ré |
zw+ = 0,yp+ = 0}, and let 7™ RY» x Ré» — U be the orthogonal projection onto U.

Proposition 1. The projection ©(™ restricted to the affine subspace A of RV» x RE» induces a
one-to-one map.

Proof. We will first show that there is a way to express the components of points in 4 belonging
to elements in W* and F™* linearly by the components belonging to elements in V, \ W* and
En\ F.

This is possible for the elements in W* using the equations (1) and (2). In order to show the
claim for F*, it suffices to consider three possibilities for an edge [i, j, k,l] € F. The first two are
i,7,k <n,l =n and i,4,] <n, k =n. Using the suitable equation from (3) (with 7,7,k in the
first case) and (4) (with 7, 7,1 in the second case), these two possibilities are done. It remains
the possibility that 7,7 < n, k = n, [ = n. We exploit (3) for 7, j,n, which allows to express
Yli,jn,n) Since we can already express y[; ;) for [ <n.

Up to now, we have shown that there is a linear function ¢ : RV~ WX RENF _ RV S RE”
such that for all (z,y) € A we have (zw+,yr+) = Y(zy,\w+,Ye,\r+). Hence ¢ : RY» x Ré» —»
RY" x R defined via ¢(z,y) = («,y') with

(I'W*ay%*) = (zw+,yp+) — Q/J(CUvn\W*aysn\F*),

(xg)n\W”yISn\F*) = (xvn\W*aysn\F*)

is an affine transformation (since the corresponding matrix is a triangular one having ones
everywhere on the main diagonal) of RY» x Rf» that induces on A the orthogonal projection
onto U. 0

We identify the linear space U with the space RY»~1 x Ré~1. Hence, for n* =n — 1
QAP:. = 1M (QAP,) C RV x Rfn*

is a polytope in R¥»* x Ré»* that is isomorphic to QAP,,.

Since the vertices of this polytope arise from the projections of the vertices of the original
polytope “forgetting” the last row and the last column of G,, one obtains that they are the
characteristic vectors of the n*- and the (n*—1)-cliques of G,+ (see Figure 3). Thus, by adapting
the notations for the incidence vectors to (n* — 1)-cliques of G,+, we have

QAP = conv {(xc*,yc*) | C* is an n*- or an (n* — 1)-clique of gn*} :

We want to make the isomorphism that (™) induces between QAP,, and QAP}. as well as
between the corresponding face lattices a little more explicit. Denote by x the map that assigns
to every n-clique C' C V,, of G,, the n*- or (n* — 1)-clique C* C V,+ of G« that arises from C by
removing the node(s) in the n-th row and in the n-th column. Notice that x is one-to-one.

Remark 2. If two faces of QAP,, and QAP}. correspond to each other with respect to the
isomorphism induced by 7™ then their vertices (identified with cliques) correspond to each
other by the bijection k.
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Figure 3: The effect of the projection 7(").

This remark describes the relationship between the faces from the “inner view”, i.e., in terms
of the vertices. Next, we want to describe the “outer relationship”, i.e., the relationship between
inequalities defining corresponding faces.

Remark 3.

(i) If a face of QAP,, is defined by an inequality that has zero-coefficients for all elements
in W* U F*, then an inequality defining the corresponding face of QAP . is obtained by
projecting the coefficient vector of that inequality via ©™. In fact, for every face of QAP
there is a defining inequality that has zero coefficients at W* and F*, since the columns
corresponding to W*UF* of the equation system defining the affine subspace A are linearly
independent, as shown in the proof of Proposition 1.

(11) From every inequality defining a face of QAP}. one obtains an inequality defining the
corresponding face of QAP, by “zero-lifting”, i.e., choosing zero as coefficient for every
variable corresponding to Vp \ Vpr or Ep \ Enx.

As for QAP,, (see Section 2.2), permuting the rows or columns as well as transposing the
node set yields symmetries of the polytope QAP ., i.e., it suffices also for QAP}. to prove all
results up to permutations of the rows or the columns as well as transposition of the node set.

3.2 A System of Equations

By mapping the polytope QAP, C R x R isomorphically (in particular, not changing its
dimension) into the lower-dimensional space RVn* x Rén* = RVn-1 x Rfn-1 we have reduced
the dimensional gap between the polytope and the space it is located in. It would have been
the best to make that gap even vanish, i.e., to obtain a full-dimensional representation of the
quadratic assignment polytope. However, this is not reached by the projection 7(") as one sees
from the equations coming up next.

Ending up with a full-dimensional polytope would be nice with respect to such goals like the
uniqueness of facet-defining inequalities and clearly, for every low-dimensional polytope there is
a possibility to map it isomorphically into another space where it is full-dimensional. However,
we are extremely dependent from the fact that the vertices of the representation of the quadratic
assignment polytope have some nice combinatorial structure, as they do in the case of QAP}..
It seems that a full-dimensional representation of the quadratic assignment polytope satisfying
this requirement is not possible.

