Local Search Algorithms for the k-Cardinality Tree
Problem

Christian Blum, Matthias Ehrgott
Fachbereich Mathematik
Universitat Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
Germany
e-mail: ehrgott@mathematik.uni-kl.de
fax: (49) 631 29082

Abstract

In this paper we deal with an INP-hard combinatorial optimization problem, the
k-cardinality tree problem in node weighted graphs. This problem has several appli-
cations, which justify the need for efficient methods to obtain good solutions. We
review existing literature on the problem. Then we prove that under the condition
that the graph contains exactly one trough, the problem can be solved in polynomial
time. For the general INP-hard problem we implemented several local search methods
to obtain heuristic solutions, which are qualitatively better than solutions found by
constructive heuristics and which require significantly less time than needed to obtain
optimal solutions. We used the well known concepts of genetic algorithms and tabu
search with useful extensions. We show that all the methods find optimal solutions
for the class of graphs containing exactly one trough. The general performance of
our methods as compared to other heuristics is illustrated by numerical results.

1 Introduction and Mathematical Formulation

1.1 The Problem

The k-cardinality tree problem is a combinatorial optimization problem which generalizes
the well known minimum weight spanning tree problem. It consists in finding in a node-
or edge-weighted graph G = (V, E) a subtree with exactly &k edges, such that the sum of
the weights is minimal. Due to various applications, e.g. in oil-field leasing [21], facility
layout [15], open pit mining [28], quorum-cast routing [7] and telecommunications [18] it
has gained considerable interest in recent years.

1

The problem can be formulated as follows. Let G = (V, E) be a graph with a weight
function w : E — IN on the edges or w : V — IN on the nodes. We denote by 7 the set
of all k-cardinality trees in G. Then the node-weighted problem is

min Y w(v) (1)

Tk€Ts ’UEV(Tk)
and the edge-weighted problem is
min > w(e). (2)

1.2 INP-Hardness

Several authors have proved independently that the edge-weighted k-cardinality tree prob-
lem (2) is INP-hard, see [32], [14], [30]. In [30] it has been shown that the problem (2) is
still INP-hard if w(e) € {1,2,3} for all edges e and G = K,,, but polynomially solvable if
there are only two distinct weights. For the node-weighted case (1), INP-completeness has
been shown in [13] and [9].

Several authors have considered special types of graphs. Note first that the node-weighted
problem (1) is trivially solved when G = K,,. The results are that the problem is poly-
nomially solvable if G is a tree, see [13] for the node-weighted case and [24] for the edge
weighted case. It should also be noted that when G is a tree, (1) and (2) are equivalent (see
[11]). Polynomial time algorithms for the node-weighted problem exist for interval graphs
and co-graphs, [31]. On the other hand INP-completeness results for the node-weighted
case have been obtained for grid and split graphs, [31].

The edge-weighted problem (2) is INP-complete for planar graphs and for points in the
plane, when edge weights correspond to distances between the points, see [30]. In the same
paper polynomial algorithms for decomposable graphs and graphs with bounded tree-width
have been given. The same holds for (2) in the plane, when all points lie on the boundary
of a convex region. In [8], the authors have focussed on properties of the distance matrix.
They have assumed that G = K, and have proved several results (both INP-completeness
and polynomial time solvability) on the complexity of the problem with graded distance
matrices.

1.3 Algorithms

Concerning methodology, both exact and heuristic algorithms have been developed, with
a general focus on approximation algorithms. We first note that integer programming
formulations have been presented in [14] and later in [17]. Based on detailed studies of the
associated polyhedron in the former paper a Branch and Cut algorithm has been developed
and implemented in [16]. The code and also implementations of most of the heuristics in
[11] are documented in [10]. A Branch and Bound method is described in [7].

2

The heuristics mentioned are based on greedy and dual greedy strategies and also make use
of dynamic programming approaches. Other constructive heuristics have been presented
in [7].

A large body of literature is available on approximation algorithms for the problem. The
papers published on this topic represent an ongoing improvement until finally a constant
approximation factor could be obtained. A first result appeared in [31], where it has been
proved that there is an O(v/k)-approximation algorithm for the node-weighted problem on
grid graphs. Later there were two streams of research articles: one focusing on the problem
on graphs G, the other dealing with the problem in the plane.

In the former, [30] could obtain a 2v/k-approximation, which has been improved in [3] to
O(log® k). A first constant factor approximation with factor 17 has been derived in [3].
The currently best approximation guarantee is 3, proved in [17].

[30] contains an O(k1)-approximation for the problem (2)in the plane. Improved algo-
rithms, with ratio of O(logk) are due to [18] and [29]. Further decrease to O(Fg’lgo’g“—n) [12]
and a first constant factor approximation ([4] (with the constant not specified) followed.
Using guillotine subdivisions [25] develops a 2+/2-approximation for the I, metric, and a
2-approximation for the /; metric. Finally, a polynomial time approximation scheme has

been given in [2].

1.4 Local Search and Metaheuristics

More recently, authors have successfully applied local search methods to the k-cardinality
tree problem: In [23] a simple tabu search strategy, in [6] both a genetic algorithm and a
tabu search method have been presented for the edge-weighted case.

It is in this field, that our contribution lies. Up to now local search methods have been
developed for the edge-weighted case. However, in the applications the node-weighted case
allows a more natural formulation, e.g. in the oil-field leasing context, as a k-cardinality
tree problem. Therefore, from now on, we will assume that G = (V, E) has a weight
function w : V' — IN on the nodes, and we consider formulation (1).

The aim of this paper is to show that meta-heuristic techniques can be successfully applied
to the k-cardinality tree problem. In contrast to constructive methods, they contain some
random steps to avoid a fixed sequence of steps. We will be able to show that the results are
of better quality than known constructive heuristics and are much faster than the integer
programming method.

The evolution of meta-heuristic techniques began in the early 80’s. They are mainly
used for INP-hard optimization problems. Informally, a general meta-heuristic method can
be characterized as follows. A meta-heuristic is an iterative generation process using
a subordinate heuristic by combining different intelligent techniques to explore a given
solution space.

