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Abstract: In line location problems the objective is to find a straight line which
minimizes the sum of distances, or the maximum distance, respectively to a given
set of existing facilities in the plane. These problems have been well solved. In
this paper we deal with restricted line location problems, i.e. we have given a
set in the plane where the line is not allowed to pass through. With the help
of a geometric duality we solve such problems for the vertical distance and then
extend these results to block norms and some of them even to arbitrary norms.
For all norms we give a finite candidate set for the optimal line.

1 Introduction

The problem of locating a straight line in the plane to approximate a given
point set is well known in location theory, statistics, and in computational geo-
metry and has applications in all three disciplines (see e.g. the surveys of
[NW82, RL87, LW86] and [KM93]). Given a set of Ex = {A;, Ag,..., Ay} of
existing facilities represented by points in the plane, we are looking for a straight
line minimizing the sum of weighted distances to the existing facilities, or the
maximum weighted distance to the existing facilities, respectively. This problem
has been well solved for various distance functions d (measuring the distance
d(Am,l) = minpeg d(An,, P) between an existing facility and a line). For the
rectangular distance d = [y, [MN83], [MTS83], and [Zem84] give efficient solution
approaches, and for d = [, is the Fuclidean distance, the problem is studied
among others in [MT83, MN80, KM90, LMWS88]. With block norms, [Sch96]
gives an efficient algorithm and general norms are discussed in [Sch98]. Practical
applications of line location problems include the planning of a new highway or



a railway close to some given cities, or the construction of conveyor belts, or
drainage-and irrigation ditches, see [MNS80].

If, however, a forbidden region R is introduced, where the line is not allowed to
pass through, e.g. R can be a lake, or a natural habitat, or some industrial area,
we have a restricted location problem. In classical facility location, problems
with restricted sets have been discussed by e.g. [HN95], but for line location this
problem has not been studied so far. (Problems where the line is forced to pass
through one given point have been discussed by [MN83].)

In this paper we formulate such restricted line location problems and give some
structural results and algorithmic approaches. In our discussion we do not restrict
ourselves to some special norms, but most of our results are true, if the distance
measure is derived from any norm.

The paper is organized in the following way. In the next section we give a formal
definition of restricted line location problems and we also repeat some known
results for the unrestricted case and introduce some results about piecewise linear
problems. Section 3 introduces a geometric duality and solves restricted line
location problems for the vertical distance, both for the sum and the maximum
objective function. In Sections 4 and 5 the results of Section 3 will be generalized
first to block norms and then to all distances derived from norms. Possible
extensions are given in Section 6.

2 Problem description and basic concepts

2.1 Locating lines in the plane

Formally, the problem of locating a line in the plane can be stated as follows.
Given an index set M = {1,2,..., M} and for all m € M an existing facility
Ap = (am1, Gm2) € IR? with nonnegative weight w,, > 0, find a line [ such that

f( =2 wnd(Ay,1)

meM

is minimized (then [ is called a median line) or such that

g(l) = max Wy d(Am, 1)

is minimized, respectively (then [ is called a center line). The set of optimal lines
is usually denoted by L£*. Here

d(A,l) = min d(A, P)

gives the distance between any point A € IR? and a straight line [ C IR®. In
the following we will use the 5-position classification scheme which has been de-

velopped in [HN96, HNS96]. The problems described above are in this scheme



classified as 11/IR?/- /d/ 3" and 11/IR?/ - /d/ max, respectively, meaning in short,
that we want to locate one line (17) in the plane (IR*) with no special assumptions
(+) using the distance measure d and minimizing the sum of distances f between
the existing facilities and the line (}°), or the maximum distance g (max), re-
spectively.

As mentioned in the introduction these problems have been well solved. The
main result for the median problem 1//IR*/ - /d/ ¥ is that there always exists a
line passing through at least two of the existing facilities. This was first proved
for Fuclidean and rectangular distances by [MN80, MT83] and recently shown
by [Sch98] for all distances derived from norms. For d = [y is the Euclidean
distance, [KM93] (see also [KM93]) showed the sharper result that all optimal
lines are passing through at least two of the existing facilities. This is not true
for all norms, see the counterexample given in [MS97]. For the center problem
with an arbitrary norm v as distance measure (1//IR?/ - /4/max), there exists
an optimal line which is at maximum distance from at least three of the existing
facilities, see also [Sch98]. As we need to refer to that result later on, we formulate
it as our first theorem.