We shall exhibit the equations that are still holding for QAP}. now. Since every n*- or
(n* — 1)-clique of G,+ has an empty intersection with at most one row and with at most one



column of V,+, the equations (where N* = {1,...,n*})

(5) z(row; Urowy) — y(row; : rowy) =1 (i,k e N*i < k)
(6) z(col; U col) — y(col; : coly) =1 (4, e N*, 5 <1)

are valid for QAP;. (see Figure 4). Theorem 11 will show that (5) and (6) form a complete
system of equations for QAP ., i.e., the solution space of these equations is the affine hull of
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Figure 4: The left-hand-side vectors of the equations (5) and (6), where the dashed lines indicate
coefficients —1, and the filled dots indicate coefficients +1.

Let us investigate the system D(z,y) = d of the equations (5), (6) more closely. A first
observation is that this system has not full row rank, since summing up all equations (5) yields
the same as summing up all equations (6). Hence, the rank of these n*(n* — 1) equations is at
most n*(n* — 1) — 1.

We define a (total) ordering of the edges &,+ by requiring that each edge [i, 7, k,[] € .« with
i < k and j < [ has as its successor the edge [4,1,k, j], and by ordering the edges {[i, j, k,l] €
En | i < k,j <} lexicographically according to the quadruples (i, k, j,1). After permuting the
columns of D that correspond to the edges of G,+» with respect to this ordering of &,«, these
columns of D form the following n*(n* — 1) x |E,+| matrix (for n* = 3):

111111

111111
111111
11

11 11 11
11 11 11

We are interested in the bases of the matriz D (also called the bases of the equation system
D(z,y) = d), i.e., the maximal subsets of linearly independent columns of D. Since columns
corresponding to edges [i,7,k,[] and [i,[, k, j] are identical, we can identify them for our consid-
erations. But then, the resulting n*(n* — 1) x £|&,+| matrix is the node-edge incidence matrix
of the complete bipartite graph K nxm*—1) n*m*-1), where the left shore corresponds to the (un-

2 ! 2

ordered) pairs of rows, and the right shore corresponds to the (unordered) pairs of columns of
Vp+. Calling a pair {[i, 5, k,l],[i,1,k, j]} of edges of G,+ a pair of mates, we obtain a one-to-one
correspondence between the edges in K nt(nt=1) n*(nto) and the pairs of mates.

The bases of the node-edge incidence matrlx of the complete bipartite graph Ky y are
well-known to correspond to the spanning trees of Ky y (Balinski and Russakoff, 1974). This



leads to the following characterization of all bases of D(z,y) = d that do not contain columns
corresponding to nodes of G,«.

Proposition 4. Let n* > 2.

(i) Precisely one (arbitrary) equation in the system (5), (6) is redundant, in particular, the
rank of this system is n*(n* — 1) — 1.

(ii) A subset B C E,+ of edges of Gp+ corresponds to a basis of that system if and only if
(a) Bl =n*(n*—1) -1
(b) There is no pair of mates contained in B.

(¢) There is no sequence (eg, €y, €1,€},...,e,—1,€h_y) (withr > 2) of edges in B such that
e, and e;, connect the same rows of Vp+ and e;, and €(p41) mod r connect the same
columns of Vs for all p=0,...,r— 1.

Proof. Part (ii) follows from the discussion of the connection to K nn=1) n(no1), and part (i)

2
follows from (ii) and the observation made above that the rank of D(a: y) = d is at most
n*(n*—1) —1. O

Later, when we prove results about the dimension of QAP . or of one of its faces, we will
always use one special basis of the equations system (5), (6) that we exhibit now. It is illustrated
in Figure 5.

Corollary 5. The columns corresponding to the set

B

bas

—{[1 52,1 €&px | <I}U{[i,1,k,2] € Eps | 1 < k}

form a basis of the equation system (5), (6).

O O O

Figure 5: The edges corresponding to the basis El()Z;).

3.3 A Proof Technique

The technique we will use to prove the dimension of QAP}. as well as in the proofs showing
that a given inequality defines a facet of QAP. is a variant of the “indirect method”. We give
an outline of this technique here.

First, we explain the technique for the dimension proof. Let L be the set of all n*- and
(n* — 1)-cliques C' C Vp+, and let

Ap = {(@9,y7) — (2°2,y*) | C1,Cr € L}



be the set of all difference vectors of the incidence vectors of these cliques, i.e., the set of all
differences of vertices of QAP}.. Hence, Ay, spans the linear subspace belonging to the affine
subspace aff(QAPj}.). Denoting the rank of the equation system (5), (6) by rankeq, we have to
show that the linear dimension of Ay, equals dim(RY»* x REn* ) — rankeq.

