Lower Bounds for Computing Geometric Spanners and Approximate
Shortest Paths

Danny Z. Chen*

1 Introduction

Geometric spanners are data structures that approxi-
mate the complete graph on a set of points in the d-
dimensional space IR, in the sense that the shortest
path (based on such a spanner) between any pair of
given points is not more than a factor of ¢ longer than
the distance between the points in IR?.

Let 7 be a constant such that 1 < 7 < co. We mea-
sure distances between points in IR® with the L,-metric,
where d > 1 is a constant. Let S be a set of n points in
IRY. We consider graphs G = (V, E) such that (i) V is
a set of points in IRY, (ii) S C V, and (iii) the edges of
G are straight-line segments in IR? that connect pairs
of points in V. The length of an edge in G is defined as
the L,-distance between its endpoints. In such a graph,
the length of a path is defined as the sum of the lengths
of the edges on the path.

Let ¢ > 1 be any real number. Consider a graph
G = (V, E) that satisfies (1)-(i11), such that for every
pair p, q¢ of points of S, there is a path in G between p
and q of length at most ¢ times the distance between p
and ¢ in IRY. If V = S, then G is called a t-spanner for
S. Otherwise, if G contains additional vertices, we call
G a Steiner t-spanner for S, and call the points of V'\ S
the Steiner points of G.

Several algorithms are known that for any fixed con-
stant ¢ > 1 and any set S of n points in IR?, construct in
O(nlogn) time a t-spanner for S (i.e., without Steiner
points) which consists of O(n) edges. (See [3, 11, 12].)

*Department of Computer Science and Engineering, Univer-
sity of Notre Dame, Notre Dame, IN 46556, USA. E-mail:
dchen@euclid.cse.nd.edu. The research of this author was sup-
ported in part by the National Science Foundation under Grant
CCR-9623585.

tMath Sciences Dept., The University of Memphis, Memphis,
TN 38152, USA. Supported in part by NSF Grant CCR-9306822.
E-mail: dasg@nextl.msci.memphis.edu.

{Department of Computer Science, King’s College Lon-
don, Strand, London WC2R 2LS, United Kingdom. E-mail:

michiel@dcs.kcl.ac.uk.

Gautam Dast

Michiel Smid?}

All these algorithms can be implemented in the alge-
braic computation tree model [2].

These algorithmic results naturally lead to the ques-
tion of whether there are faster algorithms for construct-
ing geometric spanners. In particular, if we allow a
spanner to use significantly many Steiner points, is it
possible to construct the spanner in o(nlogn) time? In
this paper, we give a negative answer to this question.
We will prove in Section 2 that in the algebraic computa-
tion tree model, any algorithm that constructs a Steiner
t-spanner for any set of n points in IRY, has an Q(nlog n)
worst-case running time. This lower bound even holds
for inputs consisting of pairwise distinct points. The
O(nlogn)-time algorithms for constructing t-spanners
that were mentioned above all assume that ¢ is a fixed
constant. Our lower bound implies that these algo-
rithms are optimal. In fact, the lower bound holds even
if t is a (very large valued) function of n.

In the last part of the paper (Section 3), we consider
the problem of computing Steiner ¢-spanners among ob-
stacles. In this case, we are given a set S of planar
points, a set of polygonal obstacles in the plane, and a
real number ¢ > 1. A (Steiner) t-spanner is defined as
before, except that now the edges of the spanner do not
intersect the interior of any obstacle. There are several
O(nlogn)-time algorithms for constructing such span-
ners, where n denotes the number of points of S plus the
total number of obstacle vertices. (See [1, 4, 5, 6, 7].)
We prove an Q(nlogn) lower bound on the time com-
plexity for solving this problem in the algebraic com-
putation tree model. Note that although for certain
cases of spanners this lower bound also follows from the
results of Section 2, the proof techniques we use in Sec-
tion 3 are different from those in Section 2. Further-
more, as we will also show, the proof given in Section 3
extends to the same lower bound for computing epproz-
imate shortest paths among polygonal obstacles in the
plane and for computing other kind of spanners than
those of Section 2. Again, there are O(nlogn)-time al-

155

gorithms for the latter problem. (See [5, 6, 7, 8].) Hence,
by our lower bound, these results are optimal.

