FastEqui-Partitioning of Rectangular
Domains using Stripe Decomposition

Wayne Martin'
February5, 1996

Abstract

This paper presents a fast algorithm that provides optimal or near optimal solutions to the
minimum perimeter problem on a redangular grid. The minimum perimeter problem is to
partition a grid of size MxN into P equal area regions while minimizing the total perimeter of
the regions. The approach taken here is to divide the grid into stripes that can be fill ed
completely with an integer number of regions. This griping method gves rise to a knapsack
integer program that can be dficiently solved by existing codes. The solution of the knapsack
problem is then used to generate the grid region assgnments. An implementation of the
algorithm partitioned a 10001000 gid into 1000 regions to a provably optimal solution in
lessthan one second. With sufficient memory to hold the MxN grid array, extremely large
minimum perimeter problems can be solved easily.

I ntroduction

The focus of the algorithm presented here is the Minimum Perimeter Equi-partition problem,
MPE(M, N, P). In this problem ore is to partition an MxN rectangular grid into P equal area
regions while minimizing the total perimeter of the partition. The one restriction d this algorithm is
that all regions must have the same area. The area of each regionis defined by A= MN/P so the
restriction is equivalent tB evenly dividingMN.

The minimum perimeter problem has several applications in paralld computer systems. In solving
partial differential equations numerically, a grid is partitioned among the available processors.
Using a five point numerical method each gid dement must comnmunicate with its North, East,
South, and West neighbors [DT91]. In assgning processors to the regions of the grid, one wants to
minimize the communication between the processors while ayualizing the number of grid dements
asdgned to each processor. This assgnment process is analogaus to the minimum perimeter
problem. Ancther area of application is in image processng and edge detection in computer vision
systems implemented on paralld hardware [Sch89]. Here again the rectangular image needs to
partitioned among the processors to minimize inter-processor communication.

In arder to calculate a lower bound for the minimum perimeter problem, Yackd and Meyer [YM92]
haveshown that the minimum perimeter of a single region with @éadeterminedy M*(A).

(1) " (A) =22VA[]

If the aentire grid could be tiled with shapes of the optimal perimeter without overlapping then an
optimal solution would be found. Because one cannd do any better than this optimal tiling, a lower
bound for the objective function of MPH(N, P) is given byz.

) z=PM"(A)

The minimum perimeter problem is a special case of the graph partitioning problem which is NP-
complete. MPE(M, N, P) can be formulated as a quadratic assgnment problem with MNP binary
variables and MN+P constraints. Details of this formulation are given in Christou and Meyer

* This reseach was partialy supported by the Air Force Office of Scientific Reseach
under grant F49620-94-1-0036, and by the NSF under G@Rt9306807.
t Computer ScienseDepartment, University of Wisconsin, Madison, Wisconsin 53706.

[CM95h. Unfortunately, the QAP approach quickly becomes unsolvable as the grid size becomes
moderately large.

The algorithm developed here takes an approach that considers the geometry of the problem. The
method breaks the total area into a series of completely fill ed stripes. For example, figure 1 shows
optimal striped solutions to MPE(7,7,7) and MPE(32,31,32). The MPE(7,7,7) solution consists of
threestripes: two o height 2 and ore of height 3. The MPE(32,31,32) solution has gripes of height
5 and 6. The motivation for the striping approach is twofold. First, in doserving the optimal
solutions produced by Christou and Meyer’s PERIX-GA method ((CM95a] and [CM95H]), most of
the optimal solutions exhibit a striped form. Second the proofs of lower bound convergence make
use of a stripe filli ng argument [CM95a]. Thus a stripe filli ng algarithm should be an &ff ective way
to solve the MPE problem.
|
.

-
L

Figure 1 - Optimal Solutions of MPE(7,7,7) and MPE(32,31,32)

The algorithm consists of three phases. First, the possble completely filled stripe heights and
correspondng perimeters are determined. The second phase is to solve a knapsack problem. The
final phase takes the results of the knapsack problem and generates the region assgnment grid. The
following three sections describe in detail each of these phases.

Phasel - Perimeter of the Regionswithin a Stripe of Height h;

Thefirst part of the processis to determine the heights of the stripes that can be fill ed with a whde
number of regions. Such heights will be termed “valid.” Given h; as a possble stripe height,

1< h < min{ A M}, the area of the entire strif, is calculated.