Examples for meta-heuristics are genetic algorithms, tabu search, neural networks and
simulated annealing. In this paper, we use the ideas of genetic algorithms and tabu search
to develop algorithms to generate solutions of the k-cardinality tree problem. This paper
is based on a Master’s thesis of C. Blum [5]. We shall assume the reader to be familiar
with the basics of genetic algorithms and tabu search.

The rest of the paper is organized as follows. In Section 2 we will prove that the k-
cardinality tree problem can be solved in polynomial time if G' does not contain structures
called hurdles or if it contains structures called troughs exactly once. In Section 3 we
present a simple local search algorithm with a subroutine to guide out of local minima and
show that it finds an optimal solution of (1) on graphs with a single trough.

In Section 4 we introduce the Tree-Crossbreeding-Algorithm (TCA), a meta-heuristic tech-
nique using concepts of genetic algorithms. In Section 5 we present the algorithm Tree-
Tabu-Search (TTS), a meta-heuristic technique using concepts of tabu search. For both
methods we will state that they find an optimal solution for the class of graphs described
in Section 2. Finally in Section 6 we report the results of numerical tests of our methods
TCA and TTS compared to the heuristics of [11] on the same set of examples.

2 A Polynomially Solvable Special Case

From now on, we will deal with the node-weighted case only. An instance of the k-
cardinality tree problem is given by a set of feasible solutions, i.e. the set 7y of k-cardinality
trees of a graph G = (V, F) and a node weight w : V' — IN. An instance will be denoted
by (Tg,w). For a graph G = (V, E) let S := (V(S), E(S)) be a subgraph of G. We denote
by

Vnr(S) ={veV\V(S): 3o e V(S) s.t. [v,0] € E}

the set of all nodes adjacent to nodes in S (the neighbourhood of S).

In this section, we address the question, under which conditions the problem can be solved
in polynomial time. We show that the absence of certain structures in graphs gives such a
condition. This condition guarantees that the problem can be solved in polynomial time
and will serve as a quality criterion for the local search methods developed in Sections 3,
4, and 5. The next two definitions specify the structure elements trough and hurdle in
undirected node-weighted graphs.

Definition 1 A connected subgraph S = (V(S), E(S)) of an undirected, node-weighted
graph G = (V, E) is called trough, if:

i) w(v;) = w(v;), Yu;,v; € V(S)
i) w(vg) > w(vs), Yvs € V(S), Yur € Vi (S)

Definition 2 A connected subgraph H = (V(H), E(H)) of an undirected, node-weighted
graph G = (V, E) is called hurdle, if:

i) It exists a ¢ € IR with: ¢ < w(v;) Yv; € V(H)
i) [Vyu(H)| > 2
i) There is at least one pair of nodes v;,v; in the neighbourhood of H with:

1) w(v;) < c and w(vj) < c

2) The path with smallest node-weight from v; to vj in G' contains at least one node
Vg € V(H)

In order to be able to count the number of hurdles in a graph, we introduce the following
definition.

Definition 3 Let G = (V, E) be an undirected, node-weighted graph.

o A hurdle H of G is called minimal, if there is no hurdle H in G with V(H) C V(H).
e H(G):={H : H is called a minimal hurdle in G }
e The cardinality of H(G) is called the number of hurdles in G.

Note that a node-weighted graph always contains a trough, containing (at least) one node of
minimal weight. The presence of troughs and hurdles in a graph is related in the following
way.

Theorem 1 Let G = (V, E) be an undirected, node-weighted graph. If |H(G)| = 0 then G

contains exactly one trough.

Proof:

Let G = (V, E) be an undirected, node-weighted graph and assume that G contains two
troughs Si, S;. Then V(S;) N V(Sy) = (. Thus there are two nodes vy € V/(S;) and
v, € V(S;) such that the shortest path p,, ., = vk, ..., v contains a node of a hurdle H.
To see this note that the sequence of nodes in p,, ,, must contain a node v, such that

w(vg) < ... <wv)) <wwjp) < ... < w(vy)
and
w(vy) > ... > w(vi—y) > w(v) > ... > w(y).
For ¢ := max{w(v;4+1), w(vi—1)} the graph G contains at least one hurdle H;. O

In the following discussion, it will be convenient to assume that the nodes are numbered
according to increasing node weights. Thus, w(v;) < w(v2) < ... < w(v,). Additionally
we introduce the following notation. Let wy < we < ... < w; be the different weights, then

V(G) = {V1w1y- s Usywrs - - s Ul - - - s Uspun }

Here all nodes v;,,, have equal weights for : = 1,...,s;. We also specify the subsets of
nodes with equal weight

V(@)w; = {10 s Usswi}s 1 =1,...,1

We note that a graph with only one trough may still contain hurdles, see Figure 1 for an
example. However, graphs with only one trough have the following property.

Lemma 1 Let G be a graph with only one trough S;. Let V! C V be a subset of nodes such
that w(v') < w(v) for allv' € V' and all v € V \ V'. Then there exists an edge between a
node of V' and a node of minimal weight in V \ V'

Proof:

By the assumption on V' there exist d and r such that V' = {v14,,...,Vru,}. Let V
denote the nodes of minimal weight in V'\ V'. Therefore either V = V(G)w, \ V' or (if
r=sq4) V=V(Q)

Assume that in G there is no edge between a node v € V' and a node v € V. Then
all paths in G starting from a node v € V' to a node v € V contain a node v;,, with
w, > w(v). Hence, there are at least two troughs in G, contradicting the fact, that S; is
the only trough in G O

Wg+1-*

From Lemma 1 the following result is immediate.