2 The lower bound for con-
structing Steiner spanners

We assume that the reader is familiar with the alge-
braic computation tree model. (See [2, 9].) We only
consider algorithms that can be implemented in the
algebraic computation tree model and that construct
Steiner ¢-spanners with o(nlogn) edges. We will fo-
cus on algorithms that construct Steiner ¢-spanners for
one-dimensional point sets. As will be seen, even the
one-dimensional case has an (n logn) lower bound.

We can reduce the element uniqueness problem—
which has an Q(nlogn) lower bound—to that of con-
structing a Steiner ¢-spanner. Hence, the latter prob-
lem has an Q(nlogn) lower bound as well. However,
this lower bound proof is unsatisfying in the sense that
in computational geometry we often assume implicitly
that all input elements are pairwise distinct. For such
inputs, the above approach does not work. In the rest
of this section, we prove the following result.

Theorem 1 Let d > 1 be an integer constant. In the
algebraic computation tree model, any algorithm that,
gtven a set S of n pairwise distinct points in R? and a
real numbert > 1, constructs a Steciner t-spanner for S,
takes Q(nlogn) time in the worst case.

Our proof makes use of the following result.

Theorem 2 (Ben-Or [2]) Let W be any set in IR"
and let C be any algorithm that belongs to the algebraic
computation tree model and that accepts W. Let #W
denote the number of connected components of W. Then
the worst-case running time of C is Q(log #W — n).

Throughout the rest of this section, .A denotes any
algorithm that, given a set S of n pairwise distinct real
numbers and a real number £ > 1, constructs a Steiner -
spanner for S with o(nlogn) edges. Hence, the output
of A is a graph having as its vertices the elements of
S and (possibly) some additional Steiner points. Note
that, although the elements of S are pairwise distinct,
this graph may have multiple vertices that represent the
same numbers: There may be an element u of S and a
Steiner point v that represent the same real number.
Similarly, there may be Steiner points u and v that are
different as vertices of the graph, but that represent the
same real number. Hence, the graph may have edges of
length zero.

We will show that the worst-case running time of A
is Q(nlogn). In order to apply Theorem 2, we have to
define an appropriate algorithm C such that (i) C solves
a decision problem, i.e., it outputs YES or NO, (ii) C
has a running time that is within a constant factor of
A’s running time, and (iii) the set of YES-inputs of C,
considered as a subset of IR", consists of many (at least
n! in our case) connected components.

There is one problem here. We consider decision algo-
rithms whose inputs consist of n real numbers that are
pairwise distinct. The subset of IR" on which such an
algorithm X is defined trivially has at least n! connected
components. We cannot apply Theorem 2 to algorithm
X. For example, X' could be the algorithm that takes
as input a sequence of n pairwise distinct real numbers,
and simply outputs YES. The subset of IR" accepted by
this algorithm has at least n! connected components, al-
though it has a running time of O(1).

Therefore, to apply Theorem 2, we must carefully de-
fine algorithm C. After we define algorithm C as speci-
fied above, we will further define a related algorithm D
that takes any point of IR" as input, and whose set of
YES-inputs still has at least n! connected components.
As the reader might expect, we start with defining an
algorithm B, before introducing algorithm C.

Algorithm B does the following on an input consisting
of n pairwise distinct real numbers z;,2,...,z, and a
real number ¢ > 1. It first runs algorithm A on the input
T1,Z3,...,Zn,1. Let G be the Steiner t-spanner that is
computed by A. Considering all edges of G, algorithm
B then selects a shortest edge of non-zero length, and
outputs the length Is of this edge.