(3) q; = NhI

Next, the number of regions within the stripg,is determined.
=3

(4) p=

If the value of p is an integer then the stripe can be filled completedly and h; is declared valid.

Otherwise, this dripe height is no longer considered. Equation (4) can be rewritten using equation
(3) and the definition d A to get equation (5). This implies that if P/M (or equivalently N/A) is an

integer, all stripe heights will be valid. The condtion that N/A is an integer means that the number
of columns is a multiple of the area. Considering this geometrically it becomes obvious that all

stripe heights will fill completely when N/A is an integer. 1n any event, a height of min{A, M} will
always be a valid (though generally undesirable) stripe height.

a _N P

. = 1 =__h = —

(5) ===y h

Figure 2 shows a completdly filled stripe of height hy = 3, aalea A = 7, and N = 14. Applying

equations (3) and (4) gives= 42 andp; = 6.

I(N)|
g ________ EEREEREEEE
—
Figure 2

The width of the largest rectangle that will fit inside a region of Araad heighty is determinedy

OAD
6 = I
(6) W %E

The cdls of theregionthat are nat in the largest rectange are denated as the fringe. The number of
cells in the fringe is calculated as

(7) fi = A-hw.

For the exkamplein figure 2, w; = 2 and f; = 1. Also seen in figure 2 is that the pattern o the cell

shapes repeats itsdf every threeregions. At the boundary between the repeating patterns the border
is a vertical line and daes not cortain a step. To determine how often the pattern repeats, the
following calculations are performed. If fj = O then each regionis rectangular and repeats every one
region ¢ = 1). Forfj > 0 the repeat count;, is determined as

(8) = minét%‘ % integer, tle,...é,

Thefinal step isto calculate the total perimeter of all the regions in the stripe. The perimeter of the
outside of the stripe is smply 2(N + h;). The number of boundaries between regions within the
stripeis (pj - 1) of which (pi/rj - 1) are vertical lines of length h; and the remaining borders have a
step in them giving a length o (h;j + 1). Putting this all together gives the formula for the total
perimeter of the regions within the strigg,

0 D D
E Dri |:| |:| Dri ED E
®) 0 Op: (X
=2iN +p(h +1)- g
B Bl

Phasell - Construction and Solution of the Knapsack Problem
At the end d phase |, the algarithm has generated n stripe heights and their correspondng perimeters

(hj and ¢, i=1,...n). Phasell constructs a knapsack integer program to determine the combination

of stripe heights that will completdy fill the entire grid and produce the minimum total perimeter.
The value of x; represents how many stripes of height h; are in the optimal striped solution. The

knapsack pblem is formulated as follows.

n
minimize) ¢;X;
X 4

(20) subject to ih‘ X =M

X; 2 0,integer,i =1,...,n

Using the integrality of x and the fact that h,x; < M must hdd for each i, it is possble to define a
bound(b;) on thex; variables. This bound helps in finding the solution of the knapsack problem.

M O
GO
th O
Theorem 1 shows that the integer program in (10) always has a feasible solution and, since x is

bounded, (10) also has an optimal solution. This implies that when MN/P is an integer, the
MPE(M, N, P) problem has a feasible solution that is in striped form.

(11) X sh =

MN
Theorem 1 If 5 is an integer then the integer program in (10) has a feasible solution.

Prodf: Casel) M < A. Thiscaseistrivia since a feasible solution to (10) is one stripe of height
M which contains alP regions.

Case2) M > A. For this case, one stripe of height M is invalid since the equations for calculating ¢;
areonly for h, < A. By equation (5), a stripe height of A isvalid since p =%A= N isan integer.

A stripe of height A consists of N rectangular regions of width 1 and height A. To construct the

feasible solution, the majority of the grid will be fill ed with k stripes of height A where k = ?E

This will leave M'=M —KkA rows remaining to be filled with P'=P-kN regions. If
M’ =P' =0 then a feasible solution has been found: k stripes of height A. Otherwise it must be
shown that M’ is a valid stripe height. Equation (5) is used again to shov M’ is valid since,

_ P .., _ PM-kPA_PM -kMN
p=—M"= =
M M M

of k stripes of heighf and one stripe of heightl ' . |

The optimal solution to problem (10) is nat necessarily unique. An example of nonuniquenesscan
be found in the problem MPE(12,12,12). For this problem, solutions of threestripes of height four
and four stripes of height three are both optimal.

