
A Complete Adaptive Algorithm for

Propositional Satis¯ability

Renato Bruniz and Antonio Sassanox

November 20, 2000

Abstract

We describe an approach to propositional satis¯ability which makes
use of an adaptive technique. Its main feature is a new branching
rule, which is able to identify, at an early stage, hard sub-formulae.
Such branching rule is based on a simple and easy computable crite-
rion, whose merit function is updated by a learning mechanism, and
guides the exploration of a clause based branching tree. Completeness
is guaranteed. Moreover, we use a new search technique (Adaptive
core search) to speed-up the procedure while preserving completeness.
Encouraging computational results and comparisons are presented.

Keywords: Backtracking, NP-completeness, Satis¯ability.

1 Introduction

The problem of testing satis¯ability of propositional formulae plays a main
role in Mathematical Logic and Computing Theory. Actually, it is funda-
mental in Arti¯cial Intelligence, Expert Systems, Deductive Database The-
ory, due to its ability of formalizing deductive reasoning, and thus solving
logic problems by means of automated computation. Satis¯ability problems
indeed are used for encoding and solving a wide variety of problems arisen
from di®erent ¯elds, e.g. VLSI logic circuit design and testing, program-
ming language project, computer aided design. Moreover, satis¯ability for

zDipartimento di Informatica e Sistemistica, Universitµa di Roma \La Sapienza", via
Buonarroti 12 - 00185 Roma, Italy. E-mail: bruni@dis.uniroma1.it

xDipartimento di Informatica e Sistemistica, Universitµa di Roma \La Sapienza", via
Buonarroti 12 - 00185 Roma, Italy. E-mail: sassano@dis.uniroma1.it

1

propositional logic formulae is a relevant member of the large family of NP-
complete problems, which are nowadays identi¯ed as central to a number of
areas in computing theory and engineering.

Logic formulae in CNF (conjunctive normal form) are logic conjunction
(^) of m clauses, which are logic disjunction (_) of literals, which can be
either positive (®k) or negative (:®k) propositions. A formula F has the
following general structure:

(®i1 _ :::_®j1 _:®k1 _ :::_:®n1)^ : : :^ (®im _ :::_®jm _:®km _ :::_:®nm)

Given a truth values (a value in the set fTrue; Falseg) for every propo-
sition, we have a truth value for the whole formula. A formula is satis¯able
if and only if there exists a truth assignment that makes the formula True,
otherwise is unsatis¯able. Deternining whether formula is satis¯able or not
is called the satis¯ability problem, SAT for short.

Many algorithms for solving the SAT problem have been proposed. Ex-
amples are [9, ?, 4, 11]. A solution method is said to be complete if it is
guaranteed (given enough time) to ¯nd a solution if it exists, or report lack
of solution otherwise. Incomplete methods, on the contrary, cannot guar-
antee ¯nding the solution, but usually scale better then complete ones on
many large problems. Most of complete methods are based on enumeration
techniques, such as the Davis-Putnam-Loveland [8, 22, 29].

In this paper we are concerned with Davis-Putnam-Loveland variants,
i.e. methods which have the following structure:

DPL scheme

1. Choose a variable ® according to a branching rule, e.g. [2, 8, 13, 19].
Generally, we give priority to variables appearing in unit clauses (i.e.
clauses containing only one literal).

2. Fix ® to a truth value and cancel from the formula all satis¯ed clauses
and all falsi¯ed literals, because they would not be able to satisfy the
clauses where they appear.

3. If an empty clause is obtained (i.e. every literal is deleted from a clause
which is still not satis¯ed) that clause would be impossible to satisfy.
We therefore need to backtrack and change former choices. Usually,
we change the last truth assignment, by switching its truth value, or,
if both of them are already tried, the last but one, and so on. This
means a depth-¯rst exploration of the search tree.

2

The above is repeated until one of the two following conditions is
reached:

- a satisfying solution is found: the formula is satis¯able.

- an empty clause is obtained and every truth assignment has been
tried, i.e. the branching tree is completely explored: the formula
is unsatis¯able.

There have been proposed many di®erent improvements to this proce-
dure, and of course each of them performs well on some kind of formulae
while bad on another. A crucial choice seems to be the adopted branching
rule. In fact, although it does not a®ect complexity of the worst case, it
shows its importance in the average case, which is the one we have to deal
with in real world.

We propose a technique to detect hard subsets of clauses. Evaluation of
clause hardness is based on the history of the search, and keeps improving
throughout the computation, as illustrated in section 2. Our branching rule
consists in trying to satisfy at ¯rst such hard sets of clauses, while visiting
a clause-based branching tree [5, 17], as showed in section 3. Moreover, we
develop a search technique that can speed-up enumeration, as explained in
section 4. It is essentially based on the idea of considering only a hard subset
of clauses (a core, as introduced in [23]), and solve it without propagating
assignments to clauses out of this subset. Subsequently, we extend such
partial solution to a bigger subset of clauses, until solving the whole formula.
The proposed procedure is tested on a set of arti¯cially generated hard
problems from the Dimacs collection. Results are in section 5.

