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Abstract

We consider the following generalization of split graphs: A graph is said to be
a (k, f.)-graph if its vertex set can be partitioned into k independent sets and f.
cliques. (Split graphs are obtained by setting k = l = 1). Much of the appeal of
split graphs is due to the fact that they are chordal, a property not shared by
(k, f.)-graphs in general. (For instance, being a (k, O)-graph is equivalent to being
k-colourable.) However, if we keep the assuIhption of chordality, nice algorithms
and characterization theorems are possible. Indeed, our main result is a forbidden
subgraph characterization of chordal (k, f.)-graphs. We also give an O(n(m + n))
recognition algorithm for chordal (k, f.)-graphs. When k = 1, our algorithm runs in

time O(m + n).
In particular, we obtain a new simple and efficient greedy algorithm for the recog-

nition of split graphs, from which it is easy to derive the well known forbidden
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subgraph characterization of split graphs. The algorithm and the characterization
extend, in a natural way, to the 'list' (or 'pre-colouring extension') version of the
split partition problem -given a graph with some vertices pre-assigned to the inde-
pendent set, or to the clique, is there a split partition extending this pre-assignment?

Another way to think of our main result is the following min-max property of
chordal graphs: the maximum number of independent (i.e., disjoint and nonadja-
cent) Kr's equals the minumum number of cliques that meet alI Kr's.

Key words:
Chordal graphs, Split Graphs, Min-Max Theorems, Greedy Algorithms,
Pre-colouring Extension, List Partitions

1 Introduction

A graph G is a (k, .e)-graph [2] if its vertices can be partitioned into k inde-
pendent sets and t' cliques. (A clique is a complete subgraph, not necessarily
maximal.) Thus (k, .e)-graphs are a natural generalization of split graphs [10],
which are precisely (l,l)-graphs. Since split graphs are chordal [10], many
basic optimization problems can be solved efficiently for them; they can also
be efficiently recognized [10]. When k or t' is greater than one, there are (k, t')-
graphs which are not perfect (and hence not chordal). Still, in [3], O((n+m)2)
recognition algorithms for (2,1)-, (1,2)-, and (2,2)-graphs, are given. Poly-
nomial algorithms for the recognition of these three classes of graphs also
follow from more general algorithms for 'sparse-dense partition problems' of
Feder et al. [4]. On the other hand, when k ~ 3 or t' ~ 3, recognizing (k, t')-
graphs is easily seen to be an NP-complete problem [2]. (For instance, the
class of (k, O)-graphs is precisely the class of k-colourable graphs.)

We focus on the case of chordal (k, t')-graphs, and give a forbidden subgraph
characterization, and a polynomial time recognition algorithm. Specifically,
we prove that a chordal graph is a (k, t')-graph if and only if it does not have
.e + 1 independent copies of Kk+l. (A set of subgraphs is independent if they
are pairwise disjoint and nonadjacent. )

A special case of this result, for chordal (2, l)-graphs, was first reported in [8].
An extended abstract of the present paper has also appeared in [6].

An alternate view of our result states that the maximum number of inde-
pendent Kr's in a chordal graph equals the minimum number of cliques that
meet all Kr's. In other words, if we denote by f(G, r) the maximum number

1 Partially supported by CNPq, PRONEX 107/97 , and CAPES-COFECUB.
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of independent copies of Kr in G, and by g(G, r) the minimum number of
cliques of G which meet all Kr of G, then we show that for chordal graphs
f(G, r) = g(G, r). (Note that when r = 1, f(G, r) is the independence num-
ber of G, and g(G, r) the clique covering number of G.) Our O(n(m + n))
algorithm identifies f(G, r) independent Kr's and the same number of cliques
that meet all Kr's.

Our recognition algorithm actually finds a minimum value of t' such that G
is a (k, t')-graph. The algorithm is more efficient when k = 1, i.e., when we
seek a partition into one independent set and a set of cliques. When both k
and t' are one, we specialize the algorithm to yield a new simple and efficient
recognizition algorithm for split graphs. (Note that in this case we need no
restriction to chordal graphs. ) The value of the algorithm is underscored by
the fact that it easily adapts to solve the list version of the split partition
problem- finding an extension of a given pre-assignment of some vertices to
the independent set, or clique. As a byproduct of the algorithm we also obtain
a forbidden subgraph characterization of when such an extension is possible.