Lemma 2 Let G be a graph with only one trough S1. Then Sy is the subgraph induced by
V(G)w,-

We now proceed to show that the k-cardinality tree problem can easily be solved by a
greedy algorithm, if G' contains exactly one trough.

e INPUT: An instance (7, w) of the k-cardinality tree problem
° Vgr =10

e WHILE there is a v € V' \ V,, such that Vi, U {v} induces a connected subgraph of
G and |V, < k+1 DO

— Choose v € V \ V. s.t. Vg, U {v} induces a connected subgraph of G with
minimal weight

= Vor = Vg U{v}
e Choose a spanning tree Ty, of Vj,.

e OUTPUT: A k-cardinality tree T,

Algorithm 2.1: Greedy Algorithm

The Greedy Algorithm 2.1 is a heuristic for the k-cardinality tree problem. If G' contains
exactly one trough, it finds an optimal solution.

Theorem 2 Let G = (V, E) be an undirected, node-weighted graph with exactly one trough
S1, and 0 < k <n —1. Then the greedy algorithm solves the k-cardinality tree problem in
O(n?) time and the solution Ty, satisfies the following property:

w(v) <w(®) Yv eV, Ve VYV, (3)

Proof:
The proof is by induction over the cardinality .

First, let k = 0. In the one and only iteration of the greedy algorithm a node v; ,,, € V(G)yy,
will be chosen. Clearly this is the optimal solution and (3) is fulfilled.

Let £ = h+1 now and assume that the claim is true for £ < h. According to the induction
hypothesis after A+ 1 iterations the greedy algorithm has computed a set V}, of h+1 nodes
such that Vg, induces a connected subgraph of G, T}, is a minimal weight h-cardinality
tree, and Vj, fulfills (3).

Then, according to Lemma 1 there exists an edge between a node in Vj, and a node of
minimal weight in V' \ V. Therefore the greedy algorithm will choose such a node v in
iteration h + 2, V,, U {7} has minimal weight among all connected subgraphs of G’ with
h + 2 nodes. Furthermore (3) is still fulfilled. 0

As an immediate consequence of Theorem 2 we obtain the following Corollary.

Corollary 1 Let G be a graph with exactly one trough and assume that all weights are
different. Then the set of global optimal solutions of (1) is the set of all spanning trees of
the subgraph of G induced by {v1, ..., vp_1}.

Note that a complete graph contains exactly one trough, and according to Theorem 2 the
k-cardinality tree problem can be solved in polynomial time on complete graphs. As we
have reported earlier, the k-cardinality tree problem is also polynomially solvable on trees.
Therefore very sparse and very dense graphs are the “easy” cases, whereas intermediate
densities are difficult to handle. This behaviour, reported in earlier papers, see [11], can
now be explained by the likely presence of multiple troughs. Since exact solutions can only
be found for rather small instances (up to 30 nodes) in reasonable time, but practically
relevant problems are much bigger (300 nodes in the oil-field leasing problem) one has to
resort to heuristics.

We used local search methods built on knowledge of troughs and hurdles in graphs to
obtain better solutions than the constructive heuristics known until now. In the following
sections we will describe these methods.

3 A Simple Local Search Algorithm

The most important ingredient of a local search method is the neighbourhood function.
Let Ty be a k-cardinality tree. Then Ngyq,(Tk) is consisting of all k-cardinality trees
which can be computed from 7}, by removing one leaf v; of T}, and adding one node of the
neighbourhood of Vyu(7y \ v;). This neighbourhood function has the advantage to be easy
to compute, but has the disadvantage of providing a lot of bad local minima.

In order to guide the basic local search out of local minima, we added the following mech-
anism, called Edge-Permutation-Algorithm (EPA). To explain the idea, let us assume that
TEM is a local minimum according to the neighbourhood function Ngyep. The Edge-
Permutation-Algorithm 3.1 takes all the nodes of TFM and all those edges of F(G) joining
two nodes of V(TEM). Now we try to compute a new k-cardinality tree T}, consisting of
the same nodes as T’ but not lying in a local minimum of Ngy,,. See Figure 1 for an
example.

e INPUT:: A k-cardinality tree T}

o Ey:={es:vs,v € V(Ti),ess € E(G)}, Vau := V(Ty)
o E(TFP) =0, V(T,FY) =0

o TEP .= TFP+ argmin{w(vs) : vs € Vo }

® Vi = Vau \ V(TkEP)

e REPEAT

— i = argmin{w(v;) : v; € Vv (TFY) N Van}

— Vsource := argmin{w(v;) : v; € V(TEL) N Iy (vin, Ti) }
— TEP .= TP + vy, + €[Vin, Vsource)

— Vau := Vau \ {vin}

— Eai = Ean \ {e[Vin, Vsource] }

o UNTIL (Vy = 0)
e OUTPUT: A k-cardinality tree T}F

Algorithm 3.1: Edge-Permutation-Algorithm (EPA)

Grid Graph, n =9,k =4

Figure 1: The Edge-Permutation-Algorithm

In Figure 1, (a) shows a 4-cardinality tree T lying in a local minimum according to Nguyap,
(b) shows the 4-cardinality tree TF | the result of EPA not lying in a local minimum, and
(c) shows a 4-cardinality tree Ty € Ngyap(TEY) better than TP according to the weight
function w.

Algorithm 3.2 below shows the local search method Tree-Local-Search (TLS). The algo-
rithm can be initiated by any feasible solution, e.g. a greedily generated one and used as a
heuristic by itself. However, we will use it only as a subroutine for the Tree-Crossbreeding-
Algorithm and the Tree-Tabu-Search method in Sections 4 and 5.

e INPUT: A k-cardinality tree T}
e REPEAT

— T¢ :=argmin{w(T}) — w(Ty) : T} € Nswap(Tk)}
— stopflag := true
— IF (w(T}) < w(T)) THEN

x Ty, =T}, stopflag := false
— ELSE
* TP .= Edge-Permutation-Algorithm(7})
+ IF T)FF is not a local minimum according to Nsye THEN
- Ty :=TE?
- stopflag := false

e UNTIL (stopflag = true)

e OUTPUT: A local minimum T£© :=Tj,.