2 Individuation of hard clauses

Although a truth assignment S satis¯es a formula F only when all Cj are
satis¯ed, there are subsets P ½ F of clauses which are more di±cult to
satisfy, i.e. which have a small number of satisfying truth assignment S,
and subsets which are rather easy to satisfy, i.e. which have a large number
of satisfying truth assignment S. In fact, every clause Cj actually forbids
some of the 2n possible truth assignments.

Hardness of F is typically not due to a single clause in itself, but to a
combination of several, or, in other words, to the combinations of any generic
clause with the rest of the clauses in F . Therefore, we will speak of hardness

3

of a clause Cj in the case when Cj belongs to the particular instance F we
are solving, and this would often be implicit. The same clause can, in fact,
make di±cult an instance A, because it combines in an unfortunate way
with other clauses, while let another instance B be easy.

The following is an example of a P ½ F constituted by short clauses
containing always the same variables:

: : : Cp = (®1 _ ®2); Cq = (:®1 _ :®2); Cr = (®1 _ :®2); : : :

P restricts the set of satisfying assignment for F to those which have
®1 = True and ®2 = False. Hence, P has the falsifying assignments:

S1 = f®1 = False; ®2 = False; : : :g

S2 = f®1 = True; ®2 = True; : : :g
S3 = f®1 = False; ®2 = True; : : :g

Each Si identi¯es 2n¡2 (2 elements are ¯xed) di®erent points of the
solution space. Thus, we forbid 3(2n¡2) points. This number is as much as
three forth of the number 2n of points in the solution space.

On the contrary, an example of P ½ F constituted by long clauses
containing di®erent variables is:

: : : Cp = (®1_:®2_®3); Cq = (®4_:®5_®6); Cr = (®7_:®8_®9); : : :

In this latter case, P has the falsifying assignments:

S1 = f®1 = False; ®2 = True; ®3 = False; : : : : : : : : :g

S2 = f: : : ; ®4 = False; ®5 = True; ®6 = False; : : : : : :g
S3 = f: : : : : : ; ®7 = False; ®8 = True; ®9 = False; : : :g

Each Si identi¯es 2n¡3 (3 elements are ¯xed) points of the solution space,
but this time the Si are not pairwise disjoint. 2n¡6 of them falsi¯es 2 clauses
at the same time (6 elements are ¯xed), and 2n¡9 falsi¯es 3 clauses at the
same time (9 elements are ¯xed). Thus, we forbid 3(2n¡3) ¡ 3(2n¡6) +
(2n¡9) assignments. This number, for values of n we deal with, is much less
then before. Hence, this P does not restrict too much the set of satisfying
assignment for F .

Starting assignment by satisfying the more di±cult clauses, i.e. those
which admit very few satisfying truth assignments, or, in other words, repre-
sent the more constraining relations, is known to be very helpful in reducing

4

backtracks [3, 17]. This holds because, if such clauses are considered some-
where deep in the branching tree, where many possible truth assignments
are already dropped, they would probably result impossible to satisfy, and
would cause to backtrack far. If, on the contrary, such clauses are consid-
ered at the beginning of the branching tree, they would cause to drop a
lot of truth assignments, but they would be satis¯ed earlier, or, if this is
not possible (because they are an unsatis¯able set), unsatis¯ability would
be detected faster. Indeed, there would be no need to backtrack far. As
for clauses considered deep in the branching tree, they should be the easier
ones, which would probably not cause any backtrack.

The point is how to ¯nd the hardest clauses. An a priori parameter
is the length, which is quite inexpensive to calculate. In fact, unit clauses
are universally recognized to be hard, and the procedure of unit propaga-
tion, which is universally performed, satis¯es them at ¯rst. Other a priori
parameters could be the observations made before, not exactly formalized,
but probably quite expensive to compute. Remember also that hardness is
due both to the clause itself and to the rest of the instance. For the above
reasons, a merely a priori evaluation is not easy to carry on.

We say that a clause Cj is visited during the exploration of the tree if
we make a truth assignment aimed at satisfying Cj . The technique we used
to evaluate the di±culty of a clause Cj when appearing in the particular
instance F , is to count how many times Cj is visited during the exploration
of the tree, and how many times the enumeration fails on Cj. Failures can
be either because an empty clause is generated due to truth assignment
made on Cj, or because Cj itself becomes empty. Visiting Cj many times
shows that Cj is di±cult, and failing on it shows even more clearly that Cj is
di±cult. Counting visits and failures has the important feature of requiring
very little overhead.

Clause hardness adaptive evaluation
Let vj be the number of visits of clause Cj , fj the number of failures

due to Cj, p the penalty considered for failures, and lj the length of Cj. An
hardness evaluation of Cj in F is given by

'(Cj) = (vj + pfj) = lj

Therefore, during the elaborations performed by a DPL-style procedure,
we can evaluate clause hardness. As told, we choose to branch in order

5

to satisfy hard clauses ¯rst. Moreover, as widely recognized, unit clauses
should be satis¯ed as soon as we have them in the formula, by performing
all unit resolutions. Altogether, we use the following branching rule:

Adaptive clause selection

1. Perform all unit resolutions.

2. When no unit clauses are present, make a truth assignment satisfying
the clause:

Cmax = arg max
Cj 2 F

Cj still unsat.

