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Abstract

Let v be a vertex of a graph G; a transition graph T (v) of v is a graph whose vertices
are the edges incident with v. We consider graphs G with prescribed transition

systems T = { T (v) | v ∈ V (G) }. A path P in G is called T -compatible, if each
pair uv, vw of consecutive edges of P form an edge in T (v). Let A be a given class
of graphs (closed under isomorphism). We study the computational complexity of
finding T -compatible paths between two given vertices of a graph for a specified
transition system T ⊆ A. Our main result is that a dichotomy holds (subject to
the assumption P 6= NP). That is, for a considered class A, the problem is either
(1) NP-complete, or (2) it can be solved in linear time. We give a criterion—based
on vertex induced subgraphs—which decides whether (1) or (2) holds for any given
class A.

Key words: Transition, compatible path, complexity, NP-completeness, linear
time algorithm, edge-colored graph, forbidden pairs.

1 Introduction

A transition in a graph is a pair of adjacent edges. We consider the problem
of finding paths between two given vertices avoiding forbidden transitions (or
equivalently, paths that use only allowed transitions); such paths are called
compatible. For a vertex v, the set of allowed transitions define a graph T (v)
on the set of edges incident with v; the graph T (v) is called the transition
graph of v.

If, for example, all transition graphs are cliques, then the compatible-path-
problem is trivial, since every path is compatible. It is natural to ask for the

1 This work has been supported by the Austrian Science Fund, P13417-MAT
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computational complexity of the compatible-path-problem with respect to a
given class A of transition graphs. We give a complete answer to this question
showing that—with respect to a given class A—the problem is either

(1) NP-complete, or
(2) can be solved in linear time

(both cases exclude each other if P 6= NP holds). We supply a ‘forbidden
induced subgraph’-criterion which decides whether (1) or (2) prevails. For the
linear time cases we present algorithms which not only decide existence but
actually find a compatible path (if one exists) in linear time.

In the final section we give an application of our linear time results to the
problem of finding alternating paths in edge-colored graphs and extend a result
by Bang-Jensen and Gutin [1].

Our work is closely related to [10], where the complexity of finding compatible
2-factors is studied. Compatible paths and cycles have been intensively studied
in the context of eulerian graphs (see [5] for a survey on this topic).

2 Basic notions and notation

For graph theoretic terminology not defined in this paper, the reader is referred
to [3]. All graphs considered are finite and simple. The set of vertices and the
set of edges of a graph G are denoted by V (G) and E(G), respectively. For
a vertex v ∈ V (G) we write EG(v) for the set of all edges of G which are
incident with v. The degree of a vertex v is denoted by d(v); for d ≥ 0 we put
Vd(G) := { v ∈ V (G) | d(v) = d }. We write H ≤ G if H is a vertex-induced
subgraph of G.

Let G be a graph. A transition graph T (v) of a vertex v ∈ V (G) is some graph
whose vertices are the edges of G incident to v; i.e., V (T (v)) = EG(v). A system
of allowed transitions (or transition system, for short) T is a set { T (v) | v ∈
V (G) } where T (v) is a transition graph of v. A path P = v0, e1, v1, . . . , ek, vk

in G is T -compatible if eiei+1 ∈ E(T (vi)) for every 1 ≤ i ≤ k − 1.

Instead of specifying allowed transitions we could also specify explictly the
forbidden transitions by defining F (v) to be the compliment graph of T (v);
this approach has been pursued, e.g., in [7,6,5]. However, we consider allowed
transitions in order to be consistent with a closely related work by Kratochv́ıl
and Poljak [10], who studied the complexity of finding compatible 2-factors.
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P3 K3 K2 + K2 P4 L4

Fig. 1.

Let A be a class of graphs closed under isomorphism. We consider the following
problem.

A-COMPATIBLE PATH (or A-CP for short)

Instance: a graph G with transition system T ⊆ A, two distinct vertices
x, y ∈ V (G).

Question: is there a T -compatible path from x to y?

Obviously, this problem is in NP.

We refer by P3, K3, K2 + K2, P4, and L4 (the lollipop graph on four vertices)
to the graphs depicted in Figure 1; the closure of a class A of graphs by taking
vertex-induced subgraphs is denoted by Aind. Now we can formulate our main
result.