Algorithm 3.2: Tree-Local-Search (TLS)

Now we prove that TLS finds a globally optimal solution of the k-cardinality tree problem,
starting from an arbitrary feasible solution, whenever G is a graph with exactly one trough,
and w(v;) # w(v;) for all v; # v;. Then S; = {v1} is the only trough. For the rest of
this section, we will make these assumptions. We need some technical Lemmas first, which
show the relations between locally and globally optimal solutions. Note that even for
graphs with exactly one trough, there exist local optima, which are not global ones, see
Figure 1 for an example.

The first result says, that for a locally optimal solution, the weights of all leafs are less
than the weights of all adjacent nodes.

Lemma 3 Let T)© be a local minimizer of (1) with respect to neighbourhood Ngyap. Then
w(vy) > w(v) for all vy, € Vg (TEC) and all leafs v; € Vi(T9).

Proof:

Assume that there is v; € Vg (T}FC) with w(v;) less than the weight of the heaviest leaf
of T;F9,vj*®. Then, if there exists an edge ey, ,; with v; € V(T}X9) \ {v[***}, one could
exchange v]"** and its incident edge in T)"© with v; and e, ,; to obtain a k-cardinality tree
with lower weight, a contradicition to the choice of T}*°.

Therefore no such edge exists and e, yme is the only edge between v; and V(TEC). There-
fore all paths p,,,, from v; to a leaf v, € VL(T;79) \ {v/***} contain either v}*** or a node
v, € Vu (TR LO) \ {v,}. Since w(v]"**) > w(v;) and w(v,) > w(v]"*®) (otherwise the first
case would apply), this implies the existence of at least two troughs, a contradiction. 0O

Now we can show that local and global optimal solutions always have nodes in common.

10

Lemma 4 Let TEC be a local and TEE be a global minimizer of (1) with respect to neigh-
bourhood Ngyap. Then

V(T NV(T°) # 0 (4)
Vi(T?) c V(T") (5)

Proof:

Suppose V(TFE)NV (TFC) = 0. Then all paths p,, ., from a leaf v; € Vi, (T}EC) to vy, which
is contained in the only trough and in V(TFL), contain a node v, € Vyy(TF?). From
Lemma 3 w(v;) < w(vy) and w(vy) > w(vq). This implies the existence of a second trough,
which is a contradiction.

Now assume that there is at least one node v; € Vi,(TEC) \ V(TFE). Since V(TFE) N
V (VEO) # () there is a node v, € V(TFL) N Vg (TEC) with w(vs) < w(v;), a contradiction
to Lemma 3. a

Lemma 5 Let v, := argmaz{w(v,) : vy € VL(TEC) NV (TEL)}, then

v; € V(TEC) fori=1,...,1—1. (6)
Proof:
Assume the contrary. Then there exists a node v; € {v,...,v_1} \ V(T}°). There-
fore there exists a node v, € {vi,...,v_1} N Vyu(TEC). Since w(vy) < w(v;) this is a
contradiction to Lemma 3. O

With the preceding Lemmas 3 to 5, we can prove that the Edge-Permutation-Algorithm
3.1 indeed leads out of local minima.

Theorem 3 Let TEC be a local minimizer, which is not globally optimal Then the result
TETY of applying the Edge-Permutation-Algorithm to TFC is not a local minimizer.

Proof:

Let v, := argmax{w(v,) : vy € Vi(TF°) N V(TP")}. From Lemma 5 we conclude that
{v1,...,v_1} is a subset of V(T}O).

Starting the Edge-Permutation-Algorithm with T v; is chosen first and v;y; is added
after v; until for some j > [v;,; is not contained in V(7}*°). For the tree T} ; constructed
then it holds V/(T;_1) = V(T}) (according to Corollary 1). Since vj1 ¢ V(T©) it follows
that v;11 € Vg (TFT). The Edge-Permutation-Algorithm will only add nodes v, to Tj_;
for which w(v,) > w(v;41). Furthermore at least one more leaf v, is added and we have
w(vs) > w(v;11) for this leaf, too. Since v;11 € Vyu(TET), TET is not a local minimizer.
O

Theorem 3 is the essential tool to show that TLS solves the k-cardinality tree problem on
graphs with one trough and all weights different.

11

Theorem 4 Let G = (V, E) be an undirected, node-weighted graph with exactly one trough
S1 and w(v;) # w(v;) YV v; # vj, i.e. S1 = {v1}. Then the Tree-Local-Search Algorithm 3.2
finds an optimal solution TE" for (1) for an arbitrary starting solution Ty in polynomial
time.

Proof:

The Edge-Permutation-Algorithm is only applied, when a locales minimizer 7)¥° has been
obtained. Then it constructs a tree T)*", containing the same nodes as 7}“C, but which
according to Theorem 3 is not a local minimizer. After finitely many iterations a globally
optimal solution must be obtained.

TLS performs at most n — 2k iterations without calling EPA, until |V (Ty) NV (TFE| > 2.
Then at most k£ — 1 iterations with EPA are necessary to obtain a globally optimal solution.
EPA itself runs in O(k?) time. One iteration of TLS without EPA needs at most O(k(n—k))
operations. Thus, the overall time is at most O(n%k + nk?). O

4 Tree-Crossbreeding-Algorithm (TCA)

The meta-heuristic Tree-Crossbreeding-Algorithm (TCA) is based on the basic parallel
genetic algorithm introduced by Miihlenbein [26] in 1991. There are two main differences
between a normal genetic algorithm and a parallel genetic algorithm:

e To find a crossbreeding mate for a given individual we search only among those
individuals in a neighbourhood of the given individual. In terms of k-cardinality
trees as individuals we have to search a crossbreeding mate just among those k-
cardinality trees with at least one node in common with the given k-cardinality tree.
The result of this strategy is a parallel search in different search directions.

e As a mutation operator we apply a local search method to all individuals build by
crossover. Thus an individual improves its fitness during its lifetime.