Let B be a set of edges belonging to a basis of the equation system (5), (6), in particular we
have |B| = rankeq. Clearly, one could also use a basis containing columns that belong to nodes,
too. But we will always chose B = IEZ;) as in Corollary 5, and thus restrict our notations to the
case that B contains no node. Denote by B = {y*|e € B} the set of all canonical unit vectors

belonging to B. Now it suffices to show

lin(Ap UB) =RV x R
what is done by successively combining all canonical unit vectors {z" | v € V,+} and {y° |
e € E,+} of the vector space RV»* x RE»* by using just the vectors in Az and B. In order to
abbreviate the notations, we say that an edge or a node is combined once the corresponding
unit vector is linearly combined.

If we want to prove that a proper face F is a facet of QAP}., then we start with the
set L containing not all n*- and (n* — 1)-cliques of G,« but only those ones that belong to
vertices of F. Since we do not want to prove that the dimension of F equals that of QAP}.
but dim(QAP}.) — 1, we enlarge the set B by any canonical unit vector belonging either to
a node vy or to an edge eg, called the extra element, to a set By. Proceeding as above with
the “combination” of all canonical unit vectors in RV»* x Ré»* starting from the modified set
Ap U By, it is proved that F is a facet of QAP . as soon as all nodes and edges are combined
(notice that F was supposed to be not the whole polytope).

Proving this way that a given proper face of QAP . defines a facet even contains a proof
that (5) and (6) form a complete equation system for QAP}.. We will use this fact and give
in Section 4.1 one proof for both the dimension of QAP}. as well as for the fact that the
nonnegativity constraints on the edge variables define facets of it.

3.4 Some Useful Vectors

The first convenient gain that we took from the transition to the “star-polytope” QAP . was
the equation system (5), (6) (that is not yet proved to be a complete one for QAP ., but will
be soon in Section 4.1) with its structural connection to the node-edge incidence matrix of the
complete bipartite graph. Now we will show that QAP . allows to combine linearly very simple
vectors from its vertices.

Let i,k,p € N* be three pairwise distinct numbers of rows of V,«, and let j,I,qg € N* be
three pairwise distinct numbers of columns of V,+. The following vectors, where wy; = (i,q),
wy = (p,7), wz = (k,q), wg = (p,1), wh = (4,7), wh = (k, j), why = (k,1), wy = (i,1), and C C Vp»
is an n*-clique of G,+ containing the node w € C, will be the most important auxiliaries for the
combination of nodes and edges as explained in Section 3.3. They are illustrated in Figure 6.

@(C,’U)) =¥ 4 Z y{w,w’}
w'eC\w

T (w), why, wh, w)) = y[m,k,l} _ y[%l,k,ﬂ

Q)(wl, wa, W3, 'U)4) — y[iaQapaj] — y[psjakz‘ﬂ + y[ka%pa” — y[palaia‘ﬂ

The following three lemmas give sufficient conditions for a set L of n*- and (n* — 1)-cliques
of G, that guarantee these vectors to be members in lin(Ay), where Ay is, again, the set of
all difference vectors of the incidence vectors of the cliques in L. We make one more notational



(c) ®(w1, wa, w3, ws)

Figure 6: The three types of vectors provided by Lemmas 6, ... ,8

convention for stating these lemmas. Let W C V,+ be a subset of nodes. We denote by G+ /W
the subgraph of G,+ that is induced by all rows and columns that do not intersect W. If W
intersects the same number of rows as of columns, then G, /W is isomorphic to some G, with
n < n*.

Lemma 6. Let L be a set of n*- and (n* — 1)-cliques of Gn+. If for an n*-clique C of Gp« and
a node w € C we have both C € L and C'\ w € L, then

O(C,w) € lin(Ar)
holds.
Proof. The equation
0(C,w) = (xC,yC’) _ (xC\w,yC\w)
shows this. 0

Lemma 7. Let L be a set of n*- and (n* —1)-cliques of Gp+, and let w', wh, wh, w} € Vp+ be any
nodes such that Y (w}, wh, wh, w)) is defined. If there is an (n*—2)-clique C in Gpx /{w}, wh, wh, w}}

10



such that C U{w},w}} € L, CU{wh,wy} € L, CU{w}} € L, CU{wL} € L, CU{wi} € L, and
CU{wy} € L, then
T(wllawéawéawil) € hn(AL)

holds.
Proof. This is due to
Y (s, wh, wh,wh) = (xCU{w’pwé},yCU{w’pw’a}) _ (ICU{w’l},yCU{w’l})
_ (xCU{wé},yCU{wé}> _ (xCU{w’z,wa},yCU{w’z,wi})
i (Icu{w;},ycu{w;}> 4 (Icu{wg},ycu{wg}> _
[l

Lemma 8. Let L be a set of n*- and (n* —1)-cliques of Gn+, and let wy, we, w3, wy € Vy+ be any
nodes such that ®(wy,wq, ws,wy) is defined. If there is an (n*—3)-clique C in G, [{w1, wa, w3, ws}
such that C U{wi,we} € L, CU{ws,ws} € L, CU{ws,ws} € L, and C U{ws, w1} € L, then

O (wq, we, w3, wy) € lin(Ay)
holds.