Theorem 1 The problem A-CP is NP-complete if Aind contains at least one
of the sets

{P3, K2 + K2}, {K3, K2 + K2}, {P4}, {L4};

in all other cases the problem is solvable in linear time.

3 NP-completeness results

The following proposition is the key for our NP-completeness results. In its
proof we use an intermediary reduction of 3-SAT (which is well-known to be
NP-complete, see e.g., [9]) to the problem of finding paths in graphs avoiding
forbidden pairs of vertices (i.e., paths that use at most one vertex of each
prescribed forbidden pair). This reduction is based on a construction by Gabow
et.al. [8]; however, to obtain our results we must proceed more painstakingly
than in [8]. (We note in passing that in [8] the quoted NP-completeness result
is formulated for directed graphs; though it is easy to observe that it applies
as well to the same problem for undirected graphs. Garey and Johnson [9,
Problem GT53, p. 203] quote only the directed version of the problem.)

If X1, . . . , Xk are graphs, then we write 〈X1, . . . , Xk〉 for the smallest class of
graphs closed under isomorphism containing X1, . . . , Xk.
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Fig. 2. The graph G obtained from a set of three clauses (cf. the proof of Proposi-
tion 2).

Proposition 2 The problems 〈K3, K2 + K2〉-CP and 〈P3, K2 + K2〉-CP are
NP-complete. In particular, these problems remain NP-complete if we consider
only instances (G, T, x, y) such that

• x, y ∈ V3(G),
• there is matching M with V (M) = V3(G) \ {x, y}, and
• for every v ∈ V3(G) with EG(v) = {e1, e2, eM} and eM ∈ M we have

e1eM , e2eM ∈ E(T (v)).

PROOF. First we show that 3-SAT reduces polynomially to 〈K3, K2 +K2〉-
CP; in symbols,

3-SAT ∝ 〈K3, K2 + K2〉-CP. (1)

Let A be a set of boolean variables and ϕ = {C1, . . . , Cn} a collection of
clauses (i.e., sets of literals) over A such that for 1 ≤ i ≤ n the clause Ci is of
the form {xi,1, xi,2, xi,3} for three distinct literals xi,j, 1 ≤ j ≤ 3. We think of
ϕ as a boolean formula in conjunctive normal form. We may assume that no
clause of ϕ contains both x and x for any literal x, and that ϕ has no pure
literals (literals that occur only positively or only negatively).

For each clause Ci we construct a graph Gi with V (Gi) = {si, ti, vi,1, vi,2, vi,3}
and E(Gi) =

⋃3
j=1{sivi,j, vi,jti} (we assume that V (Gi) and V (Gi′) are disjoint

for i 6= i′). For i = 1, . . . , n − 1 we subdivide the edge vi,1ti by introducing
a new vertex t∗i and similarly, for i = 2, . . . , n we subdivide the edge sivi,1

by introducing a new vertex s∗i . Let G∗
i denote the graph obtained by this

construction. Now we join the graphs G∗
1, . . . , G

∗
n by adding edges t∗i s

∗
i+1, i =

1, . . . , n−1, and denote the obtained graph by G (for an example see Figure 2).
We call a pair of vertices {vi,j, vi′,j′} forbidden if xi,j = xi′,j′ holds for the
corresponding literals in ϕ; let F be the set of all forbidden pairs. An s1–tn
path P in G is called satisfying if V (P ) does not contain both vertices of
some forbidden pair. It is easy to check that to every truth assignment which
satisfies ϕ there corresponds a satisfying path in G, and vice versa. Since ϕ
contains no pure literals, each vertex vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ 3) is contained
in at least one forbidden pair.