'(Cj)

The variable assignment will be illustrated in next section, after intro-
duction of a not binary tree search paradigm. Due to the above adaptive
features, the proposed procedure can perform good on problems which are
di±cult for algorithms using static branching rules.

3 Clause based Branching Tree

Being our aim to satisfy Cmax, the choice is restricted to variables in Cmax. A
variable ®a appearing positive must be ¯xed at True, and a variable appear-
ing negative must be ¯xed at False [5]. If such a truth assignment causes a
failure, i.e. generates an empty clause, and thus we need to backtrack and
change it, the next assignment would not be, as usual, the opposite truth
value for the same variable ®a, because it would not permit to satisfy Cmax.
Instead, we backtrack and select another variable ®b in Cmax. Moreover,
since the former truth assignment for ®a was not successful, we can also ¯x
the opposite truth value for ®a. The resulting node structure is shown in
¯gure 1. If we have no more free variables in Cmax, or if we tried all of them
without success, we backtrack to the truth assignments made to satisfy the
previous clause, until we have another choice.

6

αa ∨ αb ∨ ¬αc ∨ ¬αdBest fitness clause

αa = T
αb = T
αa = F

αc = F
αa = F
αb = F

αd = F
αa = F
αb = F
αc = T

Figure 1: Branching node structure. An example of selected clause appears in the
rectangle, and the consistent branching possibilities appear in the ellipses

The above is a complete scheme: if a satisfying truth assignment exists, it
will be reached, and, if the search tree is completely explored, the instance
is unsatis¯able. Completeness is guaranteed by being this just a branch-
and-bound scheme. Completeness would be guaranteed even in the case of
branching only on all-positive clauses [17] (or on all-negative). However,
being our aim to select a set of hard clauses, as explained below, this could
not be reached by selecting only all-positive clauses.

This scheme leads to explore a branching tree that is not, in general,
binary: every node has as many successors as the number of unassigned
variables appearing in Cmax. In practical case, however, very few of this
successors need to be explored. On the other hand, we can avoid even to try
some truth assignments: the useless ones, namely those containing values
which do not satisfy any still unsatis¯ed cause.

As usual in branching techniques, the solution that satis¯es the entire set
of the clauses may contain some variables that are still free, i.e. not assigned.
This happens when such variables were not used to satisfy clauses, so their
value can be called "don't care". If d is the number of variables put to "don't
care", the number of satisfying solutions trivially is 2d. They are explicitly
obtainable by substitution of each "don't care" with True and False. At
present, variable assignment order is just their original order within Cmax,
because reordering seems not to improve computational times.

7

4 Adaptive core search

The above scheme can be modi¯ed in order to speed-up the entire proce-
dure. Roughly speaking, the idea is that, when we have a hard subset of
clauses, that we call a core, we can at ¯rst work on it, just ignoring other
clauses. After solving such core, if that is unsatis¯able, the whole formula
is unsatis¯able. Conversely, if the core admits a satisfying solution, we try
to extend such solution to a bigger subset of clauses, until solving the whole
formula. Selection of hardest clauses within a clause-set of cardinality m is
always intended as the selection of the top c ¢m values for ', with 0 < c < 1.
The algorithm works as follows:

Adaptive core search

0. (Preprocessing) Perform p branching iterations using just shortest clause
rule. If the instance is already solved, Stop.

1. (Base) Select an initial collection of hardest clauses C1. This is the ¯rst
core. Remaining clauses form O1.

k. (Iteration) Perform b branching iteration on Ck, ignoring Ok, using adap-
tive clause rule. We have one of the following:

k.1. Ck is unsatis¯able) F is unsatis¯able, then Stop.

k.2. No answer after b iteration) select a new collection of hardest clauses
Ck+1 within Ck, put k := k + 1, goto k.

k.3. Ck is satis¯ed by solution Sk) try Sk on Ok. One of the following:

k.3.a All clauses are satis¯ed) F is satis¯ed, then Stop.

k.3.b There is a set Tk of falsi¯ed clauses) add them to the core: put
Ck+1 = Ck [Tk, k := k + 1, goto k.

k.3.c No clauses are falsi¯ed, but there is a set Vk of still not satis¯ed clauses
) select a collection C0k of hardest clauses in Vk, put Ck+1 = Ck [C0k,
k := k + 1, goto k.

The preprocessing step has the aim to give initial values of visits and
failures, in order to compute '. After that, we select the clauses that resulted

8

hard during this branching phase, and try to solve them as if they were our
entire instance. If they really are an unsatis¯able instance, we have done.
If, after b branching iterations we cannot solve them, our instance is still too
big, and it must be reduced more. Finally, if we ¯nd a satisfying solution
for them, we try to extend it to the rest of the clauses. If some clauses are
falsi¯ed, this means that they are di±cult (together with the clauses of the
core), and therefore they should be added to the core. In this case, since
the current solution falsi¯es some clauses now in the core, it results faster to
rebuilt it completely. The iteration step is repeatedly applied to instances
until their solution.

In order to ensure termination to the above procedure, solution rebuild-
ing is allowed only a ¯nite number of times. After that, the solution is not
entirely rebuilt, but modi¯ed by performing backtrack. This choice makes
the above algorithm a complete one.