Let G be a graph. If S, S' ç V(G), we denote by Ns(S') the neighbourhood
of S' in S, i.e., the set of vertices of S which are either in S' or adjacent to a
vertex of S'. Moreover, if Ns(S') # 0, then we say that S and S' are adjacent.

We shall write N s( v) instead of N s ( { v} ) ; note that this neighbourhood of v in
S contains v if v E S.

2 The Theorems

In this section we present our characterization of chordal ( k, t')-graphs in terms
of forbidden subgraphs. The following lemmas will be useful:

Lemma 1 Let C and C' be two cliques in a chordal graph G. Then some
vertex ofC' is adjacent to all the vertices ofNc(C').

Proof. We shall prove that, in fact, the neighborhoods of the vertices of
C' in C are linearly ordered by inclusion. Suppose that two distinct vertices
Vl, V2 E C' have incomparable neighborhoods in C, i.e. , that neither of the sets
NC(Vl), NC(V2) contains the other. Then there exist distinct vertices Ul, U2 E C
such that Ul is adjacent to Vl but not to V2, and U2 is adjacent to V2 but not to
Vl. This is impossible, since Ul, U2, V2, Vl would induce a chordless four-cycle.
The lemma follows by considering the vertex v E C' with maximal Nc(v). D

Lemma 2 Let C and K be two disjoint cliques of a chordal graph G. Then
there exists a clique C' with the following property: C' intersects K, and it

3



also intersects alI the cliques adjacent to K which are intersected by C .

Proof. Let L = Nc(K). By Lemma 1 some vertex of K is adjacent to every
vertex of L, and hence can be added to L to obtain a clique that intersects K ,
as well as alI the cliques of G intersected by L. Consider now a clique K' of G
which intersects C but is disjoint from L. It follows from the definition of L
that such a clique does not intersect K. We need to consider such a K' , if it
contains a vertex a adjacent to K. Let A denote the set of alI such vertices a,
i.e., vertices which are adjacent to K and belong to some clique intersecting
C but not L. We claim that each a E A is adjacent to alI vertices of L.
Indeed, if b E L is not adjacent to a, then there exist vertices c E C \ L, and
s, t E K (possibly s = t), such that b, c, a, s, t, b is a chordless cycle. Similarly,

we claim that any two a, a' E A are adjacent in G. Otherwise, there exist
vertices c, c' E C \ L (possibly c = c'), and s, s' E K (possibly s = s'), such

that a, c, c' , a', s', s, a is a chordless cycle in G. Thus, the set L U A induces a
clique, and Lemma 1 guarantees that there is a vertex u E K adjacent to alI
vertices of L U A. Now the clique induced by L U A U { u } intersects K, and,
by the definition of A, it also intersects alI the cliques intersected by C which
are adjacent to K. D

Note that the lemma also holds when C and K are not disjoint (with C' = C).

Lemma 3 Let C1, C2, ..., Cp be a collection of pairwise adjacent cliques in
a chordal graph G. Then there exists a clique C in G which intersects each

Ci,i=1,2,...,p.

Proof. The result easily follows when p ~ 2. Assume now p > 2. By induction,
there exists a clique C that intersects Ci for every i E {1, ...,p -1}. If C
intersects Cp, nothing remains to prove. Otherwise, apply Lemma 2 to C and

Cp.D

A simple necessary condition for a graph G to be a (k, f.)-graph is that it does
not contain f. + 1 independent Kk+l 's. Indeed, consider any partition of such a
G into k independent sets and f. cliques. Any Kk+l in G would have to contain
a vertex from one of the cliques in the partition, and hence from amongst any
(f. + 1) such Kk+l 's some two must intersect the same clique, and thus have
an edge joining them. (This means they were not independent. ) It turns out
that for chordal graphs the above condition is also sufficient. (Note that the
condition simply says that (f. + l)Kk+l is not an induced subgraph of G.) We
shall derive this fact from the following result:

