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Abstract

This article brie°y surveys some fundamental results concerning pseudo-Boolean
functions, i.e. real-valued functions of 0-1 variables. Hundreds of papers have been
devoted to the investigation of pseudo-Boolean functions, and a rich and diversi¯ed
theory has now emerged from this literature. The article states local optimality
conditions, outlines basic techniques for global pseudo-Boolean optimization, and
shows connections between best linear approximations of pseudo-Boolean functions
and game theory. It also describes models and applications arising in various ¯elds,
ranging from combinatorics to management science, and points to several classes of
functions of special interest.

Keywords: integer programming, nonlinear 0-1 optimization, max-sat, max-cut, graph
stability, game theory.

1 Pseudo-Boolean functions

1.1 De¯nitions and representations

A pseudo-Boolean function is a mapping from f0; 1gn to <, i.e. a real-valued function
of a ¯nite number of 0-1 variables. Pseudo-Boolean functions have been introduced in
[15], and extensively studied in [16] and in numerous subsequent publications; a detailed
survey appears in [4].

Pseudo-Boolean functions generalize Boolean functions, which are exactly those pseudo-
Boolean functions whose values are in f0; 1g, i.e. those f(X) for which f 2(X)¡ f(X) ´ 0
in f0; 1gn. Since the elements of f0; 1gn are in one-to-one correspondence with the subsets
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of N = f1; 2; : : : ; ng, every pseudo-Boolean function can be interpreted as a real-valued
set function de¯ned on P(N), the power set of N = f1; 2; : : : ; ng. Viewing pseudo-
Boolean functions as de¯ned on f0; 1gn, rather than on P(N), provides an algebraic
viewpoint which sometimes carries clear advantages. It is easy to see for instance that
the set of all pseudo-Boolean functions in n variables forms a vector space over <, and
that the elementary monomials

Q
i2A xi (A 2 P(N)) de¯ne a basis of this space. In

particular, every pseudo-Boolean function f(x1; x2; : : : ; xn) can be uniquely represented
as a multilinear polynomial of the form

f(x1; x2; : : : ; xn) = c0 +
mX

k=1

ck
Y

i2Ak
xi; (1)

where c0; c1; : : : ; cm are real coe±cients, and A1; A2; : : : ; Am are nonempty subsets of N .
When viewed as a function on [0; 1]n, the right-hand side of (1) de¯nes a continuous
extension of the pseudo-Boolean function f , to be denoted f c.

Note that every pseudo-Boolean function also admits (many) representations of the form

f(x1; x2; : : : ; xn) = b0 +
mX

k=1

bk

³ Y

i2Ak
xi
Y

j2Bk
xj

´
; (2)

where b0; b1; : : : ; bm are real coe±cients, and xj = 1¡ xj for j = 1; 2; : : : ; n. If bk ¸ 0 for
all k = 1; 2; : : : ;m, then we say that the expression (2) is a posiform of f . It is easy to see
that every pseudo-Boolean function can be expressed as a posiform. Other representations
of pseudo-Boolean functions have been recently investigated in [12].

1.2 Representative models

Besides nonlinear binary optimization, pseudo-Boolean functions can also be used to
model a wide variety of problems in di®erent ¯elds of appplication.

Maximum satis¯ability. Consider a collection of Boolean clauses
³W

i2Ak xi _
W
j2Bk xj :

k = 1; 2; : : : ;m
´
. The maximum satis¯ability problem is to ¯nd a vector (x1; x2; : : : ; xn)

in f0; 1gn which satis¯es the largest possible number of clauses in the collection. This
problem, which generalizes the NP-complete satis¯ability problem, is equivalent to that
of minimizing the posiform (2) with bk = 1 for k = 1; 2; : : : ;m; see e.g. [17].

Graph theory. Consider a graph G = (N;E) with positive weights w : N ! < on its
vertices, and capacities c : E ! < on its (undirected) edges. For every S µ N , the cut
(S;N n S) is the set of edges having exactly one endpoint in S; the capacity of this cut
is
P

fi;jg2(S;NnS) c(i; j). The max-cut problem is to ¯nd a cut of maximum capacity in G.
This problem is equivalent to maximizing the quadratic pseudo-Boolean function

f(x1; x2; : : : ; xn) =
X

1·i<j·n
c(i; j) (xixj + xixj); (3)
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under the interpretation that (x1; x2; : : : ; xn) is the characteristic vector of S.