Core Search has the important feature of solving, in average case, smaller
subproblems at the nodes of the search tree, hence the operation performed,
such like unit propagation consequent to any truth assignment, are per-
formed only on the current Ck. Such idea of delaying (at least partially) the
unit propagation subsequent to any variable ¯xing is recently recognized to
be successful [29], and nowadays state of the art solvers (as Sato [28]) try in
di®erent ways to incorporate it.

5 Computational results

The algorithm was coded in C++. The following results are obtained on
a Pentium II 450 MHz processor running MS Windows NT operating sys-
tem. In the tables, columns labeled n and m shows respectively number of
variables and number of clauses. Column labeled literals shows the number
of all literals appearing in the formula, hence the sum of the lengths of the
clauses. Column labeled sol reports if satis¯able or unsatis¯able. Column
labeled ACS reports times for solving the instance by Adaptive Core Search.
Other table speci¯c columns are described in following subsection. Times
are in CPU seconds. We set a time limit of 600 sec. When this is exceeded,
we report > 600. When a running time is not available, we report n.a.

Computational tree size was not considered because the di®erent solvers
compared here do not perform similar node processing, hence times to per-
form such node processing can greatly vary. It would not help to know that
a procedure needs to explore only a small number of nodes if their explo-

9

ration requires a very long time. Therefore, for the following comparisons,
we consider meaningful only computational time.

Parameter p appearing in hardness evaluation function ' was set at 10.
During our experiments, in fact, such choice seems to give better and more
uniform results.

We choose the test problems available from the DIMACS 1 , since they
are widely-known, and the test instances 2 , together with computational
results, are easily available. Some problems are randomly generated in-
stances, such like the series aim, jnh, while some other are encoding of real
logic problems, such like the series ii, par, ssa. In addition, we solved some
real-life problems arisen from a cryptography application, the des series.

Running times of Adaptive Core Search are compared with those of
other complete algorithms. In such comparisons, either we could make the
algorithms run on our machine, or we considered times reported in literature
but, when possible, normalized as if they were run on our machine. In order
to compare times taking into account such machine performance, we measure
it by using the DIMACS benchmark dfmax 3 , although it had to be slightly
modi¯ed to be compiled with our compiler. The measure of our machine
performance in CPU seconds is therefore:

r100.5.b = 0.01 r200.5.b = 0.42 r300.5.b = 3.57 r400.5.b = 22.21 r.500.b = 86.63

5.1 The series ii32

The series ii32 is constituted by instances encoding inductive inference prob-
lems, contributed from M.G.C. Resende [21]. They essentially contain two
kind of clauses: a set of binary clauses and a set of long clauses. Their
size is quite big. On this problem we compare the algorithm of Adaptive
Core Search with two simpler branching algorithm: Adaptive Branching
Rule and Shortest Clause Branching Rule. Adaptive Branching Rule is a
branching algorithm which does not use core search, but uses the adaptive
branching rule based on '. Its times are in column labeled ABR. Shortest

1NFS Science and Technology Center in Discrete Mathematics and Theoretical Com-
puter Science - A consortium of Rutgers University, Princeton University, AT&T Bell
Labs, Bellcore.

2Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

3Available from
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/Machine/.

10

Clause Branching Rule is a branching algorithm which does not use core
search, and just uses shortest-clause-¯rst branching rule. Its times are in
column labeled SCBR. Results on this set are in table 1. ACS distinctly
is the fastest, and solves all problems in remarkably short times. ABR is
generally faster than SCBR, although not always. The very simple SCBR
is sometimes quite fast, but its results are very changeable, and in most of
the cases exceeds the time limit.

Problem n m literals sol ACS ABR SCBR

ii32a1 459 9212 33003 SAT 0.02 475.57 > 600

ii32b1 228 1374 6180 SAT 0.00 20.65 356.74

ii32b2 261 2558 12069 SAT 0.03 36.56 > 600

ii32b3 348 5734 29340 SAT 0.03 108.57 > 600

ii32b4 381 6918 35229 SAT 1.53 311.62 > 600

ii32c1 225 1280 6081 SAT 0.00 2.67 1.75

ii32c2 249 2182 11673 SAT 0.00 27.29 0.02

ii32c3 279 3272 17463 SAT 2.84 57.03 > 600

ii32c4 759 20862 114903 SAT 5.07 > 600 > 600

ii32d1 332 2730 9164 SAT 0.01 409.21 > 600

ii32d2 404 5153 17940 SAT 0.76 > 600 > 600

ii32d3 824 19478 70200 SAT 7.49 > 600 > 600

ii32e1 222 1186 5982 SAT 0.00 1.24 0.01

ii32e2 267 2746 12267 SAT 0.01 82.13 > 600

ii32e3 330 5020 23946 SAT 0.08 131.38 > 600

ii32e4 387 7106 35427 SAT 0.02 312.28 > 600

ii32e5 522 11636 49482 SAT 1.03 382.36 > 600

Table 1: Results of ACS on the ii32 series: inductive inference problems. From

M.G.C. Resende

5.2 The series par16

The series par16 is constituted by instances arisen from the problem of
learning the parity function, for a parity problem on 16 bits. Contributed
from J. Crawford. They contain clauses of di®erent length: unit, binary
and ternary. Their size is sometimes remarkably big. par16-x-c denotes an
instance which represent a problem equivalent to the corresponding par16-x,
except that the ¯rst instance have been expressed in a compressed form. For
this set, we compare with the latest version (3.2) 4 of the state-of-the-art sat
solver Sato [28]. Results are in table 2. They are extremely encouraging. We
can observe a sort of complementarity in computational time results: ACS

4Available from ftp.cs.uiowa.edu/pub/sato/.