Theorem 4 Let G be a chordal graph, and let r > 1 be an integer. Then
f(G, r) = g(G, r).
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It is clear that f(G, r) ~ g(G, r), for any G and any r ~ 1. In order to prove
the equality for chordal graphs, we proceed as follows:

Let G be a graph. Let us define Kr ( G) as the graph with a vertex correspond-
ing to each Kr in G, and two vertices adjacent in Kr(G) if and only if the
corresponding Kr's are not independent in G.

Lemma 5 For any graph G, f(G, r) is the independence number of Kr(G).
For a chordal graph G, g(G, r) is the clique covering number of Kr(G).

Proof. The first statement is obvious. The second statement follows from
the observation that we can modify any clique cover C of Kr(G), to construct
a collection of ( the same number of) cliques which meet alI Kr 's of G, by
applying Lemma 3 to each clique in C. D

Lemma 6 If G is chordal then Kr ( G) is also chordal.

Proof. Assume that W1, W2, ..., Wq, W1 (q ~ 4) is a chordless cycle in Kr(G).
This means that Wi and W j are consecutive in the cycle if and only if the
corresponding Kr's in G are adjacent. Consider a sequence of vertices of G
S = (Ul, Wl, U2, W2, ..., Uq, Wq) such that Ui, Wi E Wi, Ui is adjacent to the Kr

corresponding to Wi-l, and wi is adjacent to the Kr corresponding to Wi+l ,
for every i E {1, ..., q} (indices are taken circularly in the range 1. ..q). It is
clear that if i and j are non-consecutive indices, then the subsets { Ui, Wi} and
{ Uj, Wj} are non-adjacent. Occasionaly, it might occur that Ui = Wi or Wi =

Ui+l for some i, but these equalities cannot hold simultaneously. This means
that every vertex occurring in S appears at most twice, and two ocurrences of
a same vertex necessarily use consecutive positions in S. These observations
show that we can construct a cycle Co in G from S by removing repeated
ocurrences of vertices. This construction ensures that at least one vertex from
{ Ui, Wi} is taken, for every i E {1, ..., q }. Thus, Co contains at Ieast four
vertices. Moreover, Co is clearly a chordless cycle, a contradiction. D

Theorem 4 follows naturally from Lemmas 5 and 6.

Proof of Theorem 4. By Lemma 6 Kr ( G) is chordal, and therefore perfect.
Thus the independence number of Kr ( G) is equaI to its clique covering number .
Lemma 5 completes the proof. D

The characterization of chordal (k, l)-graphs by forbidden subgraphs follows
as a consequence of the previous theorem.

Theorem 7 A chordal graph is a ( k, l) -graph if and only if it does not contain
(l + l)Kk+l as an induced subgraph.
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Proof. We have shown that a chordal (k, t')-graph cannot contain t' + 1
independent copies of Kk+l, i.e., cannot contain (t' + l)Kk+l as an induced
subgraph. On the other hand, Theorem 4 implies that if a chordal graph G
does not contain t' + 1 independent copies of Kk+l, then g(G, k + 1) ~ t'. This
means that G contains t' cliques whose removalleaves a subgraph G' without
Kk+l. Since G is perfect, G' is k-colourable, whence G admits a partition into
k independent sets and t' cliques. D

3 The AIgorithms

Since k and t' are fixed, there are only polynomially many subgraphs of G with
(t' + l)(k + 1) vertices, and so Theorem 7 gives a polynomial time recognition
algorithm for chordal (k, t')-graphs. There are, however, more efficient algo-
rithms. The O(n(m + n)) algorithm we present below also provides us with a
second proof of Theorem 4.