Theorem 1 For all distances derived from norms the following holds.

For the median problem there exists an optimal line passing through two of
the existing facilities.

For the center problem there exists an optimal line which is al maximum dis-
tance from three of the existing facililies.

Now suppose there is an area in the plane (a restricted set R) where no line is
allowed to pass through. Then the two restricted line location problems can be
written as

min f(/) or min g(!)
s, INint(R) =10 s.t. INint(R) =0, respectively.

In the classification scheme these restricted problems are given by 1//IR*/R/d/ 3"
and 1//IR?/ R/d/ max, respectively.
The following notation will also be used throughout the paper.

ls,b = {X = (:L'l,:t:g) cR*: To = sx1 + b}

denotes a non-vertical line with slope s and intercept b. For a set R C IR* let R
denote the boundary of R, int(R) the interior of R, conv(R) denotes the convex
hull, and ext(R) the set of extreme points of R, which may be empty.



2.2 Piecewise linear convex problems

For solving restricted line location problems we will use the theory of piecewise
linear convex problems with restrictions developped in [HN95] for classical loca-
tion problems and extended in [NS97] to general piecewise linear convex problems.
Suppose we have given a set of lines or line segments K = {hy,h1,...,h,} which
partitions the plane into cells (K is called the set of construction lines) and a
convex function f which is linear on each cell. To minimize f the theory of linear
programming shows that there always exists an extreme point v of a cell which
is optimal. Introducing a restricted set R, the problem to consider now is

(ROL) min f(z) s.t. x & int(R).

Then one can use the geometric properties of the level sets L<(t) = {z : f(z) <t}
and level curves L<(t) = {z : f(z) =t} of [ to show the following three results,
which will be needed in the next sections. Let A denote the set of all optimal
solutions of the unrestricted problem and &X' the set of all optimal solutions of
(ROL). Since f is convex, the following result holds.

Theorem 2 [f X* C int(R) we have X}, C IR, i.e. all optimal solutions of the
restricted problem are contained in the boundary of R.

For convex sets we also know the following (see Theorem 6 in [NS97]).

Theorem 3 Let R C IR? be conver and X* C int(R). Then there exists an
optimal solution x5, € X7 such thal 2% is a zero-dimensional intersection between
the boundary OR and a construction line h € K, i.e. there exisls an optimal
solution x3, in the finile set of points

Cand ={hNOR:h € K and dim(hNJR) = 0}.

If R is not convex, but a simple polygon, we use the following result (see Lemma

8 in [NS97]).

Theorem 4 Let the restricted set R be a simple polygon and let X* C int(R).
Then there exists an oplimal solulion x5 such that v € Candpoiygon, where

Candyorygon = Cand U {x : x is a reflexive vertex of R}.

3 A geometric duality to solve restricted prob-
lems with vertical distance

In this section we are concerned with the vertical distance d,... The vertical
distance between a point A = (ay, a;) and a non-vertical line [ = [, is given by
the length of the vertical line segment between A and [ and can be calculated by

dyer (A1) = |ars — az + b|.
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If [ is a vertical line, then d,..(A,[) = co, meaning that a vertical line can never
be optimal unless all existing facilities have the same first coordiante a,,; = a for
all m € M, but that case is trivial and will therefore be neglected. Summarizing
this, the objective function of the median and the center problem (1//IR*/-/d,c, /")
is given by
fllsp) = E Wy |@m18 — @z + b| and
meM
g(lsp) = nr?EaMX Wy |@m18 — ama + b|, respectively.

Note that both functions are convex in the two variables s, b.

Now consider the following transformation T' (already introduced in [Sch97] )
mapping points to non-vertical lines and vice versa. Let A = (ay,az) be a point
and /s, a non-vertical line.

T(A) = l_ 40 ={(s,0):b=—a15+ az}
T(lsp) = (s,b)

The space of the transformed points and lines will be called the dual space
throughout that paper. It can easily be checked that the transformation keeps
the vertical distance between points and lines, as the following lemma states.

Lemma 1 Let A be a point and [ be a line. Then we have
dyer (A1) = dyer (T'(1), T(A)),

espectally we have A €l < T(l) € T(A).

Therefore we conclude the following theorem.