Next we modify G and F such that each vertex is contained in at most one
forbidden pair. Assume that a vertex v is contained in q > 1 forbidden pairs,
say {v, vi}, for i = 1, . . . , q. Let u, u′ be the two vertices adjacent with v. We
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remove v from G and add instead a u–u′ path of length q +1 introducing new
vertices w1, . . . , wq. For i = 1, . . . , q we replace the forbidden pair {v, vi} by
{wi, vi}. We repeat this construction for all vertices contained in more than
one forbidden pair and denote the resulting graph and the new set of forbidden
pairs by G′ and F ′, respectively. It still holds that G′ contains a satisfying path
if and only if G contains a satisfying path. Note that all vertices of G′ have
degree 2 or 3; if d(v) = 2 then v is contained in exactly one pair of F ′; if
d(v) = 3, then v ∈ {si, ti, s

∗
i , t

∗
i } for some 1 ≤ i ≤ n.

Let G∗ be the graph obtained by identifying vertices which form a forbidden
pair; i.e., if {v1, v2} ∈ F ′, EG∗(v1) = {e1, f1}, and EG∗(v2) = {e2, f2}, then we
remove v1, v2, and make e1, e2, f1, f2 incident with a new vertex v1,2. Note that
all vertices in the new graph G∗ have degree 3 or 4. For each new vertex v1,2

we define a transition graph T ∗(v1,2) ∈ 〈K2 + K2〉 by setting E(T ∗(v1,2)) :=
{e1f1, e2f2}; for the remaining vertices of G∗ we choose T ∗(v) ∈ 〈K3〉. We have
defined a transition system T ∗ = { T ∗(v) | v ∈ V (G∗) } ⊆ 〈K3, K2 + K2〉.

It is easy to verify that a satisfying path in G′ corresponds to a T ∗-compatible
s1–tn path in G∗, and vice versa. Since our constructions can be carried out
in polynomial time, (1) follows.

Next we show that we can replace T ∗ by a transition system T ∗∗ ⊆ 〈P3, K2 +
K2〉. For all v ∈ V4(G

∗) we put T ∗∗(v) := T ∗(v). Since the transition graphs of
s1 and tn are irrelevant with respect to compatible s1–tn paths, we can choose
T ∗∗(s1), T

∗∗(tn) ∈ 〈P3〉 arbitrarily. For each vertex v ∈ V3(G
∗) \ {s1, tn} we

select one of its incident edges hv:

v = si ⇒ hv := sis
∗
i (2 ≤ i ≤ n)

v = s∗i ⇒ hv := s∗i t
∗
i−1 (2 ≤ i ≤ n)

v = ti ⇒ hv := tit
∗
i (1 ≤ i ≤ n − 1)

v = t∗i ⇒ hv := t∗i s
∗
i+1 (1 ≤ i ≤ n − 1).

We observe that for every T ∗∗-compatible s1–tn path P in G∗ and v ∈ V3(G
∗)\

{s1, tn} it follows that

v ∈ V (P ) implies hv ∈ E(P ). (2)

For v ∈ V3 \ {s1, tn} with EG∗(v) = {e, f, hv} we put

E(T ∗∗(v)) := {ehv, fhv}.

By (2) it follows that every T ∗-compatible s1–tn path is also T ∗∗-compatible;
the converse holds trivially. Since T ∗∗ ⊆ 〈P3, K2 + K2〉 by definition, we have
shown that

〈K3, K2 + K2〉-CP ∝ 〈P3, K2 + K2〉-CP.
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Fig. 3. Illustration of Construction 1

Thus, the first statement of the proposition holds. Note that

M = { tit
∗
i | 1 ≤ i ≤ n − 1 } ∪ { sis

∗
i | 2 ≤ i ≤ n }

is a matching in G∗. Hence it is easy to check that the instances obtained by
the above constructions satisfy the second statement of the proposition. �

In view of the proof of the preceding proposition, K3 and P3 can be considered
as ‘branching’ transition graphs, whereas K2 + K2 as an ‘exclusive’ transition
graph. It turns out, that in all NP-complete cases of A-CP, A must contain
both, branching transition graphs and exclusive transition graphs. Lemma 3
below shows that any graph on four vertices containing K3 or P3 as vertex-
induced subgraph can be used as branching transition graph. On the other
hand, Lemma 4 shows that P4 and L4 are exclusive transition graphs. Finally,
Lemma 6 shows that any graph containing K3 or P3 (respectively, K2 + K2,
P4, or L4) as vertex-induced subgraph can be used as branching (respectively,
exclusive) transition graph.

Next we define a construction which we shall use several times in subsequent
proofs.