We first review the standard greedy colouring algorithm for chordal graphs.
(Note that testing for the existence of a k-colouring is equivalent to recognizing
(k,O)-graphs.) Suppose the vertices of G are given in a perfect elimination
ordering 1,2, ..., n, [10]. The Reverse Greedy Algoríthm proceeds in the order
n, n -1, ...,2, 1, assigning to each vertex the least available colour. In other
words, to colour G by the colours Sl, S2, ..., we colour the vertex n by Sl, and
having coloured n, n -1, ..., i + 1, we colour i by Sd where d is the smallest
subscript such that no neighbour of i amongst i + 1, i + 2, ..., n has been
coloured Sd. Note that at this point i lies in a Kd, since it has a neighbour
of each of the colours Sl, S2, ..., Sd-l, which are mutually adjacent. (Any two
neighbours of i amongst i + 1, i + 2, ..., n are adjacent, since 1,2, ..., n is a
perfect elimination ordering. ) It follows that the Reverse Greedy Algorithm
delivers, in time O(m+n), both a minimum colouring and a maximum clique.

We are now ready to describe our algorithm. Let k > O be an integer. The
algorithm finds the minimum value of t' (possibly t' = 0) for which G is a

( k, t')-graph. We will be colouring the vertices of the input chordal graph G
by the colours Sl, S2, ..., Sk and Cl, C2, ..., Cl. Throughout the execution of the
algorithm, the vertices coloured by each Sd will form an independent set, and
the vertices coloured by each Ca will form a clique. We shall denote by Si the
set consisting of i, together with all vertices amongst 1,2, ..., i -1 coloured

Sl,S2, ..., Sk.

The following fact is easily obtained from these definitions, using the properties
of a perfect elimination ordering:

Lemma 8 If vertex i is adjacent to the first vertex j coloured by ca, and j < i,
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then i is adjacent to alI vertices x < i coloured by ca. D

The lemma will allow us to easily test whether or not a vertex i can be added
to the clique formed by vertices coloured by Ca .

Algorithm for the Recognition of Chordal (k, t')-Graphs

Assume G is a chordal graph with a perfect elimination ordering 1,2, ..., n.

.Colour the vertex 1 by Sl.

.Having coloured the vertices 1,2, ..., i -1 without using the colour Cl :
.remove the colours from 1,2, ..., i -1 and colour 1,2, ..., i by colours

Sl, S2, ..., Sk (using the Reverse Greedy Algorithm), if possible, or else
.keep the colouring of 1,2, ..., i -1, and colour i by Cl.

.Having coloured the vertices 1,2, ..., i -1 and having used the colours

Cl,C2,...,Ca:
.colour i by Cb, where b ::; a is the least subscript such that i is adjacent to

the first vertex coloured Cb, if such subscripts exists, or else
.remove the colours from the vertices of Si \ i and colour Si by colours

Sl, S2, ...Sk (using the Reverse Greedy Algorithm), if possible, or else
.keep the colouring of 1,2, ..., i -1, and colour i by Ca+l.

We set t' to be the largest value of a such that there is a vertex coloured ca,
or t' = O if alI vertices are coloured with Sl, S2, ..., Sk.

Since the work of the algorithm is dominated by the at most n applications
of the Reverse Greedy Algorithm, the time bound O(n(m + n)) follows. The
correctness will follow from the next proposition:

Proposition 9 If the algorithm uses colour Cp, then G contains an induced

pKk+l.

Proof: Let Va be the first vertex (in the perfect elimination ordering) using
the colour ca. The subgraph of G induced by Sva-l is k-coloured, but our
algorithm found it impossible to add Va so that SVa is still k-colourable. Thus
there exists a subgraph Xa isomorphic to Kk+l, containing Va and some k
vertices of Sva-l. It only remains to show that the subgraphs X1, X2, ...Xp
are independent. Suppose a vertex x from a subgraph Xa is adjacent or equal
to a vertex x' from a subgraph Xa' .Assume a < a' .

If x' ::; x, then from the fact that x' is adjacent or equal to va' , we conclude that
x is adjacent or equal to va' .Now Va and va' must be adjacent, since x::; Va
and x::; va' .This means that va' is adjacent to the first vertex coloured by ca,
contradicting the fact that our algorithm could not colour va' by ca.