11

is fast on the compressed versions of the problems, where Sato is slow. The
converse happen on the expanded versions. Our hypothesis is that ACS
is faster when it can take advantage of the identi¯cation of the hard part
of the instances, but, due to an implementation and a data structure still
not re¯ned as Sato's ones, has more di±culties on bigger instances. On the
contrary, due to its very carefully implementation, which has been improved
for several years, Sato 3.2 can handle more e±ciently bigger instances, but on
smaller and harder instances, cannot compensate the advantages of adaptive
branching and core search.

Problem n m literals sol ACS 1.0 Sato 3.2

par16-1 1015 3310 8788 SAT 10.10 24.16

par16-1-c 317 1264 3670 SAT 11.36 2.62

par16-2 1015 3374 9044 SAT 52.36 49.22

par16-2-c 349 1392 4054 SAT 100.73 128.15

par16-3 1015 3344 8924 SAT 103.92 40.81

par16-3-c 334 1332 3874 SAT 8.19 78.91

par16-4 1015 3324 8844 SAT 70.82 1.51

par16-4-c 324 1292 3754 SAT 5.10 133.07

par16-5 1015 3358 8980 SAT 224.84 4.92

par16-5-c 341 1360 3958 SAT 72.29 196.33

Table 2: Results of ACS and Sato 3.2 on the par16 series: instances arisen from the

problem of learning the parity function. From J. Crawford.

5.3 The series aim100

The series aim100 is constituted by 3-SAT instances arti¯cially generated by
K. Iwama, E. Miyano and Y. Asahiro [1], and have the peculiarity that the
satis¯able ones admit only one satisfying truth assignment. Such instances
are not big in size, but can be very di±cult. Results on these sets are
reported in table 3.

Some instances from this set were used in the test set of the Second
DIMACS Implementation Challenge [20]. We also report the results of the
four faster complete algorithms of that challenge, normalizing their times
according to the results with dfmax declared in the original papers, in order
to compare them in a machine-independent way.

C ¡ sat, presented by O. Dubois, P. Andre, Y. Boufkhad and J. Carlier
[10], is a backtrack algorithm with a specialized branching rule and a local
preprocessing at nodes of search tree. It is considered one of the fastest
algorithms for SAT. Its times are in column labeled C-SAT. 2cl, presented

12

by A. Van Gelder and Y. K. Tsuji [13], consists in a combination of branching
and limited resolution. Its times are in column labeled 2cl. TabuS, presented
by B. Jaumard, M. Stan and J. Desrosiers [18], is an exact algorithm which
includes a tabu search heuristic and reduction tests other than those of the
Davis-Putnam-Loveland scheme. Its times are in column labeled TabuS.
BRR, presented by D. Pretolani [25], makes use of directed hypergraph
transformation of the problem, to which it applies a B-reduction, and of a
pruning procedure. Its times are in column labeled BRR.

A noticeable performance superiority of ACS can be observed, expecially
on unsatis¯able problems.

Problem n m lit sol ACS C-sat 2cl TabuS BRR

aim-100-1 6-no-1 100 160 480 UNSAT 0.20 n.a. n.a. n.a. n.a.

aim-100-1 6-no-2 100 160 480 UNSAT 0.93 n.a. n.a. n.a. n.a.

aim-100-1 6-no-3 100 160 480 UNSAT 1.35 n.a. n.a. n.a. n.a.

aim-100-1 6-no-4 100 160 480 UNSAT 0.96 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-1 100 160 479 SAT 0.09 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-2 100 160 479 SAT 0.03 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-3 100 160 480 SAT 0.26 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-4 100 160 480 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-2 0-no-1 100 200 600 UNSAT 0.01 52.19 19.77 409.50 5.78

aim-100-2 0-no-2 100 200 600 UNSAT 0.38 14.63 11.00 258.58 0.57

aim-100-2 0-no-3 100 200 598 UNSAT 0.12 56.63 6.53 201.15 2.95

aim-100-2 0-no-4 100 200 600 UNSAT 0.11 0.05 11.66 392.23 4.80

aim-100-2 0-yes1-1 100 200 599 SAT 0.03 0.03 0.32 16.75 0.29

aim-100-2 0-yes1-2 100 200 598 SAT 0.09 0.03 0.21 0.24 0.43

aim-100-2 0-yes1-3 100 200 599 SAT 0.22 0.03 0.38 2.10 0.06

aim-100-2 0-yes1-4 100 200 600 SAT 0.04 0.12 0.11 0.03 0.03

aim-100-3 4-yes1-1 100 340 1019 SAT 0.44 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-2 100 340 1017 SAT 0.53 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-3 100 340 1020 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-4 100 340 1019 SAT 0.12 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-1 100 600 1797 SAT 0.08 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-2 100 600 1799 SAT 0.07 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-3 100 600 1798 SAT 0.19 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-4 100 600 1796 SAT 0.04 n.a. n.a. n.a. n.a.