Theorem 5 The problem of locating a line minimizing the sum (the mazimum)
of weighted vertical distances lo a given set of points {Ay, A, ..., Am} is equi-
valent to the problem of locating a point minimizing the sum (the mazimum) of
vertical distances to a given set of lines {T (A1), T(Az),...,T(Am)}, i.e.

1U/IR?/ - [dyer | S is equivalent to 1/IR?/Ex = {T(Ay),...,T(Ap)}/dver | S and
1/IR?/ - [dyer | max is equivalent to 1/IR*/Ex = {T(Ay),...,T(Ay)}/dyer | max.

Other transformations mapping points to lines and lines to points are often used
in projective geometry, similar transformations to the one given above which also
transform points to lines and vice versa and which are keeping the distances can

be found in [Ede87, SA95, CP95] and in [KA97].

Consider a location problem with the following five existing facilities Ay = (1, —1),
Ay = (=1,1), A5 = (-1,2), Ay = (0,1), and A5 = (—=1,—1). Then Figure 1
shows the sel of existing facilities and the unique oplimal lines [, for the median
problem and [*_  for the center problem, respectively (which are parallel in this
example). The transformed existing facilities L,, = T(Ay),m =1,...,5 and the

optimal solutions X, and X in dual space are shown in Figures 2 and 5.
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Figure 1: An example with five existing facilities and the unique optimal solutions for the

median and the center problem

3.1 The median problem

Consider the set of lines K™ := {L,, = T(A,) : m € M} which partitions
the dual IR? into cells, see Figure 2. On each cell, for all m € M, no sign of
(@18 — a2 +b) changes such that the objective function f of HU/IR?/ - [dyer | 3 is
linear on each cell. As f also is convex we have a piecewise linear convex problem
(see Section 2.2). We therefore know that there exists an optimal solution which
is an extreme point V' of a cell. As all cell-vertices lie on at least two different
lines T'(A,,), T(Ar) € K™ we conclude that the line T~!(V) in the original space
passes through the two points A,, and A; — a short proof for the fact that there
always exists an optimal line for 1//IR?/ - /d,.,/ 3 passing through at least two
of the existing facilities.

In dual space we can use the theory introduced in Section 2.2 to solve a large class
of restricted problems. The following result follows immediately from Theorem

3.

Theorem 6 Let RT be a convex forbidden set in dual space. Then there exists
an optimal solution X3, in dual space, such thal

o cither X3 also is an optimal solution for the unrestricted problem,
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Figure 2: Construction lines and optimal solution for the median problem in dual space.

Xn € Cand={X: X € 0R" N T(A,,) for one m € M},

where no one-dimensional intersections have to be considered.

For convex forbidden sets RT this means that we only have to investigate the
intersection points between all lines T'(A,,) € K with the boundary of the re-
stricted set RT, yielding an efficient geometric approach to solve the restricted
problem.

To solve the restricted line location problem in primal space we now proceed as
follows. We transform the original problem and the restricted set R to dual space,
where

RT :=T(R)={X : T7'(X)N R # 0}

is the set of all points in dual space corresponding to lines which intersect the
forbidden region R in the original space. For this transformation of R to dual
space, we have the following easy property, already mentioned in [KA97] and
[SA95] for a similar dual transformation.

Lemma 2 Let R be conver. Then X € ORT if and only if T='(X) touches R.



Two more properties are necessary:

Lemma 3 Let R C IR®. Then we have the following:
1. If R is connected, then T(R) = T'(conv(R)).

2. T(R) is convex if and only if |R| = 1 or there is a vertical line contained
in conv(R) or R is a vertical line segment.

Proof:

ad 1. This follows from the fact, that a line [ meets a connected set R if and
only if [ meets conv(R), see e.g. [SA95].

ad 2. If R consists only of one point P then T'(R) = T'(P) is a (convex) line and
if all non-vertical lines intersect R then T'(R) is the whole dual space. If

R is a vertical line segment with endpoints X and Y we have that T'(R) is
the (convex) strip between the parallel lines 7'(X) and T'(Y).

For the other direction, first suppose there exist two points X = (x4, ),
Y = (y1,y2) € R with 2; < y;. Now take any non-vertical line | = [,
not intersecting R and choose a point P = (p1,p2) € | with 21 < p; < y1.
Consider the two lines /; through X and P and [ through Y and P. For
the slopes s; and sy of these lines we have s; > 0 and s; < 0. All three
lines intersect in P, i.e. T'(1),T(ly), and T'(l3) all lie on the line T'(P) (see
Lemma 1) and furthermore sy < s < sy, such that [ is a convex combination
of Iy and ly. As T'(I) € T(R), but T'(l;),T(lz) € R we have that R is not

convex.