So we can take benefit of the following properties:

e For the selection of a crossbreeding mate for a given individual it is not necessary to
know the fitness of all individuals of the current population, because we search the
crossbreeding mate only in a neighbourhood of the given individual. So the central
control over the algorithm is lost and we get different search directions guiding to
different local minima. But those search directions are not independent, because the
neighbourhoods are overlapping. So we have an exchange of information between the
different search directions.

12

e It is possible to implement a parallel genetic algorithm on parallel computers. How-
ever, we did not make use of this possibility.

e The use of local search as a mutation operator leads to better computation times.

Below, we describe the main steps of the procedure.

4.1 Generation of the Starting Population

We generate the starting population by by constructing randomly a k-cardinality tree
starting from each of the n nodes of G. This may not lead to n different k-cardinality
trees, but it ensures that all n nodes of G appear in some k-cardinality tree contained in
the starting population.

4.2 The Selection Operator of TCA

For two k-cardinality trees to be crossbred we require them to have at least one node
in common. So the selection mechanism has to find a crossbreeding mate for a given k-
cardinality tree T} in the neighbourhood of this individual consisting of all k-cardinality
trees contained in the population which have at least one node in common with 7.

Definition 4 Let (T, w) be an instance of the k-cardinality tree problem and let Pr, be a
population of k-cardinality trees. Then Nop : Pr, — 277 is defined in the following way:

Nep(T}) = {T, € Pr, : V(T{) N V(Ty) # 0}

For a given k-cardinality tree T} the crossbreeding mate is chosen by roulette-wheel-
selection from the set Nog(T}).

e Generate a random number 2 with 0 < = < 37, ey (1) w(Ty)

e Continue choosing k-cardinality trees from Ngp(T}) and summing up their weights
until this sum is equal or greater than z. Take the last chosen k-cardinality tree T}°B
as the crossbreeding mate of T}.

Obviously this selection mechanism realizes the evolutionary principle of survival of the
fittest. In each iteration of TCA for all k-cardinality trees T} in the current population
a crossbreeding mate will be selected in this manner. If it is not possible to find a cross-
breeding mate, the k-cardinality tree will not appear in the next generation again. This,
in a sense, means the end of one search direction which we cancel from the further process.

13

The selection mechanism implies to two different stopping criteria. Due to the phenomenon
mentioned above the shrinking of the population size during the search process is possible.
Therefore one stopping criterion is that a population contains only one k-cardinality tree.
The second stopping criterion depends on the success of the different search directions. If
in the current iteration of TCA none of the generated offspring is better (according to w)
than its first parent, then none of the search directions was successful and we will stop the
algorithm.

4.3 The Crossover Operators of TCA

After the selection process we have pairs (T}, TF8) of k-cardinality trees to be crossbred
now. TCA uses two different crossover operators, the Union-Crossover and the Intersection-
Crossover. So one pair of parents leads to two offspring, TV the result of Union-Crossover
and T{¢ the result of Intersection-Crossover. We will define T)¢ as the better of the two.

T¢ = argmin{w(ZV°), w(T}%)}

If T is better than T} according to the weight function w, we take T as a member of
the next generation, else we take 7T} as a member of the next generation (replication).
Algorithm 3.1 formalises the two crossover operators.

INPUT: A pair (T}}, T7) of k-cardinality trees

o V= V(THUV(TP), Vi := V(T}) NV (T), E(T}) =0

V(Ty) := argmin{w(v;) : v; € V}

REPEAT

— Choose Ve, see (7) and (8)
— IF Vj,.; = § THEN

x vp, := argmin{w(v,) : vs € Vyg(Tp) NV}
— ELSE

% vp, := argmin{w(vy) : V5 € Vpres}

— Ty =T +v, + €[Uh, Ul], with v; € V(Tk)
e UNTIL |V(T})| =k +1
e OUTPUT: A k-cardinality tree T}

14

Algorithm 4.1: Union-Crossover and Intersection-Crossover

It remains to specify Line 5 in Algorithm 3.1. For Union-Crossover we set
Vorer = Vv (Ti) N (Vo \ Vo). (7)

So Union-Crossover crossbreeds two k-cardinality trees T} and T2 by constructing an off-
spring T}, using the whole node set V(T}}) U V(T?). The starting node is chosen as the
minimal node according to the weight function in the node set V(T}) N V(T7). Besides,
during the construction of the new k-cardinality tree T} we prefer nodes from the node set
(V(THUV(T)\ (V(T{) NV (TE)) against nodes from the node set V(T}}) NV (T?). This
means we try to prefer the good properties — in our terms low weighted nodes — appearing
in only one of the parents.

For Intersection-Crossover we specify Line 5 as

VZm‘ef = VNH(Tk:) N Vm. (8)

Contrary to Union-Crossover we now prefer nodes from the node set V(T}}) NV (T?) against
nodes from the node set (V(T}) U V(T?) \ (V(T}) N V(T?)) during the construction of
the new k-cardinality tree Ty. This means we try to keep the good properties appearing
in both parents if possible.

4.4 'The Mutation Operator of TCA

As mentioned above we use a local search heuristic as mutation operator. We apply the
Tree-Local-Search (TLS) Algorithm 3.2 presented in detail in Section 3.

Putting together all ingredients, we can formulate the Tree-Crossbreeding-Algorithm 4.2.

INPUT: An instance (7, w) of the k-cardinality tree problem

e t:=0

Generate the starting population Pr, (¢)

T,f“t = argmin{w(Té) : Tlg € Pr, (1)}
REPEAT

—t:=t+1
— Pr, (t) := Selection-Crossover(Pr, (t — 1))

15

— Pr, (t) := Tree-Local-Search(Pr, (1))
— T} == argmin{w(T}) : T} € Pr.(t)}
— IF w(T}) < w(TP') THEN TPt := T}

e UNTIL (Pr,(t) =0) or (Pr,(t) C Pr(t—1))
e OUTPUT: A k-cardinality tree T3 = Tpest

Algorithm 4.2: Tree-Crossbreeding-Algorithm (TCA)

As a consequence of using TLS as mutation operator, Theorem 4 implies Theorem 5.