Construction 1 Let G be a graph and v0 a vertex of G with EG(v0) =
{e1, . . . , e4}. We obtain a graph G′ as follows (see Figure 3 for an illustration).
We split v0 into vertices v1,4 and v2,3 such that e1, e4 are incident with v1,4

and e2, e3 are incident with v2,3. We add new vertices w, w′ and the edges
f1 = v1,4w, f2 = wv2,3, f3 = v2,3w

′, and f4 = w′v1,4. Now we take two copies
of K5 (say K5 and K ′

5) and remove one edge of each copy. Now each copy
has two vertices of degree 3, say u1, u2 and u3, u4, respectively. We add edges
g1 = u1w, g2 = u2w, g3 = u3w

′, g4 = u4w
′, and denote the new graph by G′.

Note that all vertices in V (G′) \ V (G) have degree 4.
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Lemma 3 Let Z be a graph with at most four vertices such that K3 ≤ Z or
P3 ≤ Z. Then 〈Z, K2 + K2〉-CP is NP-complete.

PROOF. Let X ∈ {K3, P3} such that X ≤ Z. If |V (Z)| = 3, then the
lemma follows directly from Proposition 2; hence assume |V (X)| = 4. Writing
〈X, K2 + K2〉-CP* for the problem 〈X, K2 + K2〉-CP restricted to instances
which satisfy the additional properties stated in the second claim of Proposi-
tion 2, we show that

〈X, K2 + K2〉-CP* ∝ 〈Z, K2 + K2〉-CP. (3)

Let (G, T, x, y) be an instance of 〈X, K2 + K2〉-CP* and M a matching of G
according to Proposition 2. We apply local replacements to eliminate succes-
sively vertices whose transition graph is in 〈Z〉.

Let eM = vv′ ∈ M with EG(v) = {e1, e4, eM} and EG(v′) = {e2, e3, eM}. Note
that

e1eM , e4eM ∈ E(T (v)) and e2eM , e3eM ∈ E(T (v′)). (4)

We remove eM from G and identify v and v′, denoting the vertex obtained by
identifying v and v′ by v0. Now we apply Construction 1 w.r.t. v0 and obtain a
graph G′. A transition system T ′ of G′ can be defined as follows. For the new
vertices v ∈ V (G′) \ V (G) we choose transition graphs from 〈Z〉 such that

e1f1, e4f1 ∈ E(T ′(v1,4)),

f2e2, f2e3 ∈ E(T ′(v2,3)),

f1f2 ∈ E(T ′(w)).

For the remaining vertices v we put T ′(v) = T (v). In view of (4), we observe
that G contains a T -compatible x–y path if and only if G′ contains a T ′-com-
patible x–y path. We apply this construction for each eM ∈ M and end up
with a graph G′′ and a transition system T ′′ such that T ′′(v) ∈ 〈Z, K2 + K2〉
for all v ∈ V (G′′) \ {x, y}, and T ′′(z) ∈ 〈X〉 for z ∈ {x, y}. Hence it remains
to alter the transition graphs of x and y.

Let G′′
1 be a disjoint copy G′′, where x1, y1 ∈ V (G′′

1) are the vertices which
correspond to x, y ∈ V (G′′), respectively. Further, let T ′′

1 be the transition
system of G′′

1 that works on G′′
1 exactly as T ′′ works on G′′. We obtain a

graph H from the union of G′′ and G′′
1 by adding edges xx1 and yy1. For

z ∈ {x, y} (respectively, z ∈ {x1, y1}) we choose TH(z) ∈ 〈Z〉 such that
T ′′(z) ≤ TH(z) (respectively, T ′′

1 (z) ≤ TH(z)). For all other vertices v of H
we keep the inherited transition graphs from T ′′ or T ′′

1 , i.e., TH(v) = T ′′(v)
or TH(v) = T ′′

1 (v). By construction, TH ⊆ 〈Z, K2 + K2〉. It is easy to check
that H contains a TH -compatible x–y path if and only if G′′ contains a T ′′-
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compatible x–y path. Hence (3) holds. Since 〈X, K2+K2〉-CP* is NP-complete
by Proposition 2, the lemma now follows. �

Lemma 4 Let Z be a graph with at most four vertices such that K3 ≤ Z or
P3 ≤ Z. The problems 〈Z, P4〉-CP and 〈Z, L4〉-CP are NP-complete.