We introduce the following notation. For real num-

bers z1, 3, ..., Zn, we denote
mg(z1,Z2,...,2n) :=min{|z; —z;|: 1 <i<j < n}.
Lemma l 0< Is <t-mg(x1,22,...,2n)-

We now fix an integer n and a real number ¢ > 1.
For any permutation 7 of the integers 1,2,...,n, let
Isx be the output of algorithm B when given as input
m(1),7(2),...,m(n),t. Among all these n! outputs, let
Is™ be one that has the minimal value.

Now we can define algorithm C. It only accepts inputs
of our fixed length n, consisting of n pairwise distinct
real numbers. On input z1, T2, . . ., Z,, algorithm C does
the following. It first runs algorithm B on the input
r1,Z2,...,Zn,t. Let Is be the output of B. Algorithm
C then outputs YES if Is > Is*, and NO otherwise.

Since algorithm C only accepts inputs of our fixed
length n, and since we also fixed ¢, we may assume that
it “knows” the value Is™. Algorithm C ezists, although
we have not explicitly computed Is*.

156

Algorithm C is defined only for inputs consisting of n
pairwise distinct real numbers. As a result, C can safely
perform operations of the form z := z/(z; — z;), for
any real number z, without having to worry whether
the denominator is zero or not. Our final algorithm D
will take any point (zy,zs,...,,) of IR" as input. On
input 21,22, ...,2,, D performs the same computation
as C does on the same input, except that each operation
of the form z := z/y is performed by D as

if y # 0 then z := z/y else output YES and
terminate fi.

Since C is a well-defined algorithm, it will always be
the case that y # 0 if the input consists of n pairwise
distinct real numbers. When two input elements are
equal, it may still be true that y # 0, although this is
not necessarily the case. It is clear that C and D give the
same output when given as input the same sequence of
n pairwise distinct real numbers. If these numbers are
not pairwise distinct, then C is not defined, whereas D
is, although its output may not have a meaning at all.
We will prove that the running time of algorithm D is
Q(nlogn). This will imply the same lower bound on the
running time of our target algorithm A. Let W be the
set of all points (z1,z2,...,2,) € IR" that are accepted
by algorithm D. Lemma 2 and Theorem 2 imply the
lower bound on the running time of algorithm D.

Lemma 2 #W > nl.

Proof: Let m and p be two different permutations
of 1,2,...,n. We will show that the points P :=
(7(1),7(2),...,m(n)) and R := (p(1),p(2),....p(n))
belong to different connected components of W.

Let ¢ and j, 1 < 7,j < n, be two indices such that
7(i) < w(j) and p(i) > p(j). Consider any continu-
ous curve C in IR" that connects P and R. Since this
curve passes through the hyperplane z; = z;, it contains
points for which the absolute difference between the i-
th and j-th coordinates is positive but arbitrarily small.
However, for such points @ = (g1, 92, - - -, gn), there may
be two distinct indices k and £ such that ¢, = gq;. We do
not have any control over algorithm D when given such
a point @ as input. Therefore, we proceed as follows.

Paramectrize the curve C as C(7), 0 < 7 < 1, where
C(0) = P and C(1) = R. For 1 <k < n, we write the
k-th coordinate of the point C(7) as C(7)x. Define 7o
as the minimum value of 7, 0 < 7 < 1, such that

mg(C(t)1,C(7)2,...,C(7)n) < Is*/(2t).

Let Q@ := C(m), and write this point as @

(91,92,---,qn). Then we have mg(q1,92,...,4n)
Is*/(2t) < Is*/t. Also, mg(C(0)1,C(0)2,...,C(0)n)

IVIA I

Is* > Is*/(2t). The value of 7 is the first “time” at
which the mg-function is at most equal to Is™/(2t).
Since this function is continuous along C, we have
mg(q1,92,--.,9n) > 0. Hence, (g1,92,...,qn) is a se-
quence of n pairwise distinct real numbers. Consider
algorithm D when given this sequence as input. It
runs algorithm B on the input ¢i,92,...,qn,t. Let
Is be the output of B. By Lemma 1, we have Is <
t-mg(q1,92,-..,9n). Hence, Is < Is* and, therefore, al-
gorithm D outputs NO. This implies that point @ does
not belong to the set W. [|