Now suppose that R is contained in a vertical line. As R is not a line
segment, we find two points Xy = (z,by), X3 = (z,b;) € R and some point
Y = (2,b) € R in between X; and X, i.e. without restriction by < b < by.
That means, the horizontal line through Y is a convex combination between
the horizontal lines through X; and X;, but does not intersect R.

QED

With Lemma 2, our original problem is equivalent to the following problem in
dual space

min f(X) sit. X ¢ int(RT),

which is a version of (ROL) and is therefore easily solvable for convex sets RT.
Unfortunately, according to Lemma 3 we have that for all two-dimensional sets
R the transformed set RT never is convex, if there is any feasible line for the
original problem, such that a simple enumeration of a candidate set as mentioned
in Theorem 6 does not solve the restricted line location problem. But we can
conclude the following.



Theorem 7 If no optimal line for the unrestricted problem is feasible for the
restricted problem then any line solving the restricted problem 11/IR?*/R/dye, | 3

is a tangent to R.

Proof: In dual space we conclude from Theorem 2 that all optimal solutions lie

on the boundary of T'(R). If R is convex, we directly apply Lemma 2 and get the
result. If R is not convex, we look at conv(R) according to Lemma 3 and get an
optimal solution, which is a tangent to conv(R), and therefore also to R.

QED

For arbitrary restricted sets R there are infinitely many tangents which have to
be considered to solve the restricted problem. For polygone sets, however, there
exists a finite candidate set for the optimal solution of the restricted problem.

For this we need the following lemma, which is illustrated in Figure 3.
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Figure 3: Transformation of a triangle to dual space.

Lemma 4 Let R be a simple polygon. Then T(R) is a non-convex (non-finite)

polygon in dual space and the following hold:

1. (s,b) is a vertex of T(R) if and only if lsp contains a non-vertical facet of

conv(R)



2.V is a vertex of conv(R) if and only if T(V) contains a non-vertical facet
of T(R).

Proof: Using Lemma 2 we only have to check the tangents of R. Exactly those
dual points corresponding to tangents passing through a vertex V' of R lie on the
line (V') (see Lemma 1) and therefore form an edge of T'(R), and as each facet
of R contains two vertices we conclude that exactly those lines [ containing an
edge of conv(R) correspond to points on two edges of T'(R), i.e. to the vertices
of T(R).

QED

The situation of the following theorem in dual space is illustrated in Figure 4.
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Figure 4: The restricted set in dual space. The candidate points are marked by stars.

Theorem 8 Let R be a simple polygon. For the restricted problem 11/IR*/R =
Polygon/d,..| Y. we have:

o Kither an optimal line for the unrestricted problem is feasible

o or there exists an optimal line for the restricted problem which is a facet of
R or which passes through one of the existing facilities and a vertex of R,
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i.e. there exists a line | € Candp,, where

Candpyy, = {linesl:1is a facel of R}
U {lines [: there exist m € M,V € ext(R): A,,,V € l}.

Proof: Using Lemma 3 we transform conv(R) to dual space and apply Theorem
4. Therefore we know that there exists an optimal solution X, which is

e cither an intersection point between a construction line T'(A,,) and 9T(R),
in this case the line T~'(X) touches R (see Lemma 2) and contains A,,
(see Lemma 1)

e or an inner vertex of T'(R), in this case the line T~'(X) is a facet of conv(R)
(see Lemma 4).

QED

Note that for d,., it also is possible to calculate the set of all optimal solutions
of the restricted problem A% by the following formula. If t;; = f([};) denotes the
objective value of the restricted problem then the set of optimal solutions in dual
space is given by the intersection of the level set L<(1}) and the boundary of the
transformed restricted set, i.e. Xg = L<(15)NOT(R), which corresponds to a set
of tangents in primal space.

3.2 The unweighted center problem

For the center problem we use the same theory as for the median problem as g
also is piecewise linear and convex. Only the cell structure differs. Let us call U
and L the upper and the lower envelope of the set of lines {T'(Ay),...,T(Am)}
and define the mid-line as

M = X dyer (X, U) = dyer (X, L) = g(T7H(X))}.