PROOF. We show that

〈Z, K2 + K2〉-CP∝〈Z, P4〉-CP, and (5)

〈Z, P4〉-CP∝〈Z, L4〉-CP. (6)

Let (G, T, x, y) be an instance of 〈Z, K2 + K2〉-CP. If the transition graph of
x or y is isomorphic to K2 + K2, then we can replace it by some transition
graph isomorphic to P4 without effect to the existence of compatible x–y paths.
Hence we have only to consider v0 ∈ V (G) \ {x, y} with T (v0) ∈ 〈K2 + K2〉.
Let E(T (v0)) = {e1e2, e3e4}. We apply Construction 1 w.r.t. v0 and obtain a
graph G′. The transition graphs of the new vertices can be chosen from 〈P4〉
such that f1f2 ∈ E(T ′(w)), f3f4 ∈ E(T ′(w′)), and

E(T ′(v1,4)) = {e1f1, f1f4, f4e4},

E(T ′(v2,3)) = {e2f2, f2f3, f3e3}.

For the remaining vertices v ∈ V (G)\V (G′) we put T ′(v) = T (v). We observe
that there is a T -compatible x–y path in G if and only if there is a T ′-com-
patible x–y path in G′. By multiple applications of this construction we can
eliminate successively all vertices v with T (v) ∈ 〈K2 + K2〉 such that we end
up with an instance (G′′, T ′′, x, y) of 〈Z, P4〉-CP. Obviously, this construction
can be carried out in polynomial time, whence (5) follows.

For (6) we proceed likewise. Let (G, T, x, y) be an instance of 〈Z, P4〉-CP.
Again, we replace the transition graphs of x or y by graphs from 〈L4〉, if
necessary. Now consider some v0 ∈ V (G) \ {x, y} with T (v0) ∈ 〈P4〉, say
E(T (v0)) = {e1e2, e1e3, e3e4}. As above, we construct a graph G′ applying
Construction 1 and we define a transition system T ′ for G′ as follows. For the
new vertices v ∈ V (G′) \ V (G) we choose transition graphs from 〈L4〉 such
that f1f2 ∈ E(T ′(w)), f3f4 ∈ E(T ′(w′)), and

E(T ′(v1,4)) = {e1f1, f1f4, f4e4, e1f4},

E(T ′(v2,3)) = {e2f2, f2f3, f3e3, e3f2}.

For the remaining vertices v ∈ V (G) \ V (G′) we put T ′(v) = T (v). Again, it
can be verified that there is a T -compatible x–y path in G if and only if there
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is a T ′-compatible x–y path in G′. Charring out the above construction for
every v ∈ V (G) \ {x, y} with T (v) ∈ 〈P4〉 we obtain an instance (G′′, T ′′, x, y)
of 〈Z, L4〉-CP; whence (6) holds true. In view of Lemma 3 and (5), the result
now follows. �

In order to show Lemma 6 below, we need the following result, which is based
on an observation by Fleischner [4].

Lemma 5 Let n, k be positive integers with n > k and n ≡ k (mod 2). Then
there is a graph Gn,k and v∗ ∈ V (Gn,k) such that

(1) d(v) = n for all v ∈ V (Gn,k) \ {v
∗},

(2) d(v∗) = k, and
(3) |V (Gn,k)| ≤ 2n + 2.

PROOF. Case 1: k is even (n may be even or odd). Take Kn+1 and a
matching M ⊆ E(Kn+1) of size k/2. Subdivide the edges in M and identify the
new vertices. The graph obtained by this construction has obviously properties
1–3.

