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Abstract: We analyze in this paper the performance of TCP/IP-like congestion
control in the presence of random losses. The input rate in the control scheme that
we consider has a linear growth rate; whenever a loss occurs, the input rate is halved.
This approximates the performance of several versions of TCP/IP that divide their
congestion window by two whatever is the cause of the loss. We propose a math-
ematical model that allows to account for burstiness as well as for correlation in
the loss process. Our aim is to study the impact of burstiness on the throughput
of the connection. We compute the expected instantaneous input rate and its mo-
ments at some potential loss instants, and provide for a useful implicit expression
for the Laplace Stieltjis Transform. This allows us to compute explicitly the average
throughput and its moments. We show that the average throughput is indeed sensi-
tive to the distribution of the loss process, and not just to the average loss rate: for
a given average loss rate, we show that the throughput increases with the burstiness
of the loss process. We finally examine the impact of burstiness of losses on the
throughput variability.

Key-words: TCP, Congestion control, Random losses, Congestion losses, Markov
chain, Performance evaluation, Simulations.
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TCP en présence de pertes en rafale

Résumé : TCP utilise la perte de paquets pour détecter la congestion dans le réseau.
Il divise sa fenétre de congestion en deux lorsqu’une perte est détectée & la source.
Ceci résulte en une dégradation de la performance du protocole lorsque les paquets
TCP sont perdus sur le chemin pour d’autres raisons que la congestion (ex. erreurs
de transmission). Plusieurs travaux ont étudié ’effet de ces pertes indésirables sur
la performance. Ces travaux ont supposé que les paquets TCP se perdent avec la
méme probabilité et donc, la performance a été étudiée seulement en fonction du
taux moyen des pertes. Dans ce travail, on développe un modéle mathématique qui
nous permet d’étudier, non seulement 'effet du taux moyen des pertes , mais aussi
I’effet de leur distribution. Particuliérement, on étudie 1’effet de "apparition en rafale
des pertes sur la performance du protocole. Nous trouvons les expressions explicites
du débit et de ses moments. Ces expressions nous montrent comment varie le débit
en fonction des parameétres du processus de pertes. Notre résultat principal est que
le débit d’une connexion TCP augmente lorsque les pertes tendent & apparaitre en
rafale méme si le taux moyen des pertes par unité de temps reste le méme. A la
fin, nous validons nos résultats mathématiques par des simulations conduites avec le
simulateur de réseau ns.

Mots-clés : TCP, Controle de congestion, Pertes aléatoires, Pertes de congestion,
Chaine de Markov, Evaluation de performance, Simulations.



TCP in presence of bursty losses 3

1 Introduction

Communication channels (such as wireless and satellite channels) often suffer from
transmission errors that result in corruption of information. FError detection tech-
niques are frequently used to discover erroneous packets which enables the network
or the receiver to discard corrupted packets. Corruption of information and packet
losses due to noisy links occur even in the presence of a large amount of redundancy
added for error correction (this is the case on satellite links). Characterization and
experimental measures on lossy links can be found in [1, 14, 12]. In [1] the measured
loss process of packets is characterized not only through its average rate but also
through the average number of losses that occur in each "loss event", i.e. in each
burst of losses. Measurements of the loss process with different types of transmis-
sion all show that losses occur in burst. For example, when the Intelsat IDR type
digital transmission is used (this transmission contains a forward error correction of
the ratio of 3/4 and additional scrambling), then the average number of errors per
burst is around 10 for any average bit error rates between 10=* to 10~!. When the
Intelsat IBS type digital transmission is used (it contains a forward error correction
of the ratio of 1/2 and additional scrambling), then the average number of errors per
burst is around 5.

Congestion control mechanisms in the Internet are sensitive to losses; these are in-
terpreted as congestion signals and result in actions aimed at reducing congestion.
When the rate of random losses is high then the throughput of these mechanism
may decrease dramatically. Several previous works have analyzed the impact of a
random loss process on a TCP/IP connection [2, 10, 11, 15|. But all these works
did not consider the burstiness of the loss process. Either times between losses were
replaced by their expectations, or independent losses were assumed.