3 Spanners and approximate
shortest paths among obsta-
cles in the plane

Let S be the set of obstacle vertices (isolated points
are considered as point-obstacles), and let n = |S]|. Let
G = (V, E) be a graph such that (i) S is a subset of V,
and (ii) the edges of G are straight-line segments in the
plane that do not intersect the interior of any obstacle.
Then the notion of spanners in the previous sections can
be generalized such that G is a t-spanner for S if for any
two obstacle vertices u,v € S, there is a u-to-v path in
G whose length is no more than ¢ times the length of a
shortest u-to-v obstacle-avoiding path in the plane. If
V = S, then we call G a t-spanner for S. Otherwise,
if G contains additional vertices (Steiner points), then
we call G a Steiner t-spanner for S. If a spanner G is
planar, then there is an embedding of the graph G in the
plane, such that no two of its embedded edges properly
cross each other.

An obstacle-avoiding path connecting two points u
and v in the plane is called a t-short u-to-v path if the
length of that path is no more than ¢ times the length
of a shortest u-to-v obstacle-avoiding path in the plane.

We need to distinguish two kinds of spanners in this
section: Explicitly represented spanners and implicitly
represented spanners. The spanners considered in Sec-
tion 2 are ezplicitly represented spanners, since there we
assumed that each edge of such a spanner is specified or
represented in some explicit manner. Thus, construct-
ing an explicitly represented spanner with n vertices and
m edges requires (n +m) time. Specifically, our lower
bound results in Section 2 hold for explicitly represented
spanners with o(n log n) edges. Spanners in this section,
however, are allowed to contain Q(nlogn) edges, and
if this is the case, the spanners, called implicitly rep-
resented spanners, are assumed to be representable in
some implicit fashion. For example, one could, in O(n)
space, somehow represent a coloring of the points in S
with several different colors, such that a spanner G of

157

Figure 1: The rectangle R; and rectilinear notch N;
associated with the point p;.

S would contain only the edges whose endpoints are of
different. colors.

Our proof of the Q(n logn) lower bound for comput-
ing t-short obstacle-avoiding paths is inspired by the re-
duction that de Rezende, Lee, and Wu used to prove the
Q(nlogn) lower bound for computing rectilinear short-
est obstacle-avoiding paths [10]. We reduce the problem
of sorting a set ' of n distinct positive integers I, I,
..., In to the t-short path and spanner problems we
consider. This sorting problem has an Q(n logn) lower
bound. The reduction is done mainly by constructing a
geometric sorting device based on an (arbitrary) algo-
rithm for the ¢-short path or spanner problem.

Our lower bound proofs are based on the following
framework of reduction (but the actual values of several
parameters can vary from one proof to another). Con-
sider a set K of n positive pairwise distinct integers I,
I, ..., I,. Let I, (resp., I,) be the smallest (resp.,
largest) integer in the set K. For every integer I; € K,
first map I; to the point p; = ([;,0) in the plane, and
then construct a rectangle R; and a rectilinear notch N;
associated with p;, as follows (see Figure 1). The edges
of R; and N; are parallel to an axis of the coordinate
system. The cutoff of the rectilinear notch N; forms a
d x & square s; whose vertices are b, c, d, and e (the
value of § is carefully chosen to be sufficiently small and
this will be done later). The point p; is at the center
of the square s; and also at the center of the edge gh
of R;. The length of the edge gh is 6/2, and the length
of both the edges ab and ef of N; is §/4. Let C be a
large circle whose center 1s at the origin of the coordi-
nate system and whose radius is dependent on the input
value of t and on the specific problem. We only consider
the half of C' to the right of the y-axis. Let the upper-
right (resp., lower-right) corner of each R; (resp., N;)

Figure 2: Reducing integers I3, Io, ..., I, to a geometric

setting.

touch the circle C (see Figure 2). Let the obstacle set
consist of the R;’s and N;’s. It is not hard to observe
that, because each R; (resp., N;) is contained in the
circle C and its upper-right (resp., lower-right) corner
touches C, the visibility graph of the obstacle vertices in
this geometric setting has only O(n) edges (Figure 2).
Moreover, observe that the length of the shortest p,-to-
p, obstacle-avoiding path among this set of obstacles is
< 2(I, — I;). Also, note that once the circle C is given,
this reduction can be easily performed in O(n) time.