=P-kN isaninteger. Thus a feasible solution consists

Phaselll - Grid Assignment

The final phase of the algorithm is to take the solution d the knapsack problem and generate the
assgnment grid. For each x; of the solution vector nat zero, x; stripes of height h; are added to the
assgnment grid. The striping procedure follows that given in [CM95a]. Beow is the pseudo-code
for the grid assignment phase.

inputs N - Nunber of columms in grid,
A - Area of each region,
h - Array of stripe heights,
X - Solution of the knapsack probl em

n Nunmber of elenents in h and x.
output grid - Two di nensional array of the region assignnments.
begin assign_grid

toprow : =1
proc :=1
count := 0
for i :=1ton
for j :=1to x[i]
bottonrow : = toprow + h[i] - 1
for col :=1to N
for row := toprow to bottonrow
grid[row,col] := proc
count := count + 1
if (count = A) then
proc := proc + 1
count :=0
end if
end for
end for
toprow : = bottonrow + 1
end for
end for

end assign_grid

Program I mplementation

The implementation d this algorithm was coded in FORTRAN and was written as a callable
subroutine. The inputs to the subroutine are M, N, and P and the declared dmensions of the grid
array. The output is the minimum perimeter found and a two dmensional array of the grid
assignments.

The MSP (Minimum Striped Perimeter) subroutine makes use of three other subroutines which

correspond to the three phases described earlier. The first subroutine, GEN_STRIPES, generates
the valid stripe heights and correspondng perimeters. Initialy, stripe heights between hyjn and hypax

are corsidered (see (12)). If no walid heights are found between hyin and hpax, the range is
expanded t(i], min{ A, M}] .
(12) hin = 3VA and hy, =2/A

The second subroutine is KNAPSACK. It takes the stripe heights and perimeters generated in
GEN_STRIPES and solves the knapsack problem using Martelo and Toth's MTB2 routine
[MT90]. The MTB2 routine requires that the problem be formulated as a bounded maximization
problan as shown in (13).

n
maximize Z Y,
y &

n
(13) subject to Z hy, <K
=1

O<y, <h,y, integer,i =1,...,n

The MTB2 subroutine also requires that ¢, h, and b; al be positive integers. The following steps
are taken to put (10) into tlequiredform. First a variable substitution is made.

(14 Vi =hb =X
Substituting (1%into (10)and (11)and writing & a maximization problem yields

n n
maximizez GYi— Zciq
Yoo =3 =

n n
(19 subject to % hyy; = hiy -M
=1 =1
0<y, <b,y; integer,i =1,...,n
n
Dropping the constant term from the objective function and letting K = Z hb — M, problem (15)
i=1
is almost in the form required by MTB2. The only differenceis the strict equality constraint in (15)

versus theinequality in (13). Theorem 2 shows that for the data from the MPE problem, the optimal
solution of (13) will always satisfy the inequality constraint as an equality.

Theorem 2 An optimal solution to the integer program (13) must satisfy the inequdity constraint
as a strict equality when tleg h, andb; are generated by the MSP algorithm.

n n
Proof by contradiction: Assume thgt is optimal for (13) and thaE hy <K= Z hb -M.
i=1 i=1

n |:| n R
Define D = é hb - M %— Z hyy, . ObviouslyD>1. If D< A then it can be shown thatis a
=1 =1

valid stripe height. By equation (5)

P P Lo A = P . L . o
PD=VD:VEZWQ‘2HM %‘PZEVW(Q—M)—PZEM(Q—Yi)‘PWh'Ch'Sa”
=1 i=1 i=1 i=1
integer. Leti be the index such thét =D .

If D > A then in the proof of theorem 1 it was shown that a stripe heighisofalid so leti be the
index such thah; = A.

Define y, = y; for i#i and y; = yI +1. This y isfeasible because i was chosen based onthe

n n
value of D. Since ¢; =1 for all i, it follows that EC‘ v, > EC‘ y; , but this contradicts the
i=1 i=1
asumptionthat y* was optimal. Therefore the inequality constraint in (13) will always be satisfied
as an equality for any optimal solution . [|

The knapsack integer program (13) is passed to MTB2 to find the optimal solution. Once found,
substitution (14) is reversed and the optimal value z* of (10) is calculated from the optimal value z**
returned by MTB2. The value 7* is the total perimeter for the solution d the MPE(M, N, P)
problem.