Case 2 : both n and k are odd. If k = 1 we obtain Gn,n−1 by the above
construction; let u∗ ∈ V (Gn,n−1) with d(u∗) = n − 1. Add a new vertex v∗

and the edge v∗u∗. Again we have constructed a graph Gn,k with the claimed
properties. Now assume k > 1. By the construction applied in Case 1 we obtain
(disjoint) graphs Gn,k−1 and Gn,n−1. Let v∗ ∈ V (Gn,k−1) and u∗ ∈ V (Gn,n−1)
with d(v∗) = k−1 and d(u∗) = n−1, respectively. We connect the two graphs
by adding the edge v∗u∗. The obtained graph satisfies properties 1–3 as well,
whence the lemma is shown true. �

Note that if k is odd and n > k is even, then a graph Gn,k cannot exist (by the
Handshaking Lemma, the number of vertices of odd degree is always even).
Therefore, in the proof of the next lemma, we have to apply Lemma 3 as an
intermediate step before we can apply the above construction.

Lemma 6 Let X ∈ {K3, P3}, Y ∈ {K2 + K2, P4, L4} and A a class of graphs
closed under isomorphism such that X, Y ∈ Aind. Then Aind-CP is NP-com-
plete.

PROOF. Let X ′, Y ′ ∈ A such that X ≤ X ′ and Y ≤ Y ′. If X = X ′, then
let Z := X; otherwise, let Z be a graph with |V (Z)| = 4 and X ≤ Z ≤ X ′.
We show that

〈Z, Y 〉-CP ∝ 〈X ′, Y ′〉-CP. (7)
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Let (G, T, x, y) be an instance of 〈Z, Y 〉-CP. Consider v0 ∈ V (G) with T (v0) /∈
〈X ′, Y ′〉 (consequently d(v0) = 4). In order to assign to v0 a transition graph
which belongs to 〈X ′, Y ′〉, we have to increase its degree first. If T (v0) ∈ 〈Z〉,
then we put n := |V (X ′)|, otherwise we put n := |V (Y ′)|. Next we take Gn,n−4

(see Lemma 5) with v∗ ∈ V (Gn,n−4), d(v∗) = n− 4, and we obtain a graph G′

from G by adding Gn,n−4 and identifying v∗ and v0. Let v∗
0 denote the vertex

obtained by identification of v∗ and v0 (thus d(v∗
0) = n follows). We define

a transition system T ′ of G′: if T (v0) ∈ 〈Z〉, then we choose T ′(v∗
0) ∈ 〈X ′〉,

otherwise we choose T ′(v∗
0) ∈ 〈Y ′〉; in any case we assure T (v0) ≤ T ′(v∗

0); for
v ∈ V (G) ∩ V (G′) we put T ′(v) := T (v), and for v ∈ V (Gn,n−4) \ {v∗} we
choose T ′(v) ∈ 〈T (v∗

0)〉 arbitrarily.

Applying this construction to all vertices of G whose transition graph is not
contained in 〈X ′, Y ′〉, we end up with an instance (G′′, T ′′, x′′, y′′) of 〈X ′, Y ′〉-
CP such that G contains a T -compatible x–y path if and only if G′′ contains
a T ′′-compatible x′′–y′′ path. Evidently, this construction can be carried out
in polynomial time; thus (7) holds true. In view of Lemmas 3 and 4 the result
now follows. �

Since P3 ≤ P4 and P3 ≤ L4, Lemma 6 yields the NP-completeness part of
Theorem 1.

4 Linear time results

For a graph G we write G◦ for the graph obtained by removing isolated vertices
from it.

Lemma 7 Let A be a class of graphs closed under isomorphism such that
none of the sets

{P3, K2 + K2}, {K3, K2 + K2}, {P4}, {L4}

is contained in Aind. Then at least one of the following holds.

(1) X◦ is a matching for every X ∈ Aind.
(2) X◦ is a complete multipartite graph for every X ∈ Aind.

PROOF. The assumption implies that at least one of the following cases
prevails.
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{P3, K3} ∩ Aind = ∅; (8)

{K2 + K2, P4, L4} ∩ Aind = ∅. (9)

If (8) holds, then we observe that each X ∈ A has only vertices of degree 0
or 1; i.e., X◦ is a matching.