Table 3: Results of ACS, C-SAT, 2cl(limited resolution), DPL with Tabu Search, B-reduction,
on the aim-100 series: 3-SAT arti¯cially generated problems. From K. Iwama, E. Miyano and Y.
Asahiro. Times are normalized according to dfmax results, as if they were obtained on the same
machine.

13

5.4 The series jnh

The series jnh is constituted by random instances generated by J. Hooker.
As stated in [14], the parameter were carefully chosen to result in hard
problems [24], because otherwise random problem tend to be too easy. Each
variable occurs in a given clause with probability p, and it occurs direct
or negated with equal probability. The probability is chosen so that the
expected number of literals per clause is 5. Empty clauses and unit clauses
are rejected. Such problems are hardest [16] when the number of variable is
100 and the number of clauses is between 800 and 900. Results on this set
are reported in table 4 (part a and b).

Problem n m lit sol ACS DPL JW GU B&C CS

jnh1 100 850 4392 SAT 0.03 10.5 18.6 53.1 20.8 107.9

jnh2 100 850 4192 UNSAT 0.05 1007.2 15.4 363.1 26.3 37.0

jnh3 100 850 4168 UNSAT 0.28 672.4 239.1 970.1 148.0 195.0

jnh4 100 850 4160 UNSAT 0.07 661.0 50.3 2746.9 108.9 36.0

jnh5 100 850 4164 UNSAT 0.06 670.8 42.8 120.2 88.3 39.1

jnh6 100 850 4155 UNSAT 0.32 1274.5 84.2 23738.2 149.9 217.0

jnh7 100 850 4160 SAT 0.03 5.9 7.2 160.3 51.4 69.2

jnh8 100 850 4147 UNSAT 0.05 165.6 62.8 624.4 58.7 95.8

jnh9 100 850 4156 UNSAT 0.09 345.2 78.9 1867.9 82.6 81.3

jnh10 100 850 4164 UNSAT 0.08 340.4 36.9 313.6 82.0 160.2

jnh11 100 850 4132 UNSAT 0.19 2280.6 135.1 4182.2 165.0 134.6

jnh12 100 850 4171 SAT 0.03 120.6 5.1 398.0 28.8 70.1

jnh13 100 850 4132 UNSAT 0.06 776.8 45.3 503.1 34.6 139.7

jnh14 100 850 4163 UNSAT 0.04 184.2 69.0 2610.4 76.7 39.9

jnh15 100 850 4126 UNSAT 0.08 1547.2 83.1 585.3 65.3 130.5

jnh16 100 850 4172 UNSAT 4.92 13238.7 542.4 20112.2 573.6 434.4

jnh17 100 850 4133 SAT 0.03 140.1 10.8 32.3 58.1 143.1

jnh18 100 850 4169 UNSAT 0.62 2261.0 158.2 2980.6 132.0 191.5

jnh19 100 850 4148 UNSAT 0.07 294.5 87.5 4184.4 153.8 132.3

jnh20 100 850 4154 UNSAT 0.07 648.6 124.5 203.7 126.3 187.3

Table 4a: Results of ACS, Davis-Putnam-Loveland, Jeroslow-Wang, Gallo-Urbani, Branch and

Cut, Column Subtraction on the jnh series: randomly generated hard problems. From J.N. Hooker.

In this table only, the last ¯ve columns show times on a di®erent machine, hence times cannot be

directly compared.

For most of them we have also results obtained by several other com-
plete algorithms coded in Fortran and run on a Sun Sparc Station 330 in
Unix environment, as shown in [14]. In this case only, we cannot calcu-
late the exact computational performance relationship between their and

14

our machine (probably our is at least an order of 10 faster), so we simply
report the original times for Davis-Putnam-Loveland [22] (column labeled
DPL), Jeroslow-Wang [19] (column labeled JW), Gallo-Urbani [12] (col-
umn labeled GU), Branch and Cut [16] (column labeled B&C), Column
Subtraction [15] (column labeled CS) methods.

Problem n m lit sol ACS DPL JW GU B&C CS

jnh201 100 800 4154 SAT 0.02 8.0 6.3 5.9 28.4 40.2

jnh202 100 800 3962 UNSAT 0.03 3515.2 47.4 710.5 42.7 34.6

jnh203 100 800 3906 UNSAT 0.18 939.8 66.6 294.6 186.3 241.6

jnh204 100 800 3914 SAT 0.41 1109.9 8.4 8905.8 78.1 220.0

jnh205 100 800 3911 SAT 0.05 309.1 12.7 1176.5 57.2 149.3

jnh206 100 800 3905 UNSAT 0.18 1556.6 126.6 3863.9 96.4 85.0

jnh207 100 800 3936 SAT 0.03 3.2 119.8 1037.0 65.1 48.0

jnh208 100 800 3908 UNSAT 0.17 388.3 51.6 958.0 63.6 33.8

jnh209 100 800 3902 SAT 0.11 4.2 50.8 1239.2 77.9 175.4

jnh210 100 800 3915 SAT 0.04 6.1 9.3 576.0 37.6 39.6

jnh211 100 800 3888 UNSAT 0.08 n.a. n.a. n.a. n.a. n.a.