Theorem 3 In the algebraic computation tree model,
any algorithm that, given a set of disjoint polygonal ob-
stacles in the plane with a total of n vertices, two obsta-
cle vertices p, and p,, and a real number t > 1, com-
putes a t-short p,-to-p, obstacle-avoiding path in the
plane requires Q(nlogn) time in the worst case.

Proof: We reduce the problem of sorting a set K of
n positive pairwise distinct integers I, Iz, ..., I to
the problem of computing a t-short p,-to-p, obstacle-
avoiding path in the plane, where I,, (resp., I) is the
smallest (resp., largest) integer in K. The key is to
make the heights of the R;’s and N;’s very large, thus
forcing the (unique) t-short p,-to-p, path to go through
the points p;, in sorted order. Specifically, we let § be
any real number with 0 < § < 1/8, and let the height
of N, be > § + 2t(J, — I,). Next, we let C be the circle
whose center is at the origin and that passes through the

158

lower-right corner of N, and let other obstacles R; and
N; touch C as discussed above (Figure 2). Now, observe
that the height of any R; (resp., N;), for each i = 1, 2,

.., n, is no smaller than the height of N, (which is >
d+2t(I, —I,)). Also, observe that there can be only one
t-short p,-to-p, path in the plane. Furthermore, this t-
short p,-to-p, path goes through the edge of each R;
that contains p;, and the length of this t-short path is
< 2t(I, — I,,). In fact, for every value ¢’ with 1 <’ <t,
the t’-short p,-to-p, path in this geometric setting is
identical to the t-short p,-to-p, path. After the O(n)
time reduction, we simply use an (arbitrary) algorithm
to compute a t-short p,-to-p, path in this geometric
setting. Then tracing this path from p, to p, will give
us a sorted sequence of the integers I1, Iz, ..., I,. B

Theorem 4 In the algebraic compulation tree model,
any algorithm that, given a set of disjoint polygonal ob-
stacles in the plane with a total of n vertices, and a
real number t > 1, constructs a t-spanner (ezxplicitly or
implicitly represented) requires Q(nlogn) time.

Proof: We first perform the same reduction as in the
proof of Theorem 3 (with the same values for the pa-
rameters). We then use an (arbitrary) algorithm to con-
struct a t-spanner G whose vertices are precisely the ob-
stacle vertices. Now observe that, because of the chosen
heights of the obstacles R; and Nj, G must contain a
t-short p,-to-p, path P that does not pass through any
upper (resp., lower) vertices of the R;’s (resp., N;’s).
Furthermore, observe that G contains only O(n) edges.

From the spanner G, we remove all its edges whose
lengths are > ([, — I,;), and let the graph so resulted
be G’. Note that no edge on the t-short p,-to-p, path P
is removed from (G. More importantly, there is no path
in G’ from p,, to any upper (resp., lower) vertex of the
R;’s (resp., N;’s). If this were not the case, then there
would be a path P’ in G’ from p, to (say) an upper
vertex of an R;. W.lo.g., let R; be the rectangle such
that its upper vertex z first appears in P’. But then
the edge on P’ connecting with = cannot be adjacent to
an upper vertex of another Ry, and, consequently, this
edge is of a length > #(I, — I,), a contradiction.

It is now an easy matter to find in G’ a p,-to-p, path
P* in O(n) time. Note that P* need not pass through a
particular point p;. But, for each point p;, P* must pass
through some of the vertices in {a,b,c,d, e, f,g, h} that
are associated with p; (see Figure 1). We “color” all the
vertices in {a, b, ¢, d, €, f, g, h} associated with a point p;
by a “color” i. Note that, if we travel along the p,-to-
py path P* the vertices of the same “color” need not
appear consecutively along P*. Nevertheless, we can
obtain a sorted sequence of the input integers from P*,
as follows: We travel along P* from p,, to p, two times.