Proof. This is obtained from

<I>(w1, wa, w3, w4) — (a:CU{wl,wz}, yCU{wl,wg}) - (xCU{wz,wg}’ yCU{wg,w3}>

4 <IC’U{w3,w4}’yC’U{w3,w4}> _ <$Cu{w4,w1}’yC’U{w4,w1}) _

3.5 An Inductive Construction of QAP,,

Up to now, we have only considered the relationship between QAP, and QAP}_, that was
actually defining the latter polytope. But QAP, and QAP are “living” in the same vector
space RV» x R, Hence, what is their connection? Since z(V,) < n is a valid inequality for
QAP,,, one deduces immediately that QAP,, is a face of QAP}, namely the face that has as
its vertices precisely the incidence vectors of n-cliques of G,. However, the relationship is much
stronger, and the polytope QAP} decomposes in a certain sense into n + 1 “copies” of the
polytope QAP,,. We say that a polytope P decomposes into some faces Fi,...,F, of itself if
these faces have pairwise empty intersections and

p=om (U )

a=1
holds (see Figure 7).

Theorem 9. Forn > 2 the polytope QAP decomposes into n+1 faces that are each isomorphic
to QAP,,.

Proof. We shall exhibit n + 1 affine maps ¢, : RV» x Ré» — R x Ré» (o = 0,...,n) such
that for the n 4+ 1 images Q, = po(QAP,) of QAP,, the following holds:

(i) Every Q, is isomorphic to QAP,,.

11



Figure 7: Two decompositions of a polytope into some faces of it.

(ii) Each Q, is a face of QAP;.

(iii) The Q4 (@ =0,...,n) have pairwise empty intersection.
(iv) QAP} = conv (Uz—o Qo)
For any row or column S € {rowy,...,rowy,coly,...,col,} let

0% R X RO — {(z,y) € RV x R | 19 =0, y5(5) = 0}

(where 0(S) C &y« is the set of all edges having one node in common with S) be the orthogonal
projection. The map 7(™) of Proposition 1 decomposes into

n) col

-0 n o O_I'OWn‘

l

Since Proposition 1 showed that 7(® performs an isomorphic transformation of QAP,,, so does
o'OW=  too. There is nothing special about row,,, and therefore, the same holds for all choices

(7) fo = 07OV (=1, .m).
Finally, define ¢y to be the identical map on RY» x Ré . Hence, all the
Qa=¢a(QAPn) (azO,...,n)

are isomorphic to QAP,,, as required in (i). Claims (ii), (iii), and (iv) follow from the observation
that for any a € {1,...,n} the vertices of Q, correspond to the (n — 1)-cliques of G, having no
node in common with the a-th row of V,,. O

The projection 7(™) : RV» x Rf» — RYn—1 x RE»~1 maps the polytope QAP,, isomorphically
to the polytope QAP: . Hence 7(") induces an isomorphism between the face lattices of QAP,,
and QAP} _,, and thus, by Theorem 9, the polytope QAP,, decomposes into faces 9, ..., Q) _;
of QAP,, with

(8) Q, =™ (Q,)

(where the Q,, are as in the proof of Theorem 9) for alla = 0,...,n—1. Due to (8), the polytope
Qf, must be the face of QAP,, that has as its vertices precisely the incidence vectors of n-cliques
of Gy, containing the node (n,n). For every « € {1,...,n — 1} the polytope Q! must be the face
of QAP,, with vertices corresponding to those n-cliques of G, containing the node (a,n).

12



Clearly, all the constructions can be done analogously for any other fixed row or column of
(n)

V,, instead of rowy, ’ (this is due to the symmetries of Q. AP,, mentioned in Section 2.2). Hence,
for every node (i,5) € V,, the face

Fiigy = {(z,y) € QAP | 25 = 1}

of QAP,, defined by the inequality z(; jy < 1is isomorphic to QAP 1, and we have the following
result.

Theorem 10. Let n > 3.

(i) For every i € N the polytope QAP,, decomposes into the faces Finys -+ F(in) that are
each isomorphic to QAP,_1.

(11) For every j € N the polytope QAP,, decomposes into the faces Feijys- - Fn,j) that are
each isomorphic to QAP,_1.