Note that AM is piecewise linear with breakpoints whose first coordinates coin-
cide with the first coordinates of the breakpoints of I/ and L. Let us furthermore
denote by Hy, the set of all first coordinates of breakpoints of L. and analogously
let Hy be the set of first coordinates of breakpoints of /. Then we define the
following two sets of halflines:

hlz ={X = (z,23) : X lies above A4} for all z € Hj,
hY ={X = (z,22) : X lies below hpsq} for all z € Hy

We now define the construction lines for the unweighted center problem as

Keem = {pM pl R 2 € Hi, 2o € Ha )

z1? "Tzg?

11
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Figure 5: Construction lines and optimal solution for the center problem in dual space.

Notice that g is linear on the cells which are defined by them (see Figure 5).
Again we transform the restricted center problem to dual space and then know
from Lemma 2, that it is equivalent to

min g(X) st. X d int(RT),

where the objective g(X) is interpreted as the maximum distance from point X
to the set of lines {T'(A,,) : m € M}. For solving the unrestricted problem
we again know that there exists an optimal solution V' which is a vertex of a
cell, that means in our case V € hM* and the corresponding line T-4(V) is at
maximum distance from at least three existing facilities according to Lemma 1.
For the following we also note that for all points X € h for any h € K" we have
that the line 77'(X) is at maximum distance from at least two of the existing
facilities. From this fact and from Theorems 2, 3, 4, and Lemmas 2, 3, and 4 we
conclude — as for the median problem — our next results.

Theorem 9 Let RT be a convex forbidden set in dual space. Then there exists
an optimal solution X% in dual space, such that

o cither T7Y(X}) also is an optimal solution for the unresiricted problem,

12



Xp€Cand={X : X € dR" N h for one h € K"},

where no one-dimensional intersections have to be considered.

Theorem 10 If no optimal line for the unrestricted problem is feasible for the re-
stricted problem then any line solving the restricted unweighted problem 11/IR*/ R, w,, =
1/dyer / max is a tangent to R.

Theorem 11 Let R be a simple polygon. For the restricted problem 11/IR*/R =
Polygon,w,, = 1/d,., / max we then have:

o Kither an optimal line for the unrestricted problem is feasible

o or there exists an optimal line for the restricted problem which is a facet of
R or which passes through a vertex of R and is at mazimum distance from
two of the existing facilities, i.e. there exists a line | € Candp,,, where

Candpyy, = {linesl:1is a facet of R}
U {lines [: there exist mqy,my € M,V € ext(R) :
Vel and g(l) = wpidyer (A s 1) = Wy dyer (A, 1)}

4 Generalization to block norms

The main advantage of the vertical distance is, that the unrestricted line location
problems are convex. That does not hold any more for block norm distances,
even for [; the convexity is lost. For block norm distances, however, an easy
separation argument helps to solve the problem. In the following two sections we
therefore need one more definition, already introduced in [Sch96] and [Sch98].
Let ¢t € IR? be a given direction. For X € IR? and a line [ C IR* we define the
t—distance between X and [ as

de( X, 1) := min{|A| : X + At € [},

where min () := oo.

Note that for ey is the second unit vector of IR* we get d., = dye-. For all
other directions ¢ # e, the corresponding location problems 1//IR*/R/d;/- can be
solved by rotating the existing facilities and the forbidden region (if there is any)
such that the problem is transformed to the corresponding problem with vertical
distance.

Now, if B is a compact, convex polytope with nonempty interior and extreme
points

e:z:t(B) = {bl,bg, Ce ,bG, —bl, —bg, ey —bG}, bz & RQ,i = 1, .. .,G,

13



we see that yg(x) := min{|\| : € AB} is a block norm with unit ball B and
can be expressed by

G G
ve(X) = min{z Al X = Z Agby}
g=1 g=1

The following LLemma has been proved in [Sch96] and is simply based on the fact,
that a polygon touches a line in at least one of its extreme points.

Lemma 5 Let dg be derived from a block norm vyg. Then

dB(X, l) = g:I%i.{l,Gdbg()Q l)
As a consequence we can solve line location problems with block norm distances
by solving the problem for all fundamental directions by, b, . .. bg (by transforming
these problems to d,., as mentioned above) and then taking the best of these
solutions. For a restricted simple polygon R we therefore can generalize the
results of Theorems 8 and 11 to block norm distances dg.