(16) z=%cgh-z**
i=1

The third and final subroutineis GEN_GRID. This routine takes the solution d the KNAPSACK
routine and fill s in the asdgnment grid. A special option was added to the subroutine for extremey
large problems. If the dimensions of the asdgnment grid array are passed in as zeroes then this
routine is nat called. This was dore so that perimeters could be calculated for problems for which
the grid assignment array would not fit into memory.

Themain MSPsubroutine also has extra code to check the transverse of the problem. If the original
problem MPE(M, N, P) is nat solved to gptimality and M # N then the routine also solves MPE(N,
M, P). The better solution d the original and the transpose is passed to the GEN_GRID subroutine.
The GEN_GRID subroutine makes surethat the output grid isin the correct orientation regardlessof
whether the original or the transpose was used.

Computational Results

This sction presents the computational results of the presented algarithm. The program was tested
on a Sun SPARCstation-20 workstation. First, table 1 compares the striping algarithm devel oped
here (MSP with the genetic algarithm PERIX-GA [CM95H running on a cluster of 33
SPARCserver-20 computers. The times in the table all in seconds and the “Error” columns are the
percent error from the lower bound. The first observation is that the running times for MSP are
extremdy fast. Second the quality of the solutions from MSPare as goodas or better than PERIX-
GA in all cases except MPE(17,17,17). In this case PERIX-GA found an gptimal solution where
MSPdid not. This is because the optimal solution is not in a striped fomM$&could not find it.

Problem Lower PERIX-GA MSP

M N P Bound Err (%) Time Err (%) Time

7 7 7 84 0 196.1 0 0.01

13 13 13 208 0 227.8 0 0.01

17 17 17 306 0 268.6 0.65 0.01

32 31 256 2048 0 230.2 0 0.01
101 101 101 4242 0.05 219.1 0.05 0.04
200 200 200 11600 0 261.0 0 0.07
256 256 256 16384 0 105.1 0 0.09
512 512 512 47104 1.63 279.0 0.14 0.25
1000 | 1000| 1000| 1280000 0.45 1660.5 0 0.67
2001 | 2001| 2001 36018d - - 0.08 2.18

Table 1 - Comparison ISP and PERIX-GA

The next table compares MSP with PERIX-GA and two ather popular graph-partitioning methods,
the spectral bisection method and the geometric mesh partitioning method The Chaco package
version 2.0 was used for the spectral bisection method [HL95]. The geometric method was
implemented in MATLAB as described in Gilbert, Miller, and Teng [GMT95]. Both the spectral
bisection and the geometric mesh partitioning methods have the restriction that the number of regions
be a power of two. The tim@nd error values for these methods were taken [i[@v95b].

Problem Lower SPECTRAL GEOMETRIC PERIX-GA MSP
M N P || Bound || Err (%)| Time [[Err (%)| Time [Err (%)| Time | Err (%)| Time

32| 31| 8 368 6.52 1.8 5.43 43.6 2.17 84.0 1.09 0.01
32 | 31| 256 2048| 6.73 4.3 -2.73* 152.3 0 80.4 0 0.01
32 | 30| 64| 1024| 6.25 3.0 6.25 90.4 0 50.9 0 0.01
100| 100| 8 1136 9.33 9.0 7.36 | 111.0 2.64 81.9 5.63 0.04
128 | 128| 128 5888 14.13 85.5 7.13| 539.9 1.65 67.6 1.63 0.04
256 | 256| 256 16384 13.25 | 227.8 4.15 (3304.2 0 | 105.1 0 0.09
512| 512| 512 47104 - - - - 1.63 | 279.0 0.14 0.25

Table 2 - Comparison diISPto other methods

This table also shows that MSP is very fast compared to the other methods. It also produced
solutions that were as good @ better than the other methods with the exception & MPE(100,100,8)
for which PERIX-GA found a better solution which dd na have a striped form. The
MPE(32,31,256) problem presented some difficulties because the area, A=3231/256, is na an
integer. A modfication to the program was made to break the problem into two parts. Specifically
MPE(32,28,224) with area 4 and MPE(32,3,32) with area 3. Each o these subproblems were
solved separately then the assgnment grids where appended together. The asterisk on the geometric
partitioning result indcates that the solution found was unbalanced (i.e. some regions had area other
than 3 or 4).