Theorem 10 yields an “inductive construction” of the quadratic assignment polytope that
might be used for developing branching strategies in a branch-and-cut algorithm. Branching to
faces of QAP,, that are isomorphic to QAP,_1 would have the enormous advantage that still
after the branching the algorithm deals with a polytope that was investigated from the theoretical
point of view instead of working on some more or less arbitrary faces of the investigated polytope.
In particular, if the branching is performed in that way it is possible to work at every node of
the branch-and-cut tree with inequalities that define facets of the polytope that is associated
with this node.

These considerations are not only interesting for the quadratic assignment polytope. For
example, the cut polytope admits similar decompositions.

4 Affine Hulls, Dimensions, and Trivial Inequalities

After doing the preparations in Section 3, we now can treat the basic polyhedral questions
concerning it. We perform the corresponding investigations for QAP}. first, and carry over the
results to QAP,, then.

4.1 Basic Facial Structures of QAP;,

We have already analyzed the equation system (5), (6) holding for QAP%. in Proposition 3.2.
There it turned out that precisely one (arbitrary) equation is redundant in that system. The
next theorem shows in particular that we do not have to search for more valid equations for

QAP
Theorem 11. Let n* > 2.
(i) The affine hull of QAP}. is
aff (QAPE.) = { (z,y) € RV x RE»

(z,y) satisfies (5), (6)} -
(ii) The dimension of QAPY. is
dim (QAPE.) = dim (R¥»* x R%* ) — (n*(n* — 1) — 1).
(iii) The inequalities
Ye >0 (e € Enr)

define facets of QAPH..

13



Proof. By Proposition 4, part (ii) is implied by part (i). We will proceed as explained in
Section 3.3 and prove (i) and (iii) together. Due to the symmetries of QAP}., it suffices to
prove (iii) for e = [n*,n* — 1,n* — 1, n*].

Let L be the set of all n*- and (n* — 1)-cliques of G,« that do not contain both nodes
(n*,n* — 1) and (n* — 1,n*), i.e., L is the set of cliques belonging to the vertices of the face
defined by Y+ pr—1,n*—1,n+] > 0. As in Section 3.3, we denote by A, the set of differences of the
incidence vectors belonging to L. We choose B to consist of Ey,s (see Corollary 5), and take as
the extra element the edge ey = [n*,n* — 1,n* — 1,n*]. Then we have to combine all nodes and
edges starting from the vectors in By (the canonical unit vectors belonging to B Uey) and Ay,
in order to prove the theorem (since Yin*m*—1,n*—1,n+] = 0 defines a proper face).

We exhibit in three lemmas some of the vectors presented in Section 3.4 that are available
for our proof. From now on, we will assume n* > 5. This simplifies the proof and does not
really leave open a gap, because one can easily check the cases n* € {2,3,4} by computer, for
example.

Lemma 12. Let w), w), wh, w) € Vpx such that Y (w), wh, wh, w)) is defined. If neither {w),wh}
nor {wh,w}} is the edge [n*,n* —1,n* — 1,n*], then we have

Y (wh, wh, ws, wy) € lin (Ay) .

Proof. Since Gy« /{w}, wh, wh, w}} has at least three rows and at least three columns, we can find
an (n* — 2)-clique C of G, /{w},wh, wh,w)} such that the nodes (n*,n* — 1) and (n* — 1,n*)
are both not contained in C'. Hence, Lemma 7 can be applied, yielding the claim. O

Lemma 13. Let wi, ws,ws, ws € Vy» such that ®(wq, we, ws, wy) is defined. If none of {wi, ws},
{we, w3}, {ws,ws} and {wys, w1} is the edge [n*,n* —1,n* — 1,n*|, then we have

D (wq,we, w3, wy) € lin(Ag).

Proof. There is at most one of the nodes (n*,n*—1) and (n*—1, n*) contained in {wq, wy, w3, wy},
hence we can assume (by a symmetry argument) that (n*,n*—1) ¢ {wy, wa, ws, w4} holds. Since
G+ [{w1, w2, ws, ws} has at least two rows and at least two columns, we can find an (n*—3)-clique
C of Gp+ /{w1, wa, w3, ws} with (n*,n* — 1) ¢ C. Thus Lemma 8 yields the claim. O

Lemma 14. Let w € V,« be any node. Then there is an n*-clique C' of G+, containing w, such

that we have
O(C,w) €lin(Agr).