In the first traveling along P*, we keep track of, for
each “color”, the last vertex with that “color” that we
encounter. This traveling process can be easily done in
O(n) time. After the first traveling along P*, we travel
along P* again, and this time, we output along the order
of P* the “color” vertices that we have kept track of as
the result of our first traveling on P*. That the “colors”
we output in this manner are in the sorted order of the
input integers follows from the fact that P* is a path
of the visibility graph that does not pass through the
upper (resp., lower) vertices of the R;’s (resp., N;'s). i

Theorem 5 In the algebraic computation tree model,
any algorithm that, given a set of disjoint polygonal ob-
stacles in the plane with a total of n vertices, and a
real number t > 1, constructs an ezplicitly represented
Steiner t-spanner that contains o(nlogn) Steiner points
and o(nlogn) edges requires Q(nlogn) time.

Proof: We use basically the same reduction framework
as in the proof of Theorem 4. However, we need to
choose carefully the values for a few parameters of the
geometric setting and to use several additional obser-
vations and ideas in this proof. In particular, we let ¢
be a positive number < min{1/(2¢tn?),1/8}, and let the
height of N, be a value > & + 2tn?(I, — I,,). Once the
value of the height of N, is decided, the value of the
radius of the circle C' and the values of the heights of
all the other R;’s and N;’s can be decided accordingly.

Suppose that we have used an (arbitrary) algorithm
to construct an explicitly represented Steiner t-spanner
G = (V, E) with o(nlogn) Steiner points and o(n log n)
edges. Then |V| = o(nlogn). The key idea is to obtain
from the spanner G an obstacle-avoiding path P* from
Pu to py, such that (1) P* does not pass through any
upper (resp., lower) vertices of the R;’s (resp., N;’s),
and (2) with an appropriate “coloring” of a subset of the
vertices in V, the “colors” of the vertices along P* can
lead to finding the sorted sequence of the input integers.
However, with the presence of Steiner points, preventing
such a py-to-p, path P* in G from going through the
upper (resp., lower) vertices of the R;’s (resp., N;’s) and
coloring a subset of the vertices in V must be done in a
different way from that of the proof of Theorem 4.

We first discuss how to prevent a certain p,-to-p,
obstacle-avoiding path from going through the upper
(resp., lower) vertices of the R;’s (resp., N;’s). Observe
that (1) there is a -short py-to-p, path P in G, and (2)
the length of every edge on P is < 2¢([,—1I,.). We obtain
another graph G’ from G by removing from G all the
edges whose lengths are > 2¢(I, —I,,). Note that no edge
on the path P is removed from G. More importantly,
we claim that in G’, there is no path from p, to any
upper (resp., lower) vertex of the R;’s (resp., N;’s). If

159

Figure 3: Every py-to-p, path P’ in G’ contains a vertex
gof G in r;.

this were not the case, then there would be a path P’ in
G’ from p, to (say) an upper vertex of an R;. W.l.o.g,
let R; be the rectangle such that its upper vertex z
first appears in P’. It means that when we travel along
P’ from p, to z, we encounter no other upper (resp.,
lower) vertex of the R;’s (resp., N;’s) than z. There can
be only o(nlogn) vertices of G on the path along P’
from p, to z, and the length of this p,-to-z path is >
2tn?(I, — I,). It then follows that at least one edge on
this py,-to-z path is of a length > 2¢(I, — I,) (otherwise,
the length of this p,-to-z path in G’ would be < 2t(I, —
I,) x o(nlogn) < 2tn?(I, — I,), a contradiction). But
this is a contradiction to the definition of G'.