We propose a mathematical model that allows to account for burstiness as well as
for correlation in the loss process. Our aim is to study the impact of burstiness on
the throughput of the connection. We compute the expected instantaneous input
rate and its Laplace Stieltjis Transform at some potential loss instants, which allows
us to compute the average throughput. We show that this average throughput is
indeed sensitive to the distribution of the loss process, and not just to the average
loss rate: for a given average loss rate, we show that the throughput increases with
the burstiness of the loss process. We finally examine the impact of burstiness of
losses on the throughput variability. We assume that input rate in the control scheme
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4 Altman , Avrachenkov , Barakat

that we consider has a linear growth rate; whenever a loss occurs the input rate is
halved. This approximates the performance of several versions of TCP/IP [16]. Our
mathematical model is then compared to simulations of the SACK version of TCP [5]
performed with ns simulator [13], and good match is reported between the model
and the simulations.

The structure of the paper is as follows. In the next section we present our model for
losses and for the controlled rate. Section 3 contains our analysis of the performance
of the input rate in presence of losses. At the end of this section, we give the general
expression of the average throughput. The average throughput in the case of an
independent loss process having the same average loss rate as a bursty loss process
is defined. This second throughput is then used as a reference to show the effect of
burstiness. In section 4, we study the impact of the parameters of the loss process on
performance. A particular case is considered for this study. The analytical results are
compared to simulation ones. The paper is concluded in section 5. In the Appendix,
we prove the convergence of the dynamics to a unique stationary regime.

2 The model

We consider a fluid model that might be used to approximate a flow control mech-
anism based on a discrete number of packets. The input rate is assumed to grow
linearly at a rate of a. In the case of a window-based flow control as TCP [16], the
input rate at any instant is equal to the window size divided by the Round Trip
Time of the connection. Our fluid model thus uses a window size which may take
non integer values. The growth continues till a loss occurs. As in many versions
of the TCP flow control, we suppose that upon the detection of the loss the input
transmission rate is halved [16].

We ignore in this work losses caused by a real congestion. Transmission errors are
frequent so that they reduce the input rate before the occurrence of congestion in
the network. At the end of this paper, we quantify this condition. Given a certain
path with a certain bandwidth, we show where our analysis can be applied.

We wish the model for the lossy channel to allow to model both burstiness in the
losses as well as correlations in the time between consecutive losses. The Gilbert
model is often used in this context [4] in which the channel is assumed to have two
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TCP in presence of bursty losses 5

states: Good and Bad; losses are then assumed to occur in the bad state. In the
Gilbert model however, the time during which the channel is in a good or in a bad
state is taken to be geometrically (or exponentially) distributed. We propose an
extension of this model in order to handle generally distributed periods of good and
bad channel states. Our model is related to the MAP process [8].

We allow losses to occur both in the good state as well as in the bad state; the
occurrence of losses in each of these states is different. To that end, we define a
series of potential losses occurring with a certain distribution. Let 7, denote the
time at which the nth potential loss may occur. Let D,,n = 1,2, ... be the sequence
of times between potential losses: D,, = T),+1 —T,,. D,, are assumed to be i.i.d. with
expectation d, second moment d(® and Laplace Stieltjis Transform D*(s). Let X,
be the input rate just prior to the instant of the nth potential loss.

Potential losses are transformed to real losses with a certain probability. (This is
similar to MAP processes in which at each state transition an arrival can occur with
a probability that depends on the state.) Let Y, be the state of the channel at the
nth potential loss instant. We consider the states B (for Bad) in which a potential
loss is transformed to a real loss with probability p,, and G, (for Good) in which
it is transformed with a smaller probability p,. We shall assume throughout that
Pe < pp and that p, > 0. We assume further that the sequences {Y,,} and {D,}
are independent. The time between potential losses is therefore independent of the
state of the channel.