Proof. This is due to Lemma 6, since G,,»/w has at least four rows and at least four columns,
and hence, it is easy to find an (n* — 1)-clique of G, /w eventually not containing a forbidden
node. O

Now we combine all nodes and edges using Lemmas 12, 13, and 14. Let us partition the
node set V,« into four parts as indicated in the following table

X {1,2} {3,...,n*}
{1,2} Vi V2
{3,....,n*}| V3 Vi

meaning that we have, e.g., V7 = {1,2} x {1,2}. Due to our supposition n* > 5, none of
these four sets is empty, and [n*,n* —1,n* — 1,n*] € V4. Recall that the mate of an edge
[i,7,k, 1] € Epx is the edge [i,1, k, j]. For any number a € {1,2} we denote by —a the number
with {a,~a} = {1,2}. We perform the necessary combinations in eight steps.
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En (V1 UVy). For every edge in &, (V7 U V3) either itself or its mate is contained in B. Hence,
these edges can be combined by Lemma 12.

En+ (V1 U V3). This is done analogously to the first step.

(Va2 :V3). Let (4,7) € Vo and (k,l) € V3, hence we have i, € {1,2} and j,k € {3,...,n*}.
Choosing w; = (—-i,1), wy = (4,-1), ws = (k,I), and wy = (¢,7) (see Figure 8), we can
apply Lemma 13, yielding the desired combination of [i, j, k,[] = {ws, w4}, since the edges
{wy,wa}, {we, w3} and {wy, w} are already combined.

=l J
—|'L V@l/._ ‘/2
. Wy | Tl Wy
v (%) ﬁ

V3 Vi

Figure 8: Combination of the edges in (V3 : V3).

(V1 :Vy). Since all edges in (V2 : V3) are already combined, these edges can be combined by
using Lemma 12.

(Va: Vy). Let (i,5) € Vo and (k,l) € Vi, i.e., we have i € {1,2} and j,k,l € {3,...,n*}.
We choose wy = (—-i,l), we = (i,1), wy = (k,l), and wy = (4,5) (see Figure 9), hence
Lemma 13 applies and yields a combination of [i, 7, k,l] = {ws, w4}, because, again, the
edges {wy,wy}, {we, w3} and {wy, w1} are already combined.

I
—..z' Wi /w@f“ Va

Figure 9: Combination of the edges in (V5 : Vy).

(V3 : Vy). These edges are combined analogously to the edges in (V; : Vy).

En+(Vy4). The edge [n*,n* —1,n* —1,n*] is already combined since it was chosen to be the

extra element. Let [4,7,k,1] € Epx (V) \ {[n*,n* —1,n* — 1,n*]}. The nodes w; = (1,7),
wy = (k,1), ws = (4, 7), and wy = (k,I) (see Figure 10) satisfy the conditions of Lemma 13,

and thus, we can combine the edge [i, 7, k,[] = {ws, w4}, because {wy,ws}, {we, w3} and
{w4,w;} have been combined in previous steps.
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V3 w3 Vi

Figure 10: Combination of the edges in &,(Vy).

Vn+. Now that all edges are combined, it is easy to combine also the nodes using Lemma 14.

0

4.2 Basic Facial Structures of QAP,,

The next theorem shows that we also do not have to search for other equations for QAP,, than
for the ones given by (1), ... ,(4). Furthermore, it describes possiblities to extract from that
equation system a complete and non-redundant equation system for QAP,,.

Theorem 15. Let n > 3.

(i) The affine hull of QAP is described by the equations (1), ... ,(4), i.e., a point (z,y) €
RY" x R is contained in aff (QAP,) if and only if it satisfies

(9) z(row;) = 1 (i eN)
(10) z(colj) =1 (j eN)
(11) —T( ) T y((i,7) : rowg) =0 (1,5, k € Nyi # k)
(12) —z(,5) + y((i,7) : coly) =0 (4,7, € N,j #1).

(11) The dimension of the quadratic assignment polytope is

dim (QAP,) = dim (R x R®") — (2n® — 5n? + 5n — 2).

(111) Let r,c € N be two row and column indices, respectively, and let R be a subset of the
equations (9), ... ,(12) consisting precisely of
a) one equation from (9) or (10),

b) for all (i,7) € N\ r x N\ ¢ either (11) with one arbitrary k # i or (12) with one
arbitrary | # 7,

¢) all equations (11), (12) with (i,7) = (r,c),

d) for all i € N'\ r the equation (11) with (k,j) = (r,c),

e) for all j € N'\ ¢ the equation (12) with (i,1) = (r,c),

f) for all (k,1) € N\rx N\ c either (11) with (i,7) = (r,1) or (12) with (i,7) = (k,c),

g) for all pairs {i',k'} € (/\/2\7«) either (11) with (4,7,k) = (', ¢, k') or (11) with (4,3, k) =
(k,7 C? /L',)7
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h) for all pairs {j',I'} € (NQ\C) either (12) with (4,7,1) = (r,5',1") or (12) with (4, 7,1) =
(,r.7 ll7 j,)7

i) either for one pair in g) or for one pair in h) the equation not yet chosen in g) or h),
respectively

(where “either or” is always meant exclusively). Then removing R from the set of equations
(9), ..., (12) yields a complete and non-redundant equation system for QAP,.