We now discuss how to “color” a subset of the ver-
tices in G'. Note that because of the presence of Steiner
points, a pyu-to-p, path P’ in G’ (which cannot go
through any upper (resp., lower) vertices of the R;’s
(resp., N;’s)) need not pass through any vertex in the
set {a,b,c,d,c, f, g,h} associated with a point p; (Fig-
ure 3), even though P’ does have to pass through the
“alley” between R; and N;. Our “coloring” method 1s
based on the following observation:

(x) For a point p;, let 7; be the portion of the square s;
(recall that s; is defined by the obstacle vertices b,
¢, d, and ¢ associated with p;) that is on or below
the horizontal line passing through p; (see Figure
3). Then every py-to-p, path P’ in G’ goes through
at least one point g in 7; such that g is either an ob-
stacle vertex or a Steiner point of G. Furthermore,
the distance between p; and g is < §, and there is
a t-short p;-to-¢g path in G’ whose length is < #4.

We do the “coloring” as follows. We first obtain from
G’ another graph G”, by removing from G’ all the edges
whose lengths are > 1/n?. We then have the following
claims on G”. (i) There is no path in G” connecting
two distinct points p; and pj; (ii) For every point p; and

every vertex w of G such that the length of the shortest
pi-to-w obstacle-avoiding path in the plane is < 4, there
is a path in G” connecting p; and w.

Note that the second claim implies that there is a path
in G” connecting p; and the point ¢, where ¢ is defined
as in the observation (x) given above. Also, note that
it is trivial to obtain G” from G’ in o(nlogn) time.

Based on the above two claims, the rest of the “color-
ing” process is done as follows: For every point p;, com-
pute the connected component in G” that contains p;
(by performing a depth-first search in G”), and “color”
this connected component with a “color” i. This com-
putation certainly takes o(nlogn) time. The rest of the
proof proceeds as in the proof of Theorem 4. [|

Corollary 1 In the algebraic computation tree model,
any algorithm that, given a set of disjoint polygonal ob-
stacles in the plane with a total of n vertices, and a
real number t > 1, constructs an explicitly represented
planar Steiner t-spanner with o(nlogn) Steiner points
requires Q(nlogn) time in the worst case.

Corollary 1 implies that the O(nlogn)-time algo-
rithms in [1] for constructing planar Steiner ¢-spanners
with O(n) Steiner points are optimal.

References

[1] S. Arikati, D.Z. Chen, L.P. Chew, G. Das, M. Smid,
and C.D. Zaroliagis. Planar spanners and approrimate
shortest path queries among obstacles in the plane.
Manuscript, 1996.

[2] M. Ben-Or. Lower bounds for algebraic computation

trees. 15th STOC, 1983, pp. 80-86.

[3] P.B. Callahan and S.R. Kosaraju. Faster algorithms for
some geometric graph problems in higher dimensions.
4th SODA, 1993, pp. 291-300.

[4] L.P. Chew. Constrained Delaunay triangulations. Algo-
rithmica 4 (1989), pp. 97-108.

[5] L.P. Chew. There are planar graphs almost as good as
the complete graph. JCSS 39 (1989), pp. 205-219.

[6] L.P. Chew. Planar graphs and sparse graphs for efficient
motion planning in the plane. PCS-TR90-146, Dart-
mouth College.

[7] K.L. Clarkson. Approzimation algorithms for shortest
path motion planning. 19th STOC, 1987, pp. 56-65.

[8] J. Mitchell. L, shortest paths among polygonal obstacle
in the plane. Algorithmica 8 (1992), pp. 55-88.

[9] F.P. Preparata and M.I. Shamos. Computational Ge-
ometry, an Introduction. Springer-Verlag, 1985.

[10] P.J. de Rezende, D.T. Lee, and Y.F. Wu. Rectilinear
shortest paths in the presence of rectangular barriers.
DCG 4 (1989), pp. 41-53.

[11] J.S. Salowe. Constructing multidimensional spanner
graphs. IJCGA 1 (1991), pp. 99-107.

[12] P.M. Vaidya. A sparse graph almost as good as the com-
plete graph on points in K dimensions. DCG 6 (1991),
pp- 369-381.

160