Now we assume that (9) holds. We will show that X◦ is a complete multipartite
graph for every X ∈ Aind. Suppose to the contrary that there is some X ∈ Aind

such that X◦ is not a complete multipartite graph. It follows that there are
three distinct vertices u, u′, v ∈ V (X◦) with uu′ ∈ E(X◦) but neither uv ∈
E(X◦) nor u′v ∈ E(X◦). Since X◦ contains no isolates, v must be adjacent
with a fourth vertex v′. Consider the subgraph Y of X◦ induced by {u, u′, v, v′}.
Clearly Y ∈ Aind. We have to consider four possibilities for EY (v′), namely
{v′v}, {v′v, v′u}, {v′v, v′u′}, and {v′v, v′u, v′u′}. We observe that in the first
case Y is isomorphic to K2 + K2, in the second and third case to P4, and in
the last case to L4. In any case we have a contradiction to (9). Hence X◦ is
complete multipartite for every X ∈ Aind. �

Proposition 8 Let A be a class of graphs closed under isomorphism such that
X◦ is a matching for every X ∈ Aind. Then A-CP can be solved in linear time.
In particular, for an instance (G, T, x, y) of A-CP we need at most O(|E(G)|)
time to find a T -compatible x–y path if it exists, or to determine that it does
not exist.

PROOF. Let (G, T, x, y) be an instance of A-CP. We set v0 = x, EG(v0) =
{f1, . . . , fr}, and trace out a T -compatible path P = v0, e1, v1, e2, v2 . . . as
follows. Starting in v0 we have r = |EG(v0)| possibilities for choosing the first
edge v0v1. However, for every vi with i > 0 there is at most one choice for
the next edge; namely, since T (vi)

◦ is a matching, either ei = vi−1vi is an
isolated vertex of T (vi) (and we cannot extend P ), or there is a unique edge
viw ∈ EG(vi) which forms an allowed transition with ei. In the latter case, if
w /∈ {v0, . . . , vi−1}, then we extend the path putting vi+1 := w (otherwise, if
w ∈ {v0, . . . , vi−1}, then we cannot extend the path). We continue this process
until the path cannot be extended. The selection of the first edge is the only
nondeterministic step in the above construction; hence we conclude that there
are exactly r non-extendable T -compatible paths (say, P1, . . . , Pr) which start
in x. If there is any T -compatible x–y path, then it is evidently a subpath of
some Pi, 1 ≤ i ≤ r.

We claim that every edge of G lies on at most two paths Pj, Pk, (1 ≤ j <
k ≤ r). We suppose the contrary and conclude that some edge of G must be
traversed—starting in x—by at least two paths Pj , Pk, in the same direction
(1 ≤ j < k ≤ r). Let Pj = v0, e1, v1, e2, v2 . . . es, vs and choose the minimal in-
dex i ∈ {1, . . . , s} such that ei is traversed by Pj and Pk in the same direction.
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v′k

w1 w2

Fig. 4. Illustration for the proof of Proposition 9; the matching M(v) is indicated
by bold lines.

By construction of Pj and Pk, i 6= 1 follows. Since Pk is T -compatible, some
edge f of Pk forms an allowed transition with ei; thus fei ∈ E(T (vi−1)). How-
ever, we also have ei−1ei ∈ E(T (vi−1)). By assumption, T (vi−1)

◦ is a matching,
hence ei−1 = f and so ei−1 ∈ E(Pk) follows. Hence ei−1 is traversed by Pj and
Pk in the same direction; a contradiction to the particular choice of i. Whence
the claim is shown true, and we have

k∑

i=1

|E(Pi)| = O(E(G)). (10)

Evidently, the construction of each individual path Pi, 1 ≤ i ≤ r, can be
carried out in O(|E(Pi)|) time. Hence the proposition follows from (10). �

Proposition 9 Let A be a class of graphs closed under isomorphism such
that X◦ is a complete multipartite graph for every X ∈ Aind. Then A-CP can
be solved in linear time. In particular, for an instance (G, T, x, y) of A-CP

we need at most O(|V (G)| + |E(G)|) time to find a T -compatible x–y path if
it exists, or to determine that it does not exist.