Proof. In order to prove part (i), it suffices to show that the zero-liftings of (5) and (6) from
RYn—1 x Ré»~1 into RY" x R can be linearly combined from the equation system (9), ... ,(12).
This is sufficient due to the fact that then the solution space A of (9), ... ,(12), containing
QAP,,, is mapped by the projection 7(") isomorphically (see Proposition 1) into the solution
space of (5) (6), which is the affine hull of QAP};_; (by Theorem 11). Hence, by the isomorphism
between QAP,, and QAP _,, we have

dim (QAP;_,) = dim (QAP,) < dim(A) < dim (QAP}_,),

showing that in particular aff (QAP,) = A must hold.
By symmetry arguments, we only need to show that the equation

(13) T (rowgn) \ (1,n) U rowgn) \ (2,n)) —y (rowgn) \ (1,n) : rowgn) \ (2,n)> =1

is implied by (9), ... ,(12). We can obtain this by adding up the two equations (9) for i = 1,2 as
well as the two equations (11) with j = n and (i, k) € {(1,2),(2,1)}, subtract all equations (11)
with J € {1,...,n—1} and (2, k) € {(1,2),
(2,1)}, and finally divide the obtained equation by two. Figure 11 illustrates the summation by
showing three of its partial sums.

3
3

@) @) @) @) @) @) @) @)
n O @) @) @) n O @) @) @)
n n
‘§‘~1.¢ s‘~v¢'t‘s O ®‘~~ I®\ '¢'l@ _;‘«"@
\'7’.;2:5‘72\ %R “'7'.}::3',_':—_""/

l':’ >:§ lz‘ ~S: N :::1‘§ l":’}:Q— ‘l"fﬁ ~:§ l"
o © © O o e ©)
©) ©) ©) ©) ©) ©) ©) ©)
n O ©) ©) ©) n O ©) ©) ©)

Figure 11: Combination of equation (13).
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Now, we will prove part (ii). When changing from G,_; to G, one obtains 2n — 1 new nodes,
2(n — 1)2(n — 2) new edges connecting row ") \ (n,n) and col(™ \ (n,n) with the old nodes,

(n) (n)

(n —1)? new edges between rowy,’ \ (n,n) and coly,” \ (n,n), and (n — 1)? new edges from (n,n)
to the old nodes, summing up to
2n —14+2(n—1)%(n —2)+2(n—1)> =2n—1+2(n — 1)
=20 —142n% —6n?+6n—2
=203 — 6n% 4 8n —3
new items. Thus, we have (using Theorem 11)
dim (QAP,) = dim (QAP};_,)
= dim (R x R=1) — (n — 1)(n — 2) — 1)
= dim (R x R¥*) — (2n® — 6n% + 8n —3) — (n® — 3n + 1)
= dim (R¥" x R") — (2n® — 5n% + 5n — 2),
proving part (ii).

It remains to prove part (iii). The cardinality of the set R of equations being removed from
the system (9), ... ,(12) is

Rl=14+n—-12+2n—-1)+(n—1)+(n—1)

_|_(n_1)2_|_(71—1)2(71—2)_l_(n—1)2(n—2)_l_1
=24+2(n—1)?+4(n—1)+ (n—1)(n—2)
=2+ n—-1)2n—-1)+4+ (n—2))
=2+3n(n—1)
=3n? —3n42.

Hence, the remaining system consists of

2n 4 2n%(n — 1) — (3n? — 3n +2) = 2n + 2n® — 2n% — 3n% + 3n — 2
=203 — 5n% 4 5n — 2

equations. Due to part (ii) is suffices now to prove that this remaining system still has the same
solution space as (9), ... ,(12). Hence, we will show how to combine the equations in R from
the ones in the remaining system.

In order to simplify the notations we will denote the equations (9) by x-row(), (10) by
x-col(j), (11) by xy-row(s, j, k), and (12) by xy-col(i,j,1). Due to symmetry reasons we can
restrict to r =n and ¢ = n.

a) We can combine the equation removed from (9), (10) from the remaining ones, since this
system has not full row rank, and hence, due to symmetry reasons, every single equation
is redundant.

b) For every fixed node (i, ) € V,, adding up all equations xy-row(i, 7, k) yields the same as
adding up all equations xy-col(i, 7,1). Hence, for every fixed node (7, 5)V, the system of
equations

{xy-row(i,5,k) | k € N\ i} U {xy-col(i,5,0) |l e N'\ 5}
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has not full row rank. Thus there must be at least one redundant equation among them.
Due to symmetry reasons, again, this must be an arbitrary one. But for (i,7) € V, \
(rowgln) U col%n)) the set R contains only one of these equations that therefore can be

combined from the remaining ones.

f) Suppose an equation xy-row(n, j, k) with k,j € N'\n is contained in R. Then xy-col(k, n, 5)
is not contained in R, and furthermore, we can use all xy-row (%, j, k) and xy-col(i, 7,[) with
i,j € {1,...,n — 1} for the linear combination since they have already been combined in
b). Adding up all xy-col(k, 1, j) for I € N'\j, subtracting all xy-row(i, 5, k) for i € N'\{k,n},
and finally adding x-row (k) and subtracting x-col(7) yields a combination of xy-row(n, j, k)
(see Figure 12). An equation xy-col(i,n,l) contained in R can be combined analogously.