jnh212 100 800 3932 SAT 0.26 n.a. n.a. n.a. n.a. n.a.

jnh213 100 800 3900 SAT 0.04 n.a. n.a. n.a. n.a. n.a.

jnh214 100 800 3896 UNSAT 0.12 n.a. n.a. n.a. n.a. n.a.

jnh215 100 800 3898 UNSAT 0.08 n.a. n.a. n.a. n.a. n.a.

jnh216 100 800 3888 UNSAT 0.19 n.a. n.a. n.a. n.a. n.a.

jnh217 100 800 3939 SAT 0.23 n.a. n.a. n.a. n.a. n.a.

jnh218 100 800 3905 SAT 0.01 n.a. n.a. n.a. n.a. n.a.

jnh219 100 800 3889 UNSAT 0.24 n.a. n.a. n.a. n.a. n.a.

jnh220 100 800 3923 SAT 0.06 n.a. n.a. n.a. n.a. n.a.

jnh301 100 900 4654 SAT 0.12 12528.6 65.8 271.3 116.0 77.5

jnh302 100 900 4441 UNSAT 0.03 161.6 13.0 380.4 17.0 84.3

jnh303 100 900 4380 UNSAT 0.16 388.6 111.4 307.1 98.2 40.0

jnh304 100 900 4417 UNSAT 0.15 132.0 27.3 409.2 43.4 43.0

jnh305 100 900 4406 UNSAT 0.06 652.7 68.0 138.9 101.7 196.2

jnh306 100 900 4425 UNSAT 1.25 4202.2 195.7 32270.0 221.9 205.1

jnh307 100 900 4365 UNSAT 0.04 6.7 32.1 19.7 25.6 180.3

jnh308 100 900 4410 UNSAT 0.20 1196.5 127.7 6188.3 159.7 164.6

jnh309 100 900 4415 UNSAT 0.03 131.0 14.7 298.2 48.1 42.7

jnh310 100 900 4369 UNSAT 0.03 262.8 25.9 406.7 9.8 43.9

Table 4b: Results of ACS, Davis-Putnam-Loveland, Jeroslow-Wang, Gallo-Urbani, Branch and

Cut, Column Subtraction on the jnh series: randomly generated hard problems. From J.N. Hooker.

In this table only, the last ¯ve columns show times on a di®erent machine, hence times cannot be

directly compared.

15

5.5 The series ssa

The series ssa is constituted by instances generated by A. Van Gelder and Y.
Tsuji. They are encoding of application problems of circuit fault analysis,
used in checking for circuit "single-stuck-at" fault. These instances are large
in size but not particularly hard. Results on this set are reported in table 5.

The series were used in the test set of the Second DIMACS Implemen-
tation Challenge [20]. We also report the results of the four faster complete
algorithms of that challenge: C ¡ sat, 2cl, TabuS, and BRR, already de-
scribed in 5.3. Times are normalized according to their result with dfmax,
in order to compare them in a machine-independent way.

Problem n m literals sol ACS C-sat 2cl TabuS BRR

ssa7552-038 1501 3575 8248 SAT 0.19 0.49 0.86 0.01 0.25

ssa7552-158 1363 3034 6827 SAT 0.08 0.33 0.53 5.41 0.17

ssa7552-159 1363 3032 6822 SAT 0.15 0.36 0.53 0.75 0.20

ssa7552-160 1391 3126 7025 SAT 0.20 0.36 0.67 0.75 0.21

Table 5: Results of ACS on the ssa series: circuit fault analysis problems.

5.6 The series des

The series des is constituted by instances 5 arising from a practical applica-
tion: veri¯cation and Cryptanalysis of Cryptographic Algorithms [27]. Such
problems, which are nowadays showing their importance, can be encoded
into instances which can be also very large. They are always satis¯able by
construction, but we are interested in ¯nding the satisfying truth assign-
ment. Results on this set are reported in table 9.

Problem n m literals sol ACS 1.0 SATO 3.2

des-1-1 316 1687 5186 SAT 0.11 1.94

des-1-4 1010 6446 20016 SAT 0.98 0.11

des-2-1 600 3531 10746 SAT 0.66 0.09

des-2-4 2062 13387 41224 SAT 2.45 0.19

Table 6: Results of ACS on the des series: cryptography problems.

5Available upon request.

16

6 Conclusions

We present a clause based tree search paradigm for Satis¯ability testing,
which makes use of a new adaptive branching rule, and the original tech-
niques of core search, used to speed-up the procedure although maintain-
ing the feature of complete method. We therefore obtain an enumeration
technique altogether denominated Adaptive Core Search, which is able to
sensibly reduce computational times.

By using the above technique, we observed a better performance im-
provement on instances which are not uniformly hard, in the sense they
contain subsets of clauses having di®erent di±culty degrees. This is mainly
due to the ability of our adaptive device in pinpointing hard sub-formulae
during the branching tree exploration earlier than other methods. We stress
that techniques to perform a fast complete enumeration are widely proposed
in literature. Adaptive Core Search, on the contrary, can reduce the set that
enumeration works on.