PROOF. We are going to reduce A-CP to the problem of finding an aug-
menting path in a graph w.r.t. some matching. Let (G, T, x, y) be an instance
of A-CP. Isolated vertices of G can be deleted in

O(|V (G)|) (11)

time; if x or y is deleted, then G has no T -compatible x–y path by trivial
reasons. Hence, w.l.o.g., we assume that G has no isolated vertices. For each
v ∈ V (G) \ {x, y} we apply the following construction (see Figure 4) which is
an extension of a construction used by Tutte [13]. Let E0 ⊆ V (T (v)) be the set
of isolated vertices of T (v). Since T (v)◦ = T (v)−E0 is a complete multipartite
graph, there is a partition of EG(v) \E0 into mutually disjoint sets E1, . . . , Ek

such that ef ∈ E(T (v)◦) if an only if e ∈ Ei and f ∈ Ej for some i 6= j. We
split v into vertices v0, . . . , vk such that the edges in Ei are incident with vi,
0 ≤ i ≤ k. For i = 0, . . . , k we add a new vertex v′

i and the edge viv
′
i. Finally,
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we add two new vertices w1 and w2, the edge w1w2, and for each 1 ≤ i ≤ n,
1 ≤ j ≤ 2, the edge v′

iwj (note that v′
0 is not joined to w1 or w2 and is

therefore an end vertex). Evidently, the set M(v) = {v0v
′
0, . . . , vkv

′
k, w1w2} is

a matching.

We form a graph G′ by applying this construction to every v ∈ V (G) \ {x, y}.
Since for every v ∈ V (G) at most 4d(v) new edges have been added, we have

|E(G′)| = O(|E(G)|). (12)

Assuming the use of suitable data structures, G′ can be constructed from G
in O(|E(G)|) time. We put M =

⋃
v∈V (G)\{x,y} M(v) and observe that M is a

matching of G′ which covers all vertices of G′ except x and y. It is easy to verify
that G contains a T -compatible x–y path if and only if G′ contains an M-aug-
menting path (see Figure 4); moreover, if some some M-augmenting path P ′

of G′ is found, then it can be transformed efficiently into a T -compatible x–y
path P in G.

One needs at most O(|E(G′)|) time to detect an M-augmenting path P ′ of
G′, and to construct P ′ if it exists (see [12, pp. 121]). Hence, by (11), (12) and
the preceding considerations, the proposition follows. �

In view of Lemma 7, the remaining part of Theorem 1 now follows from Propo-
sitions 8 and 9. Whence Theorem 1 is shown true.

5 An application to edge-colored graphs

Let c ≥ 2 be an integer. A graph G is called c-edge-colored if every edge of
G has one of c colors; formally, a map χG : E(G) → {1, . . . , c} is specified
(note that the coloring need not be a ‘proper’ edge-coloring). A path P (or
cycle C) in a c-edge-colored graph G is called properly colored if incident edges
of P (or C, respectively) differ in color. Numerous results on c-edge-colored
graphs (and applications of properly colored paths and cycles to genetics) can
be found in Chapter 11 of Bang-Jensen and Gutin’s book [2].

We consider the following problem.

PROPERLY COLORED PATH

Instance: a c-edge-colored graph G, two distinct vertices x, y ∈ V (G).

Question: does G contain a properly colored path from x to y?

This problem is known to be solvable in linear time for c = 2 ([1], see also [2]).
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Applying Proposition 9, we extend this result to arbitrary c ≥ 2. (It seems
to be feasible to apply the construction defined in the proof of Proposition 9
to generalize other results on c-edge-colored graphs from c = 2 to the general
case; one such application can be found in [11].)

Let G be a c-edge-colored graph. For each v ∈ V (G) the c-edge-coloring
induces a partition of EG(v) into (nonempty and mutually disjoint) classes
E1, . . . , Ek, k ≤ c, such that for e, f ∈ EG(v), χG(e) = χG(f) if and only
if e and f belong to the same class Ei, 1 ≤ i ≤ k. This partition defines a
complete multipartite graph Tχ(v) with V (Tχ(v)) = EG(v) and E(Tχ(v)) =
{ ef | χG(e) 6= χG(f) }. Let Tχ = { Tχ(v) | v ∈ V (G) } be the corresponding
transition system. It can be verified easily that properly colored paths and
Tχ-compatible paths coincide in G. Whence Proposition 9 yields the following
corollary.

Corollary 10 The problem PROPERLY COLORED PATH can be solved
in linear time.
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