O @) O O

n O @) O O

Figure 12: Combination of the equations removed in f).

g),h),i) If an equation xy-row(i,n, k) with i,k € N\ n and 7 # k is not contained in R, then we
can combine the equation
(14) x (rowgn) \ (4,m) U row,(cn) \ (k,n)) -y (rowgn) \ (4,n) : row](:) \ (k,n)) =1
by just using equations from the remaining system and equations that have already been
combined in a) and b) (see Figure 13). The same holds also for any equation xy-col(n, j,1)
with 7,1 € N\ n and j # [. We can restrict to the case, where the equation chosen in g)
is xy-row(1,n,2). Thus, we can combine this way all equations that are the zero-liftings
of (5) and (6) but

x (rowgn) \ (1,n) U rowgn) \ (2,n)> —y (rowgn) \ (1,n) : rowgn) \ (2,n))> =1.

However, this one can be combined from the other zero-lifted equations due to the fact
that one arbitrary equation in (5), (6) is redundant (see Proposition 4). Proceeding “back-
wards” now yields also the equation xy-row(1,n,2) that was put into R in g).
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Figure 13: Combination of equation (14).

Hence, in the subsequent argumentations, we can use for every pair {i, k} € N'\n withi # k
one equation of xy-row(i,n, k) and xy-row(k,n,7) as well as for every pair {j,I} € N'\ n
with j # [ one equation of xy-col(n, j,1) and xy-col(n,l, 7).

An equation xy-row(i,n,k) with i,k € N\ n and 7 # k that is contained in R can now be
combined by adding up all xy-row(k, j,4) for all j € N, subtracting all xy-row(4, j, k) for
j € N\ n, adding x-row(k), and subtracting x-row(7) (see Figure 14). Analogously, one
treats an equation xy-col(n, j,[) with 5,1 € N'\n that is contained in R, where xy-col(n, [, 5)
is not contained in R, and thus, all equations removed in g), h) and i) are combined.

Every equation xy-row (i, n,n) with4 € A'\n can be combined by adding up all xy-col (i, n, )
for all [ € N\ n and subtracting all xy-row(i,n, k) for all k € N\ {i,n} (see Figure 15).

Here, we can proceed analogously to d).

We combine an equation xy-row(n,n, k) by adding up all xy-row(k,j,n) for j € N, sub-
tracting all xy-row(n, 4, k) for j € N'\n, adding x-row(k), and finally subtracting x-row(n)
(this is the same procedure as for the combination of the equations removed in g) and h),
see Figure 14). Finally, the equations xy-col(n,n,[) are combined analogously.

0

We close this treatment of the basic questions concerning redundancies in the linear con-
straints we have considered so far by a classification of the trivial inequalities for QAP,,.

Theorem 16. Let n > 3.

(i) The inequalities

Ye >0 (e € &)
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Figure 14: Combination of the equations removed in g) and h).

define facets of QAP,,.

(11) The inequalities

Yo < 1 (e € &)
Ty >0 (v EVy)
:L.’US]- ('UEVn)

are implied by the equations (9), ... ,(12) and the nonnegativity constraints y > 0 on the
edge variables.

Proof. Part (i) follows immediately from part (iii) of Theorem 11. In order to prove part (ii),
observe that (11), e.g., yields from y > 0 also the nonnegativity of z. From that one obtains,
e.g. by (9), that z <1 holds, and this leads, exploiting once more (11) and y >0, toy < 1. O

5 Conclusions

With the introduction of the “star-transformation” of the quadratic assignment polytope, now
a technique is available that allows to perform deeper polyhedral investigations of the quadratic
assignment problem. This certainly provides the possibility of investigating large classes of in-
equalities with respect to the question if they define facets of the quadratic assignment polytope.
Considering, e.g., the fact that polyhedral investigations of the traveling salesman problem have
lead to algorithms that now can solve instances of several thousands of cities, the techniques
that we have presented in this paper might give a key to utilize a large potential that polyhedral
treatments of the quadratic assignment problem has for improving the practical solvability of
this extremely hard one among the A'P-hard combinatorial optimization problems.
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