Comparison of ACS with two simpler versions of it, one not using core
search, and one not using neither core search nor the adaptive part of the
branching rule, clearly reveals the great importance of this two strategies.
Comparison with several published results shows the e®ectiveness of the pro-
posed procedure. Comparison of ACS with the state-of-the-art solver Sato
is particularly encouraging. In fact, ACS, in its ¯rst release 1.0, is some-
times faster that Sato 3.2, which has evolved for several years. In particular,
Sato is faster mainly when the instances are big and flat, due to its very
carefully implementation. We belive running times can further improve on
big-sized instances by further polishing our implementation, and by using
several techniques available in literature to perform a fast enumeration. Ex-
ample of this could be to reduce clause revisits by saving and reusing global
inferences revealed during search, as some other modern solvers do. This
could be suitably introduced in our core search scheme, by evaluating our
¯tness function for the global inferences as well, and using this as a criterion
to discard them. Future work will explore the introduction of similar tighter
bounds in presented scheme, in order to reduce branching tree exploration.

References

[1] Y. Asahiro, K. Iwama and E. Miyano. Random Generation of Test Instances with
Controlled Attributes. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 26:377{393, 1996.

17

[2] A. Billionnet and A. Sutter. An e±cient algorithm for the 3-Satis¯ability Problem.
Operations Research Letters, 12:29{36, 1992.

[3] J.R. Bitner and E.M. Reingold. Backtrack programming techniques. Comm. of
ACM, 18(11):651{656, Nov. 1975.

[4] E. Boros, Y. Crama, P. L. Hammer, and M. Saks. A complexity index for Satis¯a-
bility Problems. SIAM Journal on Computing, 23:45{49, 1994.

[5] K.M. Bugrara and P.W. Purdom. Clause order backtracking. Technical Report 311,
Indiana University, 1990.

[6] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are.
Proc. IJCAI-91, pages 331{337, 1991.

[7] J. Crawford and L. Auton. Experimantal results on the crossover point in Satis¯a-
bility problems. In Proc. AAAI-93, pages 22{28, 1993.

[8] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Comm. Assoc. for Comput. Mach., 5:394{397, 1962.

[9] M. Davis and H. Putnam. A computing procedure for quanti¯cation theory. Jour.
Assoc. for Comput. Mach., 7:201{215, 1960.

[10] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 26:415{436, 1996.

[11] J. Franco and M. Paull. Probabilistic analysis of the Davis Putnam procedure for
solving the Satis¯ability Problem. Discrete Applied Mathematics, 5:77{87, 1983.

[12] G. Gallo and G. Urbani. Algorithms for testing the Satis¯ability of Propositional
Formulae. Journal of Logic Programming, 7:45{61, 1989.

[13] A. Van Gelder and Y.K. Tsuji. Satis¯ability testing with more reasoning and less
guessing. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 26:559{586, 1996.

[14] F. Harche, J.N. Hooker, and G.L. Thompson. A computational study of Satis¯ability
Algorithms for Propositional Logic. ORSA Journal on Computing, 6:423{435, 1994.

[15] F. Harche and G.L. Thompson. The Column Subtraction algorithm, an exact method
for solving weighted Set Covering, Packing and Partitioning Problems. Computers
and Operations Research, 21:689{705, 1990.

[16] J.N. Hooker and C. Fedjki. Branch and Cut solution of Inference Problems in Propo-
sitional Logic. Annals of Mathematics and AI, 1:123{139, 1990.

[17] J.N. Hooker and V. Vinay. Branching Rules for Satis¯ability. Journal of Automated
Reasoning, 15:359{383, 1995.

18

[18] B. Jaumard, M. Stan, and J. Desrosiers. Tabu search and a quadratic relaxation for
the Satis¯ability Problem. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 26:457{477, 1996.

[19] R.E. Jeroslow and J. Wang. Solving Propositional Satis¯ability Problems. Annals
of Mathematics and AI, 1:167{187, 1990.

[20] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satis¯ability, vol-
ume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 1996.

[21] A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende A con-
tinuous approach to Inductive Inference. Mathematical Programming, 57:215{238,
1992.

[22] D.W. Loveland. Automated Theorem Proving: a Logical Basis. North Holland, 1978.

[23] C. Mannino and A. Sassano. Augmentation, Local Search and Learning. AI IA
Notizie, XIII:34{36, Mar. 2000.

[24] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
Problems. In Proceedings of AAAI'92, pages 459{465, Jul. 1992.

[25] D. Pretolani. E±ciency and stability of hypergraph SAT algorithms. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 26:479{498, 1996.

[26] M.G.C. Resende and T.A. Feo. A GRASP for Satis¯ability. DIMACS Series in
Discrete Mathematics, 26:499{520, 1996.

[27] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 1994.

[28] H. Zhang. SATO: An E±cient Propositional Prover. in Proc. of International Con-
ference on Automated Deduction (CADE-97), Lecture notes in Arti¯cial Intelligence
1104, Springer-Verlag, 308{312, 1997.

[29] H. Zhang and M.E. Stickel. Implementing the Davis-Putnam Method. Technical
Report, The University of Iowa, 1994.

19