A stable set in G is a set S µ N such that no edge has both of its endpoints in S;
the weight of S is

P
i2S w(i). The weighted stability problem is to ¯nd a stable set of

maximum weight in G. This can be seen to be equivalent to maximizing the quadratic
pseudo-Boolean function

f(x1; x2; : : : ; xn) =
nX

i=1

w(i)xi ¡ (1 + min
1·i·n

w(i))
X

1·i<j·n
xixj; (4)

where (x1; x2; : : : ; xn) is the characteristic vector of S. Other connections between the
weighted stability problem and pseudo-Boolean optimization (in particular, posiforms)
have been exploited in [11].

Linear 0-1 programming. Consider the linear 0-1 program

maximize z(x1; x2; : : : ; xn) =
nX

j=1

cjxj (5)

subject to
nX

j=1

aijxj = bi; i = 1; 2; : : : ;m (6)

(x1; x2; : : : ; xn) 2 f0; 1gn: (7)

This problem is equivalent to the quadratic pseudo-Boolean optimization problem

maximize f(x1; x2; : : : ; xn) =
nX

j=1

cjxj ¡ M
mX

i=1

(
nX

j=1

aijxj ¡ bi)
2 (8)

subject to (x1; x2; : : : ; xn) 2 f0; 1gn; (9)

for a su±ciently large M .

Management applications. Constraints of the form:

xi = 1 if and only if y = 1; i 2 A

are encountered in many management applications (e.g., capital budgeting, plant loca-
tion, tool management problems, etc.; see [7, 16, 22]). Since such constraints simply
express that y =

Q
i2A xi, pseudo-Boolean formulations of such problems often arise quite

naturally by elimination of the y-variables.

Game theory. A game in characteristic function form is nothing but a pseudo-Boolean
function f . If (x1; x2; : : : ; xn) is the characteristic vector of the set S, then f(x1; x2; : : : ; xn)
is interpreted as the payo® that the players indexed in S can secure by acting together.
The multilinear representation of f and its continuous extension f c play an interesting
role in this context; see e.g. [2] and Section 3 below.
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1.3 Special classes of pseudo-Boolean functions

Several authors have investigated special classes of functions with \nice" properties. Let
us simply mention here monotonic functions (whose ¯rst derivatives { see below { have
constant sign on f0; 1gn), supermodular functions (whose second derivatives are nonnega-
tive on f0; 1gn), polar functions (which have a posiform (2) such that, for every k, either
Ak = ; or Bk = ;), unimodular functions (which are polar up to a switch xi $ xi
on a subset of variables), (completely) unimodal functions (which have a unique local
maximizer in (every face of) f0; 1gn), etc. Strongly polynomial combinatorial algorithms
for the maximization of supermodular functions have been recently proposed in [20, 21].
Unimodular functions can be maximized by max-°ow algorithms [19]. Unimodal and re-
lated classes of functions have been introduced in [10], where the applicability of greedy
algorithms for their optimization has also been investigated. The recognition problem for
all these classes of functions is examined in [5].

2 Optimization

Optimization of pseudo-Boolean functions over subsets of f0; 1gn is also known as non-
linear 0-1 optimization. A survey of this ¯eld is presented in [18]. We shall only mention
a few fundamental facts, restricting ourselves mostly to the unconstrained case.

2.1 Local optima

If f(x1; x2; : : : ; xn) is a pseudo-Boolean function, let us de¯ne its ith derivative ¢i to be
the pseudo-Boolean function

¢i = f(x1; : : : ; xi¡1; 1; xi+1; : : : ; xn)¡ f(x1; : : : ; xi¡1; 0; xi+1; : : : ; xn):

It was shown in [16] that all the local maxima of the function f are characterized by the
system of implications:

if ¢i > 0 then xi = 1; if ¢i < 0 then xi = 0; for i = 1; 2; : : : ; n:

Let now mi and Mi be arbitrary lower and upper bounds of ¢i, e.g. the sums of the
negative, respectively the positive, coe±cients in the polynomial representation of ¢i.
Then it is clear that an equivalent characterization of the local maxima of the pseudo-
Boolean function f is given by the system of inequalities

¢i ¡Mi xi · 0; ¢i ¡mi xi ¸ 0; for i = 1; 2; : : : ; n:
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2.2 Global optima

The continuous extension f c has the attractive feature that its global maximizers are at
the vertices of the hypercube [0; 1]n and hence, coincide with those of f (this is because (1)
is linear in every variable). This implies that continuous global optimization techniques
can be applied to f c in order to compute the maximum of f . This approach did not prove
computationally e±cient in past experiments, but remains conceptually valuable. As an
amusing corollary, one may note for instance that the optimum of the max-cut function
(3) is at least f c(1

2
) = 1

2

P
1·i<j·n c(i; j). Thus, we ¯nd that every graph contains a cut

of capacity at least equal to one-half the total edge capacity, a well-known result of graph
theory. Moreover, such a cut can be found e±ciently.