Theorem 5 Let G = (V, E) be a graph with exactly one trough and w : 'V — IR, be a
weight function on the nodes such that w(v;) # w(v;), whenever i # j. Then TCA finds
a minimum weight k-cardinality tree in polynomial time, irrespective of the initial solution
(starting population).

For computational results of TCA we refer to Section 6.

5 Tree-Tabu-Search (TTS)

Tabu search techniques have been described independently by Glover [19], [20] and Hansen
[22]. Glover defines Tabu Search as “ ... a higher level heuristic procedure for solving
optimization problems, designed to guide other methods (or their component processes) to
escape the trap of local optimality.” In the years since then tabu search has been applied
successfully for many combinatorial optimization problems, see [1] and [27] for extensive
references.

In this section we describe a Tabu Search procedure for the k-cardinality tree problem. Its
main features are the use of two tabu lists with gaps, i.e. for moves that are tabu, but
happen to fall in a gap of a tabu list, the tabu status is overruled. Furthermore, we use an
intensification strategy based on second best moves and we apply the Edge-Permutation-
Algorithm of Section 4.4 to overcome local minima.

5.1 Neighbourhood and Moves

We use the neighbourhood Ngy,, already defined in Section 3. Note that this choice
guarantees that the graph on which the local search operates is connected. According to
the neighbourhood, a move my is defined as a 4-tuple mr = (Vin, €in, Vout, €out), Where vy,

16

and e;, are the node and edge added to the tree and v,,; and e,,; define the leaf and its
incident edge to be deleted from the tree. The application of a move to a k-cardinality
tree T}, is describes as follows:

Ty @ mp = (V(Tk) U {vin} \ {vour}, E(Tk) U {€in} \ {€our}) -

In each step, a best non tabu move is chosen. Let the weight of a move be w(my) :=
wW(Vin) — W(Voyt), then we choose a non tabu move with smallest weight. The resulting tree
Ty, ® my will have weight w(T) + w(my).

5.2 Tabu Lists

We use two tabu lists T'L;, and T'L,,; of equal length. Both lists store the s; most recent
nodes v;,, respectively v,,; that have been added to (deleted from) the current tree 7.
Experiments have shown that dynamic lists yield better results than static ones. We
implemented dynamic lists using gaps G, and G- A gap is realized as a tuple (g1, g2),
where g, is the position of the list, where the gap starts and g- is the length of the gap.
Moves falling into a gap are considered non tabu.

Consequently, a move mq is tabu if v;, € TL;, or vy € T Ly, but not both are in the
gaps. The length of the tabu lists is set as

8] 5]

This guarantees that the list is not too short (for very small or very large k). The choice of
the minimum ensures that the lists do not get too large. The longest lists are encountered
when k = n/2, for which the problem is known to be hardest (cf. Section 6). We found
that this definition yields good results for all values of k.

5.3 The Diversification Phase

The whole procedure is controlled by two types of counters f; and f,, the diversification
and global frequencies, for each node. The global frequency f,(v;) is incremented whenever
a new tree is encountered, the diversification frequency f,(v;) only if a new solution is
generated at the beginning of a diversification phase.

Initially all counters are equal to zero. When a diversification phase starts, tabu lists are
initialised, gaps are set to begin at position one with zero length and a k-cardinality tree is
computed greedily according to global frequencies f,(v;) (in particular, the whole algorithm
begins with a randomly generated tree). This tree is then passed on to the intensification
phase.

17

The whole algorithm stops, when the average frequency f, is greater than two. For large
values of k, i.e. bigger trees, this stopping criterion will be achieved after fewer diversi-
fications than for small k. On the other hand, larger £ will imply that a larger part of
the solution space will be explored during intensification, and fewer diversifications are
necessary. Thus the stopping criterion makes for a balance between diversification and
intensification.

INPUT: An instance (7, w) of the k-cardinality tree problem

T} = nil, level2 := true

su = max{4, min{| 5], [%5*]}}

Initialise counters f, and fs to 0

WHILE (level2 = true) DO

— Initialise tabu lists T'L;,, T L

— Initialise gaps G, = (1,0), Gow := (1,0)

— Compute a k-cardinality tree 7} according to f,
— My = {myp : T ® mr € Nowep(T})}

— Increase f, and f, according to T}

— IF (w(Ty) < w(T¥)) or (T} = nil) THEN T} := T}
— TH =T

— M-Sit := nil

—t:=0,impr:=0,sb:=0

— levell := true

— TTS-Levell

— IF f; > 2 on average THEN level2 := false

e OUTPUT: A k-card-Tree T}*

Algorithm 5.1: Tree-Tabu-Search (TTS-Level2): Diversification

18

5.4 The Intensification Phase

In the intensification phase new windows are set, in case the tabu lists are full. Then we test,
if the current solution 7T} is a local minimum, i.e. the weight of all moves w(mg) > 0. In
this case, we apply the Edge-Permutation-Algorithm described in Section 4.4 to overcome
the local minimum. Then we compute the best move (irrespective of tabu status). Should
it be tabu but yield a better result than the best solution obtained so far, tabu status is
overruled. Otherwise we apply the best non tabu move. In any case, we record the second
best non tabu move and the situation in which it occurred.

The best second best strategy works as follows. We always store the status of the complete
process for the best second best move encountered in the current intensification phase. We
use a counter ¢mpr, which counts the number of iterations without improvement. Should
this counter achieve a threshold [gJ we stop the process and continue at the situation
stored for the best second best move and apply this move. Thus we abandon an apparently
unsuccessful direction, go back to an older situation and continue with another promising
search direction.