Y, is assumed to be a Markov chain with the following transition probabilities (Fig-
ure 1):
P(Yo1 =GlY,=G) =y, P(Yo1=BlY,=G)=g=
P(Y,41 = B|Y,, = B) =, P(Y,11=G|Y,=B)=b
We shall assume throughout that ¢g,b € (0,1). {Y,}52 is then ergodic with steady-
state probabilities:

__1-9 9
2—-b—g b+g

The average loss rate over the channel is given by

(PeTg +PpTs)

R =
d 7
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6 Altman , Avrachenkov , Barakat

1-9
bg
1-b

Figure 1: The Markov chain associated to the channel

which is equal to the average number of times the source reduces its rate per unit of
time. The unit of time is the one in which d is expressed. This model allows us to
vary the average loss rate as well as the pattern of the loss process for a given average
loss rate. The time between potential losses and the parameters of the Markov chain
are used for this objective. In the following section, we present the analysis of the
performance in presence of this loss process.

3 Performance Analysis

Define the two random variables U, and V,, describing the behavior of X,, when a
potential loss occurs. They correspond to the two possible states of the channel. A
value one of these variables means that the potential loss causes really a packet loss
and thus a reduction in X,,. A value zero however means that the potential loss is
not transformed into a real loss and therefore, X, is not affected. We have then,

P(U,=1)=pg,  PU,=0)=1-pg,
PV, =1) =p,, P(V,=0)=1—-p,.
The evolution of the input rate is the following:
X = (L= U)X,1{Y, = G} + U, 1Y, = G)
+ (1-Vo)X,l{Y,=B}+ Vn%l{Yn = B} +aD,

- (1 _ %) X 1{Y, =G} + (1 - %) Xo{Yn, = B} +aD,. (1)

INRIA



TCP in presence of bursty losses

We begin by computing the first moments of X,, in steady-state. The calculation
of these moments helps us in calculating the average input rate (or the average

throughput of the connection) over a long time interval. We denote

7o = lim BIX,1{Y,=G}], =,= lim B[X,1{Y, = B}].

In steady-state, the average value of the input rate prior to the occurrence of the

potential loss is no other than

= lim F[X,]| =z, +z;.

n—oo

We show first that these moments converge to steady-state values. Then, we follow

two approaches in calculating these moments. The first approach consists of:

(a) using the relation between X, 1 and X,, given in equation (1).

(b) moving n to infinity.

The second approach uses the Laplace Transforms of X,, in steady state.

Theorem 1 The first moments of the input rate just prior to the potential loss

occurrence converge and they are equal to:

Vp(mp —b) + 75

rqg = ad )
L=950 =79+ 7579 + 0 —1)
rp = ad ’Yc(ﬂc_g)_{—ﬂ-B ,
L =950 =79+ 7579 +b—1)
with,
p p
7@21_7G7 7321_713'
Proof: First we write,
B Xn11{Yni1 = G}
U,
_ 4B [1 _ 7”] E[X,1{Y, = G}]

+ B [1 - %] E[X,1{Y, = B} + adP(Yop1 = G)

= 97 B X, {Y, = G} + by, E[X,1{Y,, = B} + adP(Y,11 = G),

RR n° 3740
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8 Altman , Avrachenkov , Barakat

E[Xn+11{Yn+1 = B}]
— GE [1 . %] E[Xa1{Y, = G}]

+ BE [1 _ %] E[X,1{Y, = B}] + adP(Y,11 = B)

= g'VGE[an{Yn = G}] + b’YBE[an{Yn = B}] + adP(Yn+l = B) (3)

Then, we show that the sequences F[X,1{Y,, = G}|,n = 0,1,... and E[X,1{Y, =
B}],n = 0,1,... converge. We rewrite the recursive equations (2) and (3) in the
following matrix form:

Va9 fyBE adg adb
Vo9 Vb adg adbd

Xn—l—l =I1x, = 0 0 g b Xn,
0 0 g b
with,
E[an{yn = G}]
v _ | EXa1{y, = BY]
"= | P, =q)
P(Y, = B)

The convergence properties of the augmented sequence A,,,n = 0,1,... depend on
the spectrum of the transition matrix II. In turn, the spectrum of II is formed by
the spectra of the matrices

P = g b and A= ch Vb .
g b Yed Vb

Since P is the transition matrix of the Markov chain {Y,}, it always has an eigen-
value which is equal to one. Further, because {Y,,} is ergodic, P has only one unit
eigenvalue. Let us show that all the eigenvalues of matrix A are less than 1 if g and
b are less than 1. Actually, the eigenvalues of A can be given in the closed analytic
form:

\ (976 +b7) | \/ (976 +b075)? — 4gbr1s7s — G07675)

1,2 2 2
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TCP in presence of bursty losses 9

The term under the root square is always positive. Indeed, we write,
(976 +b75)" = 4907675 — §07678) = (976 = b71s)* + 4907675,
which is always positive since
0<b<l1l, 0<g<1,
1/2<7y, <1, 1/2<+, <1.
The smallest eigenvalue (A1) is then smaller than one given that (g7, + by,)/2 is.
For the other eigenvalue (\y) to be smaller than one, we write,

A9 < 1,
e (975 +b075)* —4(gbv67s — T67s) < (2= (976 + b78))%,
Le. YoV + 976(1 —75) +bvp(1 =) < 1.

Since g < 1 and b < 1, the left term of the latter equation is smaller than

Yo + V(L =75) + 75 (1 = 75),

which can be written as
73(1 - ’YG) + 7(;'

Since we assumed that vy, is strictly smaller than 1, then this latter equation is also
strictly smaller than 1. Thus, p¢ > 0, ¢ < 1 and b < 1 imply that A1, < 1. We
conclude that the transition matrix II of the augmented sequence has only simple
unit eigenvalue (it is of multiplicity one).

This implies that the powers of matrix IT converge to its eigenprojection correspond-
ing to the unit eigenvalue. However, it is more simple to compute the limits of
sequences E[X,1{Y, = G}],n=0,1,... and E[X,1{Y,, = B}|,n =0,1,... by letting
n — oo in the original equations (2) and (3). By moving n to infinity, we get the
following system of equations:

Ty, = Yg9%g + bz, + adng,
Ty = VpgTs +vgbry + adry.
The solution of this system in z, and x, concludes the proof. o

RR n° 3740



10 Altman , Avrachenkov , Barakat

Remark 1 We show in the Appendiz that in fact X, converges to a unique stationary
regime.
Laplace Stieltjis Transforms and the moments of X,
Define the following Laplace Stieltjis Transforms:
2(5,G) = B |e™*1{Y, =G}|,  Z(s,B) = E[¢™**"1{Y, = B}],
where we assume that X, is in steady-state.

Theorem 2 The Laplace Stieltjis Transforms are the solutions of the following im-
plicit equations:

= D*( $) (91 —p)Z(s,G) + gp Z(s/2, G)]
+ D¥(« [bl—pBZ ,B) +bp,Z S/ZB],
Z(s, B)
D*(as) [5(1 = pg)Z(s, G) + Gps Z(s/2, G)]
+ D¥(as)[b(1 —py)Z(s, B) +bpy Z(s/2, B)] .-

Proof: We write,
E [e ¥ 11{Y, 11 = G}]

) I:efs((lfUn/Q)Xn+aDn)1{Yn _ G}] +BE [efs((lan/2)Xn+aDn)1{Yn _ B}] 7
E e~ ¥+11{Y, 41 = B}]