A combinatorial variable elimination algorithm for pseudo-Boolean optimization was pro-
posed by Hammer, Rosenberg and Rudeanu [15, 16]. The following streamlined version
and an e±cient implementation of this algorithm are described in [8]. Let f(x1; x2; : : : ; xn)
be the function to be maximized. We can write

f(x1; x2; : : : ; xn) = x1¢1(x2; x3; : : : ; xn) + h(x2; x3; : : : ; xn);

where h and the ¯rst derivative ¢1 do not depend on x1. Clearly, there exists a maximizer
of f , say (x¤1; x

¤
2; : : : ; x

¤
n), with the property that x¤1 = 1 if and only if ¢1(x

¤
2; x

¤
3; : : : ; x

¤
n) >

0. This suggests to introduce a function t(x2; x3; : : : ; xn) such that t(x2; x3; : : : ; xn) =
¢1(x2; x3; : : : ; xn) if ¢1(x2; x3; : : : ; xn) > 0 and t(x2; x3; : : : ; xn) = 0 otherwise. Letting
f1 = t + h, we have reduced the maximization of the original function f in n variables
to the maximization of f1, which only depends on n ¡ 1 variables. Repeating n times
this elimination process eventually allows to determine a maximizer of f . An e±cient
implementation of this algorithm is proposed in [8], where it is also proved that the
algorithm runs in polynomial time on pseudo-Boolean functions with bounded tree-width.

Another classical approach consists in transforming the problem maxff(X) : X 2 f0; 1gng
into an equivalent linear 0-1 programming problem by substituting a variable yk for the kth
monomial Tk of (1) (or (2)) and setting up a collection of linear constraints which enforce
the equality yk = Tk. The continuous relaxation of this linear formulation yields an easily
computable upper-bound on the maximum of f . Properties of this upper-bound and of
related formulations of f have been investigated in [1, 13] and in a series of subsequent
paper; see [6] for a brief account and Section 2.3 for related considerations.

2.3 Quadratic 0-1 optimization

Quadratic 0-1 optimization is an important special case of pseudo-Boolean optimization,
both because numerous applications appear in this form, and because the more general
case is easily reduced to it. Indeed, consider a function f of the form (1), assume that
jA1j > 2 and select j; l 2 A1. Then, the function

g(x1; x2; : : : ; xn; y) = c0 + c1
³ Y

i2A1nfj;lg
xi
´
y +

mX

k=2

ck
Y

i2Ak
xi ¡ M(xjxl¡ 2xjy¡ 2xly+ 3y)
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where y is a new variable, and M is large enough, has the same maximum value as f
(y = xjxl in every maximizer of g). Applying recursively this procedure yields eventually
a function of degree 2.

Best linear majorants and minorants of pseudo-Boolean functions can provide important
information on the function. It was shown in [13] that for any quadratic pseudo-Boolean
function f , one can construct a linear function

l(x1; x2; : : : ; xn) = l0 +
nX

j=1

ljxj;

called the roof dual of f , majorizing f(x1; x2; : : : ; xn) in every binary point (x1; x2; : : : ; xn)
and having the following property of strong persistency: if lj is strictly positive (resp.
negative), then xj must be equal to 1 (resp. 0) in every maximizer of f . In other words, roof
duality allows the determination of the optimal values of a subset of variables. Moreover,
maxff(X) : X 2 f0; 1gng = maxfl(X) : X 2 f0; 1gng if and only if an associated 2-SAT
problem is satis¯able. While the determination of the roof dual in [13] was accomplished
via linear programming, it was shown later [3] that this problem can be reduced to a
max°ow problem in an associated network.

3 Linear approximations

In order to ¯nd the best linear approximation L(f) of a pseudo-Boolean function f in the
norm L2, it is su±cient to know how to determine the best linear L2-approximation of a
monomial. Indeed, considering the polynomial representation (1), it is clear that

L(f) = c0 +
mX

k=1

ck L
³ Y

i2Ak
xi
´
:

On the other hand, it was shown in [14] that

L
³Y

i2A
xi

´
=

1

2jAj
(1¡ jAj+ 2

X

i2A
xi) for all A µ N:

It was shown in the same paper that the best quadratic, cubic,... L2-approximations can
also be obtained by similar simple closed formulas.

Important game-theoretical applications of best L2-approximations consist in ¯nding the
Banzhaf indices of the players of a simple game, or the Shapley values of the players of an
n-person characteristic function game. Indeed, as shown in [14], these indices are simply
the coe±cients of best (weighted) linear L2-approximations of pseudo-Boolean functions
describing these games.

Another important application of these results allows the e±cient determination of excel-
lent heuristic solutions of unconstrained nonlinear binary optimization problems [9].
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