Besides impr two counters control the intensification. Counter ¢ determines when new
gaps are computed. This happens, whenever ¢ mod [% | = 0. Both length and starting
position of the gaps are chosen randomly, given that the lengths are not greater than half
the list length. Counter sb is incremented whenever we apply the best second best move.
Intensification is stopped when sb reaches a threshold [gj

e WHILE levell = true DO

— IF ((t mod |*]|) = 0) and (T'L;;, and T Ly, full) THEN
x Set new gaps G;, and Gy
—ampr:=impr+1,t:=t+1
— IF w(Myz) > 0 Vmy € My THEN
x T} := Edge-Permutation-Algorithm(7})
* My = {mg : T§ & mr € Nowap(TF)}
— m} := argmin{w(my) : mr € Mr}
— M2 = {mq : mp € My, mp non tabu}

— (* Overrule criterion *)
IF (mi is tabu) THEN
* IF (w(T¥) + wn(my)) > w(T{) THEN
- mp = nil

Cmp = argmin{w(m:r) 1mr € M?t}

19

— m3 := argmin{w(mr) : my € MP mr # mt}

— Best-SecondBest
— IF (sb—1) > |£] THEN levell := false

ELSE

x T =T ®my

FOR all v; € V(T}) DO f,(v;) := f,(v;) + 1
IF w(T}) < w(T") THEN

- impr =0

- T =T
IF w(T}) < w(T{) THEN T}* := T}
Change T'L;, and T L,y according to m}.
My = {myp : T & mp € Nowap(T3)}

*

*

*

*

*

Algorithm 5.2: Tree-Tabu-Search (TTS-Levell): Intensification

As for Algorithm TCA in Section 4 we are able to prove a quality criterion for the TTS
algorithm 5.1/5.2. Because we use the Edge-Permutation-Algorithm in the intensification
phase, we have the following result.

Theorem 6 Let G be a graph with ezactly one trough and such that w(v;) # w(v;) when-
ever i # j, then TTS solves the k-cardinality tree problem in polynomial time.

6 Computational Results

We carried out numerical tests to establish the quality of our algorithms. The methods
were compared with both optimal solutions obtained by integer programming methods
described in [14] and the heuristics proposed in [11]. In the latter paper both a greedy
strategy as a generalization of Prim’s algorithm for finding a minimal spanning tree and
a dual greedy strategy, which eliminates nodes with high weights from the graph until a
k-cardinality tree remains have been developed.

We used sets of 20 randomly generated connected graphs and grid graphs, with 10, 20, and
30 nodes, respectively. The general graphs had between 149 and 277 edges, the grid graphs
between 39 and 47 edges for the 30 nodes test set. The weights were randomly generated
integers between one and 100, and we tested all cardinalities £ with 2 < k < n — 2.
(Actually, this was the same set of examples used in [11].) The limitations are due to the
fact, that larger instances could not be solved optimally in a reasonable amount of CPU

20

time. The number of tests carried out therefore is 140 for 10 nodes, 340 for 20 nodes and
540 for 30 nodes, and this for both general and grid graphs.

In Table 1 we list the percentage of instances in which our heuristics found an optimal
solution.

‘ TCA general TTS general TCA grid TTS grid

n=10 100 100 100 99
n=20 99 100 96 96
n=30 100 100 95 90

Table 1: Percentage of Instances Solved Optimally (Rounded)

The following observations are made. Results on general graphs are better than on grid
graphs. This behaviour (observed earlier in [11]) can now be explained by the number
of troughs. Dense graphs tend to have only few troughs (note that K, contains a single
trough), a fact that due to the results of Section 2 is expected to enhance performance.
The grid graphs, with fewer edges will likely have many troughs and the algorithms will
not work as well. Not surprisingly the results are better for small than for big instances.
Note also that on complete graphs (i.e. maximal density, and minimal number of troughs)
the problem is polynomially solvable by our methods.

In Figures 2 and 3, we illustrate the performance of TCA and TTS as compared to the
greedy (KCP, for k-Cardinality-Prim) and dual greedy (DG1) approaches from [11]. The
scale is the deviation from optimality in percent. It turns out that TCA and T'TS uniformly
perform better than the constructive heuristics, with a mean deviation of less than 0.1 %
for general graphs and less than 1 % for grid graphs.

It can also be seen that the performance improves as k increases from 10 to 30. This
behaviour reflects expectations, as for large k£ the problem is closer and closer to the
spanning tree problem, which can be solved in polynomial time. For very small k&, the
solution only consists of a few edges, and good solutions are obtained, too.

We also wanted to test the stability of the algorithms and ran 20 repetitions of both TTS
and TCA for all cardinalities on a grid graph with 30 nodes (i.e. the case with worst
results). The variance of the solution values obtained was at most 0.06 %.

Concerning computation times, we remark that it was not our main goal to have the
implementations fine-tuned for speed. Clearly, computation times were lower for grid
graphs than for general graphs, with TTS always being slower than TCA. The difference
between the two was more significant for general graphs with TCA twice as fast as T'TS, for
grid graphs the difference was almost constant. Computation times reached a maximum of
100 (general graphs, k& = 23), respectively 12 seconds (grid graphs, £ = 24) on a Pentium
PC with 100 MHz.

21

100 =

—+—HCP
—m— [
TCA
TT=

O e L T L T O e

2 4 B 8§ 10 12 14 16 18 20 22 24 26 28

k

Figure 2: Deviation from Optimality in Percent, General Graphs

—— KCP
—— (i1
TCA,
1=

2 4 6 & 10 12 14 16 13 20 22 24 26 28
k

Figure 3: Deviation from Optimality in Percent, Grid Graphs

22

7 Conclusions

In this paper we have investigated the INP-complete k-cardinality tree problem on node-
weighted graphs. We have proved that the problem is solvable in polynomial time by the
greedy algorithm on the class of graphs containing exactly one trough. The main purpose
of the paper was to develop local search methods that yield good solutions. We presented
both a genetic algorithm (TCA) and a tabu search strategy (TTS), and were able to prove
that both solve the problem efficiently and optimally on the class of graphs introduced
before.