The MSP program is also capable of handing wery large problems. One problem solved was
MPE(1000Q1000Q1000. The grid size for this problem is 108 dements and the area assgned to
each processor is 1°. The large grid array size exceaded the computer memory available, thus
phase lll of the algarithm (explicit generation d assgnments) could na be completed. Phases | and
Il were run in 0.22 seconds to calculate a perimeter which was within 0.042% of the lower bound.
The solution consisted of 23 stripes of height 320 and 8 stripes of height 330. Anather interesting
large problem solved was MPE(202022020220209. This problem was 2lved to within 0.006% of
the lower bound in 3.59 seconds. The solution had a nonttrivial striping configuration d: 3 stripes
of height 138, 3 stripes of height 140, 4 stripes of heightdd@® 127 stripes of height 148.

To seehow the algarithm performs over a wider set of problems, four sequences of problems were
run. The first sequence computed the percent from lower bound for MPE(N, N, N) for N from 5 to
100Q The graph o the bound error versus N is shown in graph 1. For this sequence the average
error from lower bound was 0.7%. Of the 996 poblems lved 32.6% were provably optimal and
71.4% had an error of lessthan 1%. As the theory in [CM95a] and [CM95l predicts, the aror
bound seems to be approaching zerd asreases.

7] | | |
i~ MPE(N, N, N)
67 0.7% average % error | |
1 32.6% at lower bound
= >] " 71.4% below 1% error| |
2 4,3t o
o 4] o,
S 1.0,
3T t”¢ IR N
S
5] 3 : 0;‘ .0 : 0 s®. e
108 22044 $ o0
e e
E”" +0%87003%0 ’{ $ PE 8
0]
0 100 200 300 400 500 600 700 800 900 1000

N
Graph 1 - Percent from lower bound verbu®r MPEN, N, N)

Graph 2 shows the sequence MPE(N,5N, N). This sequence tests how well the algorithm performs
on rarrow rectangular domains. Note that the same results would have been dbtained for MPE(5N,
N, N) because the program solves both the original problem and its transpose. The percentage of
solutions that are at the optimal lower bound is about the same as that for the MPE(N, N, N)
sequence. But the average percent error and the percent below 1% error are much better.

7] | | |
1 MPE(N, 5N, N)
6] 0.3% average % error | |
] 32.5% at lower bound
= S 1 95.1% below 1% error| |
S]
@ 47T
S]
m3T e
S
2 : L 2 R
] &
1

0 100 200 300 400 500 600 700 800 900 1000

Graph 2 - Percent from lower bound verbu®r MPEN, 5N, N)

Graph 3 is for the sequence MPE(N, N,10N) for N from 50 to 120000with an increment of 10. This
sequence tests the cases when the number of regions is large compared to the grid dmensions. The
percentage of solutions at the optimal lower bound has increased to almost 44%. But, as can be seen
from the graph, the percent error values are larger than the previous two sequences.

67 | | |
;’. MPE(N, N, 10N)
5 1 ” 0.6% average % error |—|
] PY 43.8% at lower bound
=4 lee o 73.9% below 1% error |
S] *®
o] *
EE i ¢ * ’Ao .
LE 1 o * ”’. P
S i * *e : 3: %o
1 *

0O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
N
Graph 3 - Percent from lower bound versuor MPEN, N, 10N)

10

Graph 4 is just the opposite of graph 3. This ows the sequence MPE(1ON,10N, N) in which the
number of regions is gnall compared to the grid size. Here only 12.7% of the solutions are at the
optimal lower bound, but the average error is lothian all the other sequences.

% Error Bounc

35

3

25

2

MPE(10N, 10N, N)

0.2% average % error | |

12.7% at lower bound

99.4% below 1% error | |

||H|||| Ll .

15

[

1

0.5

o

100

200

300

400

600

700

800

900

Graph 4 - Percent from lower bound versufor MPE(1ON, 10N, N)

1000

To determine the algorithm performance for image processng type applications, tables 3 and 4 were
generated. These tables how the percent from lower bound that MSP produced for grid sizes and
procesor numbers that are all a power of two. Table 3 is for square grids and table 4 is for
rectangular grids with proportions 2 to 1. For the square grids, processor numbers of 16, 64, and
256 were omitted because the solution is just the trivial solution d breaking the grid up into square
regions. For the same reason, columns 8, 32, 128 and 512 were omitted from the rectangular grid
results.Figure 3 shows a typical example of a power of two partitioning.