Ifx' > x, then x' is seen to be adjacent or equal to Va by a similar argument. If
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x' ~ Va then Va' and Va must be adjacent, and Va' should have been coloured by
ca, as in the previous case. On the other hand, if x' > Va, then x' is adjacent
to the first vertex coloured ca. Thus our algorithm should have coloured x'
by ca, contradicting the fact that it was coloured by some Sd (in case x' is a
member of SVdl-l) or by Cd' (in case x' = Vd' ). D

Corol1ary 10 The following statements are equivalent:

1. The algorithm partitions G into k independent sets and f cliques
2. the graph G is a (k, f)-graph
3. the graph G does not contain an induced (f + l)Kk+l.

Proof: The implications 1 implies 2, and 2 implies 3 are obvious, and Propo-
sition 9 proves that 3 implies 1. D

Note that the equivalence of 1 and 2 proves the correctness of the algorithm,
while the equivalence of 1 and 3 provides us with a second proof of theorem
7.

We close this section by noting that the algorithm finds, for any k and chordal
graph G, the minimum value f such that G is a (k, f)-graph.

4 The Case of One Independent Set, Emphasizing Split Graphs

When k = 1, we can somewhat simplify the algorithm, since we do not need
the Reverse Greedy AIgorithm to test whether a vertex can be added to an

independent set, maintaining independence.

AIgorithm for the Recognition of Chordal (1, f)-Graphs

Assume G is a chordal graph with a perfect elimination ordering 1,2, ..., n.

.Colour the vertex 1 by Sl,

.and continue colouring vertices i = 2,3, ...by Sl as long as possible ( i has

no edges to 1,2, ..., i -1),
.and then colour the first j that cannot be so coloured by Cl.
.Having coloured the vertices 1,2, ..., i -1 using colours Sl, Cl, C2, ..., Ca,

.colour i by Cb, where b ~ a is the first subscript such that i is adjacent to
the first vertex coloured Cb, if such subscripts exists, or

.colour i by Sl if it is nonadjacent to alI vertices coloured Sl, or else

.colour i by Ca+l.

It is clear that this algorithm can be implemented to run in time O(m + n).
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The situation is simplest when k = f = 1, and in this case we don 't need to
explicitely assume chordality. (Split graphs are automatically chordal. ) Since
split graphs are of some interest [10,5], we restate the algorithm once more,
as it applies to the recognition of split graphs:

AIgorithm for the Recognition of Split Graphs

Assume G is any graph.

.Find a perfect elimination ordering 1,2, ..., n of G [10].

.Colour 1 by s, and continue colouring i = 2,3, ...by s as long as possible
(i is not adjacent to a previously coloured vertex), then introduce colour c
for the next vertex j .

.If alI of 1,2, ...i -1 have been coloured, and both colours s and c have
been used, then colour i by c if it is adjacent to the first vertex j coloured
by c; otherwise, colour i by s if it is nonadjacent to alI vertices previously
coloured by s.

If the algorithm fails because there is no perfect elimination ordering, then
the algorithm given in [10] exhibits an induced C4, C5, or Ck, k ~ 6. If it fails
to colour alI vertices, then according to Proposition 9, G contains an induced
2K2. Here is a short version of the proof, that will be used in a generalization
below:

If a vertex i is reached which cannot be coloured by s or by c, then i is
nonadjacent to the first vertex j coloured by c, and is adjacent to some vertex
k that was previously coloured by s. We claim that j and k cannot be adjacent.
If k < j, this follows from the properties of a perfect elimination ordering. If
k > j, then if k were adjacent to j the algorithm would have coloured it by c.

Vertex j was coloured by c because it was adjacent to a vertex f previously
coloured by s. Since f < j < i, and i,j are nonadjcent, f must be nonadjacent
to i. Addiditonally, the two vertices k, f are nonadjacent, as they are both
coloured by s. Thus i,j, k, f form an induced 2K2 in G.