Computational tests indicate that the algorithms provide very good, often optimal solutions
for the problem in acceptable time (given the slow computer we had to use). It turned out
that the problem is most difficult for cardinalities k£ approximately half the number of nodes,
confirming earlier observations by other authors. Also tests confirmed the expectation that
higher density of the graphs tends to make the problem easier, a behaviour that can be
explained by the structural results presented.

To summarise, we can say that the algorithms discussed are good tools to solve the prob-
lem in applications mentioned in the introduction, taking into account that all applications
discussed so far involve strategic rather than online decisions. As a direction of future
research, we mention the generalization of the problem to connected subgraphs (not neces-
sarily acyclic) of minimal weight and given cardinality. Slight modifications of our methods
will be applicable for this problem.

References

[1] E. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization. John Wiley
& Sons, Inc., 1997.

[2] S. Arora. Polynomial time approximation algorithms for euclidean tsp and other geo-
metric problems. In Proceedings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, pages 2-11. IEEE Society Press, 1996.

[3] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees
for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of the 27th
Annual ACM Symposium on Theory of Computing, pages 277283, 1995.

[4] A. Blum, P. Chalasani, and A. Vempala. A constant-factor approximation for the
k-MST problem in the plane. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 294-302, 1995.

[6] C. Blum. Optimality criteria nd local search methods for node-weighted k-cardinality
tree and subgraph problems (in german). Master’s thesis, University of Kaiserslautern,
Department of Mathematics, 1998.

23

[6] F. Catanas. Heuristics for the p-minimal spanning tree problem. Technical report,
Centre for Quantitative Finance, Imperial College, L.ondon, 1997.

[7] S.Y. Cheung and A. Kumar. Efficient quorumcast routing algorithms. In Proceedings
of INFOCOM 94, pages 840-847. IEEE, 1994.

[8] T. Dudas, B. Klinz, and G.J. Woeginger. The computational complexity of the k-
minimum spanning tree problem in graded matrices. Technical Report 106, Karl-
Franzens Universitat Graz and Technische Universitat Graz, 1997.

[9] M. Ehrgott. Optimization problems in graphs under cardinality restrictions (in Ger-
man). Master’s thesis, University of Kaiserslautern, Department of Mathematics,
1992.

[10] M. Ehrgott and J. Freitag. K. TREE / K. SUBGRAPH: A program package for
minimal weighted K-cardinality-trees and -subgraphs. FEuropean Journal of Opera-
tional Research, 93(1):224-225, 1996. Code available at http://www.mathematik.uni-
kl.de/"wwwwi/WWWWI/ORSEP /contents.html.

[11] M. Ehrgott, J. Freitag, H.W. Hamacher, and F. Maffioli. Heuristics for the k-
cardinality tree and subgraph problem. Asia Pacific Journal of Operational Research,
14(1):87-114, 1997.

[12] D. Eppstein. Faster geometric k-point mst approximation. Technical Report 13,
University of California, Irvine, 1995.

[13] U. Faigle and W. Kern. Computational complexity of some maximum average weight
problems with precedence constraints. Operations Research, 42(4):688-693, 1994.

[14] M. Fischetti, H.-W. Hamacher, K. Joernsten, and F. Maffioli. Weighted k-cardinality
trees: Complexity and polyhedral structure. Networks, 24:11-21, 1994.

[15] L.R. Foulds and H.W. Hamacher. A new integer programming approach to (restricted)
facilities layout problems allowing flexible facility shapes. Technical Report 1992-3,
University of Waikato, Department of Management Science, 1992.

[16] J. Freitag. Minimal k-cardinality trees (in German). Master’s thesis, University of
Kaiserslautern, Department of Mathematics, 1993.

[17] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings
of the 87th Annual IEEE Symposium on Foundations of Computer Science, pages 302—
309. IEEE Society Press, 1996.

[18] N. Garg and D. Hochbaum. An o(logk) approximation algorithm for the k minimum
spanning tree problem in the plane. Algorithmica, 18:111-121, 1997.

[19] F. Glover. Tabu search: part I. ORSA Journal on Computing, 1(3):190-206, 1989.

24

[20] F. Glover. Tabu search: part II. ORSA Journal on Computing, 2(1):4-32, 1990.

[21] H.W. Hamacher and K. Joernsten. Optimal relinquishment according to the norwe-
gian petrol law: A combinatorial optimization approach. Technical Report no. 7/93,
Norwegian School of Economics and Business Administration, Bergen, 1993.

[22] P. Hansen. The steepest ascent mildest descent heuristic for combinatorial program-
ming. Talk presented at the Congress on Numerical Methods in Combinatorial Opti-
mization, Capri.

[23] K. Joernsten and A. Lokketangen. Tabu search for weighted k-cardinality trees. Asia
Pacific Journal of Operational Research, 14(2):9-26, 1997.

[24] F. Maffioli. Finding a best subtree of a tree. Technical Report 91.041, Politecnico di
Milano, Dipartimento di Elettronica, 1991.

[25] J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
new method for the geometric k-mst problem. In Proceedings of the 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 402—-408. STAM, 1996.

[26] H. Miihlenbein. Evolution in time and space — the parallel genetic algorithm. In
G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316-337. Morgan-
Kaufman, 1991.

[27] I.H. Osman and G. Laporte. Metaheuristics: A bibliography. In Annals of Operations
Research, volume 63, pages 513-623. J.C. Baltzer AG, Science Publishers, 1996.

(28] A.B. Philpott and N.C. Wormald. On the optimal extraction of ore from an open-cast
mine. 1997.

[29] S. Rajagopalan and V.V. Vazirani. Logarithmic approximation of minimum weight k
trees. unpublished manuscript, 1995.

[30] R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi. Spanning
trees — short or small. STAM Journal on Discrete Mathematics, 9(2):178-200, 1996.

[31] G.J. Woeginger. Computing maximum valued regions. Acta Cybernetica, 10(4):303—~
315, 1992.

[32] A. Zelikovsky and D. Lozevanu. Minimal and bounded trees. In Tezele Cong. X VIII
Acad. Romano-Americane, Kishinev, pages 25-26, 1993.

25