Theorem 12 Let R be a simple polygon. For the restricted problems 11/IR*/ R =
Polygon/dg /- we have:

o Kither an optimal line for one of the corresponding unrestricted problems
U/IR?/ - [dy,[-, g = 1,...,G, is feasible and oplimal for the restricled

problem or

e for the median problem there exists an oplimal line for the restricted
problem which is a facet of R or which passes through one of the ex-
isting facilities and a vertexr of R.

for the center problem there exists an optimal line for the restricted
problem which is a facel of R or which is at mazimum distance from
two of the existing facilities and passes through a vertex of R.

One thing should be emphasized here. It can happen that an optimal line for the
restricted problem is neither optimal for the unrestricted problem nor a tangent
to the restricted set R, i.e. Theorem 7 does not hold for block norm distances,
as the following example demonstrates.

We use the sel of existing facilities shown in Figure 1 and the distance function
d, derived from the following block norm

3
Y(X) = §|l’1| + |22], X = (21, z9)

14
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Figure 6: Optimal solution I} of a restricted problem (with block norm distance) which is

neither optimal for the unrestricted case nor a tangent.

with extreme points by = (0,1) and by = (2,0). Then the optimal solution I* for
the unrestricted problem 11/IR?*/ - /d., | ¥ is the same as for the problem with ver-
tical distance d,e, = dp,. With the triangle introduced in Figure 3 as restriction,
I* is forbidden and one oplimal solution 5, (also minimizing dp,.) is shown in
Figure 6. This line is not optimal for the unrestricted case, nor is a tangent to

the restricted set R.

So, in general, it is necessary to determine all optimal solutions of the unrestricted
problems for each fundamental direction dj,,...,ds, to check if any of these
optimal solutions is also feasible in the restricted case. As a consequence one
easily can determine the whole set of optimizers for 1//IR*/R = Polygon/dy/-.
That this can be relaxed will be shown in the next section.

5 Generalization to arbitrary norms

According to Minkovsky ([Min67]) we define a norm by its unit ball. Let B be a
convex, compact set in the plane which contains the origin in its interior and is
symmetric with respect to the origin. Then yg(z) := min{|A| : + € AB} defines a
norm and d(X,Y) = v(Y — X) is the corresponding distance. In the classification
scheme a v in position 4 indicates that we are concerned with an arbitrary norm.

15



Lemma 6 Let d be a distance derived from a norm ~ and let [ be a line with
slope s . Then there exists t = t(s) € IR® (only dependent on the slope s of the
line) such that for all t' € IR?

d(A,1) = dy(A,1) < du(A,1) for all A€ TR

Proof: The proof is omitted. It is given in [Sch98]. It uses the fact, that the unit
ball B will touch all parallel lines [ in the same direction ¢ from the origin to the
touching point.

QED

As any point on the unit ball might touch the optimal line, the only straightfor-
ward conclusion is that the optimal line for the restricted problem either is an
optimal solution for one of the (infinitely many) problems 1//IR?*/ - /d;/- for all
t € IR? or the optimal line is a tangent to the restricted set R. Algorithmically
this certainly is not very helpful, but with the following lemma (holding for ver-
tical distance d,.,) it is possible to derive a finite candidate set also for arbitrary
norms.

Lemma 7 Let R be a connected set and let L* be the set of optimal lines for the
unrestricted problem with vertical distance 11/IR?*/ - [dyer/ Y. Moreover suppose
that there are lines in L* which intersect int(R) and lines in L* which are feasible
for the restricted problem. Then there exists a line [ € L*, which is also feasible
for the restricted problem 11/IR*/R/d,., /- and which is a tangent to R and

for the median problem which passes through one of the existing facilities.

for the center problem which is at maximum distance from two of the existing
facilities.

Proof: Both sets T(£*) N T(int(R)) and T(L*) N T(IR? \ int(R)) are non-empty.
As T(R) and T(L*) both are connected and have no wholes, their boundaries
intersect in a point X, corresponding to a line I = T~'(X). (For this proof let
the boundary OR of a one-dimensional set R be defined as the set R itself.) As
X € 0T(R), the line [ is a tangent to R according to Theorem 7. Furthermore,
any point Y € 9T(L*) is contained in at least one construction line such that for
the median problem there exists m € M with X € T(A,,) which according to
Lemma 1 means A,, € [, and for the center problem [/ is at maximum distance
from two of the existing facilities.