Grid Size Grid Size P
M N 8 32 128 512 M N 16 64 256 1024
32 32 217 | O 0 0 32 16| O 0 0 -
64 64| 1.09 217 0 0 64 32 217 | O 0 0
128 128| 1.65 0.54 1.63| O 128 64| 0.54 1.63| O 0
256 256| 1.37 0.82 0.14 1.63 256 128| 0.82 0.14 1.63| O
512 512| 1.52 0.41 0.41 0.14 512 256| 0.41 0.48 0.14 1.50
1024 | 1024| 1.59 048 | 0 0.41 1024 512| 0.48 0.10 0.41 0.03
2048 | 2048| 1.62 0.52 0.07| O 2048 | 1024 0.52 019| O 0.38
4096 | 4096| 1.64 0.53 0.10 0.02 4096 | 2048| 0.53 0.23 0.03| O
8192 | 8192 1.65 0.54 0.12 0.03 8192 | 4096| 0.54 0.25 0.05 0.03
16384 | 16384 1.64 0.55 0.13 0.08 16384 | 8192 0.55 0.27 0.06 0.05
32768 32762' 1.65 1.09 0.41 0.20 32768 | 16384] 0.54 0.27 0.10 0.03

Table 3 -Percent from lower bound for
square power of 2 grid sizes

11

Table 4 -Percent from lower bound for

rectangular power of 2rigl sizes

Figure 3 - MSP solution of MPE(512,512,128) within 0.41% of lower bound

12

Limitations

There are two main limitations to the MSP algarithm. The first is that it may nat give results as
goodas PERIX-GA when the best solution is nat in striped form (for example MPE(17,17,17) and
MPE(100,100,8)). The second limitation is that the algorithm canna be directly extended to non
rectangular domains or to problems where the area of each region is nortuniform. In some cases
though, nonuniform area problems can be dore if the problem can be split into two subproblems.
The two subproblems can be solved separately, then the results combined as in MPE(32,31,256)
described earlier.

Conclusions

This paper has presented an algorithm based on @timal stripe decomposition that provides very
good solutions to the Minimum Perimeter Equi-partition problem, MPE(M, N, P), on a rectangular
grid. This algorithm has proven to be extremely fast compared to aher graph partitioning methods
and can hande very large problems which are intractable for other methods. The algorithm also has
the property that as the problem size increaseda¥iationfrom the lower bound decreases.

Acknowledgments

I would like to thank I. Christou and R. Meyer for allowing me to use their test results for the
spectral and geometric mesh partitioning methods and for the PERIX-GA method | also thank R.
Meyer for his guidancand direction on this project.

Refer ences

[CM95a] I. T. Christou and R. R. Meyer, Optimal equi-partition d rectangular domains for
paralld computation, Technical report MPTR 9504, University of Wisconsin,
Madison, WI, Feb. 1995To appear idournal of Global Optimizatian

[CM95 I. T. Christou and R. R. Meyer, Optimal and asymptotically optimal equi-partition d
rectangular domains via stripe decomposition, Technical report MPTR 9519.,
University of Wisconsin, Madison, WNov. 19%.

[DT9]] R. DeLeore and M. A. Tork-Roth, Massvdy paralld solution d quadratic programs
via succesdve overdaxation, Technical report 1041, University of Wisconsin,
Madison,WI, 1991

[GMT95] J R. Gilbet, G. L. Miller, and S. H. Teng, Geometric mesh partitionng:
Implementation and experiments, Procealings of the 9th Internationd Symposium on
Parallel Processind1995) 418-427.

[HL95 B. Henderson and R Leland, The Chaco User’s Guide Version 20 (Sanda Natioral
Laboratories, 1995).

[MT9Q] S. Martdlo and P. Toth, Knapsack Problems: Algorithms and Computer
ImplementationgJohnWiley & Sons, 1990).

[Sch89] R. J. Schalkoff., Digital Image Processng and Computer Vision (John Wiley &
Sons, 1989).

[YM9Z] J. Yackd andR. R. Meyer, Minimum perimeter decomposition, Technical report 1078
University of Wisconsin, Madison, \W1992

13