Since each Ck, k :;::: 6 also contains an induced 2K2, we obtain the following
well known characterization of split graphs [10]:

Corollary 11 A graph G is a split graph if and only if it does not contain an
induced 2K2, C4 or C5. D
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5 Pre-colouring Extension

In [4] we introduced the notion of a list partition. In the context of split
graphs, it specializes to the following concept of a 'pre-colouring extension'.
(Pre-colouring extensions for ordinary colourings have been much studied in
the literature, cf. [1,7] .)

A pre-coloured gíaph G is a graph with some vertices coloured by either s or
c, so that every two vertices coloured c are adjacent in G, but no two vertices
coloured s are adjacent in G. A split extension of a pre-coloured graph G is a
partition of V ( G) into an independent set containing alI vertices coloured by
s, and a clique containing alI vertices coloured by c.

Consider the pre-coloured graph A consisting of three vertices a, a' , a" and two
edges aa', aa", with vertex a pre-coloured s. It is clear that A does not admit a
split extension, as the nonadjacent vertices a' and a" would both have to be in
the clique. Similarly, the pre-coloured graph B with three vertices b, b' , b" and
one edge b'b" in which b is pre-coloured c, does not admit a split extension.

Theorem 12 A pre-coloured gíaph G admits a split extension if and only if
it does not contain an induced 2K2, C4, C5, A, Oí B .

The proof follows again from the following modification of the above algo-
rithm:

Algorithm for Split Extension of Pre-coloured Graphs

.Proceed as above, obtaining a perfect elimination ordering 1,2, ..., n of G,
then colouring i = 1,2,3, ...by s as long as possible. Let j be the first
vertex where this is impossible. This may be because
.(as above) j is adjacent to a vertex previously coloured by s, but also

because
.j is adjacent to a vertex ( occuring later in the ordering) which was pre-

coloured by s, or also because
.j itself has been pre-coloured by c.
In alI these cases, colour j by c.

.In the general step, if alI of 1, 2, ...i -1 have been coloured, and both colours
s and c have been used, then
.colour i by c if i is adjacent to j and is not pre-coloured by s, or if i is

pre-coloured by c, otherwise
.colour i by s if i is nonadjacent to alI vertices coloured or pre-coloured by

s and is not pre-coloured by c, or if i is pre-coloured by s.

The modified algorithm is analyzed in the same way as the earlier algorithm.
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If it fails to find a perfect elimination ordering then G contains an induced
C4, C5, or 2K2. Otherwise, it only fails when a vertex i is reached which cannot
be coloured by s or by c. (Thus i is not pre-coloured. )

If i cannot be coloured by c because it is nonadjacent to the first vertex
j coloured by c, and cannot be coloured by s because it is adjacent to some
vertex k previously coloured by s, then, as above, j and k must be nonadjacent.

If j was coloured by c because it was adjacent to a vertex f previously coloured
by s, we conclude as above that i,j, k, f form an induced 2K2 in G. If j was
coloured by c because it was adjacent to a vertex f pre-coloured by s, then
f and k are still nonadjacent. If f is also nonadjacent to i, we have a 2K2 as
before. Otherwise we have an induced copy of A, with a = f, a' = j, a" = i.
Finally, if j was pre-coloured by c, then we have an induced copy of B, with
b = c, b' = i, b" = k.

If i cannot be coloured by c because it is nonadjacent to the first vertex j
coloured by c, but cannot be coloured by s because it is adjacent to some
vertex k pre-coloured by s, then k, i, j form a copy of A if j is adjacent to
k. Otherwise (j and k are nonadjacent), we argue about f as in the previous
case.

On the other hand, if i cannot be coloured by s because it is adjacent to a
vertex k previously coloured by s, but cannot be coloured by c because it is
nonadjacent to a vertex j pre-coloured by c, then we may assume that j > i,
otherwise the proof still applies. In this case j, k must not be adjacent, and so
j,i,k form a copy ofB.

Finally, if i is adjacent to a vertex k pre-coloured by s and nonadjacent to a
vertex j pre-coloured by c, then we have an induced A if j, k are adjacent, or
an induced B if j, k are nonadjacent. D
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