QED

Theorem 13 Let R be a simple polygon. For the restricted problems 11/IR*/ R =
Polygon/~/- there exisls an optimal line which
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for the median problem is a facet of R or which passes through one of the
existing facilities and a vertex of R or which passes through two of the
existing facilities.

for the center problem is a facet of R or which is at mazimum distance from
two of the existing facilities and passes through a vertex of R or which is at
maximum distance from three of the existing facilities.

Proof: We prove the result for the median objective function. Let d, be the dis-
tance derived from v. Now suppose there is an optimal line [* for the restricted
problem 11/IR*/R = Polygon/v/ Y. that does not fulfill one of the above prop-
erties. Choose ¢ € IR? such that d.(A,*) = d;(A,1*) for all A € IR* according to
Lemma 6. Consider now the same location problem but with distance d; instead
of d,, i.e. 11/IR*/R = Polygon/d;/ 3. Let us denote by L the set of optimal
solutions for the unrestricted problem with distance dy, i.e. for 11/IR*/ - /d;/ 3.
Now we choose a line [° by considering three cases. Note that Theorem 8 and
Lemma 7 hold not only for d,.,., but also for d; by rotation.

— If all lines I € L7 do intersect int(R) we know from Theorem 8
that there exists a line [° which is optimal for the restricted problem
11/IR*/ R = Polygon/d;/ 5" and passes through an existing facility and
a vertex of R or which is a facet of R.

— If no line [ € L does intersect int(R) then all optimal lines for the
unrestricted problem are also feasible for the restricted case. According
to Theorem 1 (for distances d;) we take an optimal line {° passing
through two of the existing facilities.

— If there exists a line in £} which intersects int(R) and there also exists
a line in £ which does not intersect int( R) we conclude from Lemma 7
that there exists a feasible line [® € L} for the restricted problem which
passes through one of the existing facilities and a vertex of R.

For the new line {° we see from Lemma 6 that d,(A,[°) = mingcge duv(A,1°) <
d;(A,1°) for all A € IR?. In summary we estimate the objective value of {°.

) = 2 wndy (A, %)

meM

= Z wmdt(Am,l*)

meM

2 E wmdt(Amvlo)
meM

> Z wmd’Y(Amvlo) = f(l0)7

meM

such that [° also is optimal for the restricted problem and fulfills one of the above
properties.
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6 Extensions

First we give some extensions to other types of restrictions which can easily be
solved by the theory developed in this paper.

e Suppose we have given two or more simple polygons Ry, Ra, ..., Rx through
which the line is not allowed to pass. Then we transform all R; to dual
space and get

RT =T(R)UT(Ry)U...T(RK)
as a restricted set which consists of one or more connected polygone com-
ponents. If all optimal solutions X'* in dual space are forbidden then there
exists a connected component R® of RT such that X* C R® (as X* is a
convex set). This means we can replace RT bei R and solve the problem
which exactly yields Theorems 12 and 13 (with R is the union of all single
forbidden sets Ry.)

e Now consider a polygon F' which must be met by the line facility (e.g. a new
railway line must pass through some specified region round an industrial
area or round a town). Note that this is not the same as a restricted set
R = IR*\ F'. But, again, we look at the dual version of this problem and note
that in dual space we have a restricted set R = IR*\ T'(F) which consists of
two disjoint, convex connected components R; and R;. As before we can
replace R either by R; or by Ry, and as both sets are convex we get that
there exists an optimal line

for the median problem which passes through one of the existing facil-
ities and a vertex of F' or which passes through two of the existing
facilities.

for the center problem which is at maximum distance from two of the
existing facilities and passes through a vertex of F' or which is at
maximum distance from three of the existing facilities.

o Aslast example we assume that K polygons Fy, Fy, ..., Fx must be met by
the new facility and finally get again a result as Theorems 12 and 13 with
R is the union of the sets Fj.

Another straightforward extension is to allow weights w,, also for the center
problem. The same methods can be applied in this case, since the weighted
center function also is piecewise linear and convex. Only the cell structure differs
from the unweighted case. The extension to more dimensions and the algorithmic
implementation of the described procedures in [HKM™] are under research at the
moment.
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