= gB [ ((-U/DXteDIfy, = GY| 4 bE [ ((-Ve/2XteD 1ty = B}

Using the fact that

E [e—s(l—Un/Q)an{Yn _ G}}

INRIA



TCP in presence of bursty losses 11

= (1=p)E [ 1Y, = G} + . B [/ 21{Y, = G},
B [6*3(1*V"/2)X"1{Yn _ B}]
= (1—p,)B e 1{Y, = BY| +p, B [e**/*1{y, = B}],
and by taking the limit as n goes to infinity, we get the required relations. o

Although the Laplace Stieltjis Transforms in Theorem 2 are only given as solutions
of implicit equations, all moments of X,1{Y;, = G} and X,1{Y,, = B} (in steady
state) can be obtained explicitly. In particular, the first moments are no other than
the opposite of the derivatives of Z(s,G) and Z(s,B) at s = 0. By differentiating
the implicit equations in Theorem 2 and substituting s = 0, one can obtain a system
of two linear equations with two unknowns, whose solution coincides with what we
already obtained in Theorem 1. The calculation requires the following relations:

Z(0,G) =7, Z(0,B) =m,,
dD*(as)

= —ad.
ds @

s=0

D*(0) =1,

More general, the order £ moments can be obtained in a similar way from the implicit
relations for the Laplace Transforms Z(s,G) and Z(s, B) using

b = 6) = (- D2
s=0
Bk, =By = (- 2B
s=0

The average throughput

Theorem 3 The time average input denoted T, can be expressed as

1t 1 d®
Z=1lm - [ X(t)dt =v,2, +752, + za—,
t Jo 2 d

t—o0

where x, and x, are given in Theorem 1, and where the limit holds almost surely.

RR n° 3740



12 Altman , Avrachenkov , Barakat

Proof: We have almost surely
I Zz n— lf%;iﬂ X (t)dt
ro= n1—>oo Zi:n—l D:
) 2=0 7
Lsvi=n—l p,(1 - U;/2) Xi1{Y; = G}

= Jim, =Ty
Zz:O DZ
. L= 1D( - Vi/2)X;1{Y; = B}
+ lim 1 1=n—1
n—ee _Ez 0 D’
1 1= n 11 2
D;
b lim Ziz0 2@ (4)

n—oo 1 Zz =n— lD
. B[l - U, /2 E[X\1{Y, = G)E[D]

E[1 -V, /2|E[X,,1{Y, = B}|E[D,]
+ Jlim E[D,]
1 2
saE[D;]
lim 2 "
o E[D,]
_ dygrg +dygrg + %ad@)
B d
1 d®
= Yoo T VpTp Tt 5047

The equality that appears just after (4) can easily be shown to follow from the
convergence of X,, to a stationary ergodic regime, which can be established from the
convergence result in the Appendix. This concludes the proof. o

The reference throughput

To study the effect of burstiness, we change in what follows the parameters of the
Markov chain (b and ¢) while keeping the average loss rate unchanged. The through-
put obtained in the bursty case is compared to the throughput achieved when the
channel is subjected to a non-bursty loss process having the same average loss rate.
We denote this throughput 7, and we use it as a reference to evaluate the effect of
burstiness. A non-bursty loss process is obtained when the channel has the same loss
probabilities in the two states. We call this probability p. To get the same average

INRIA



TCP in presence of bursty losses 13

loss rate as in the bursty case, the non-bursty channel must have a p equal to:

p=dR=p, 7, +pgpTy-

Lemma 1 On a non-bursty channel, the source achieves an average input rate of:

2 — 1 d®
Ty = Tpad + -o—.

2 d

Proof: The given expression for Z, can be easily obtained when substituting in the
general expression of the average input rate Z (theorem (3)), 7, and 7, by their
values as a function of p, the loss probability in the two states. On a non-bursty
channel, we have,

V=% =7 =1-p/2
As one must predict, by writing

1 d®
Ty = V(xc + xB) +sou—

27 d’

the parameters of the Markov chain disappear and we get an expression of the ref-
erence throughput as a function of p and the distribution of potential losses. o

Comparison with previous works

Consider a particular case where the non-bursty channel has p = 1. In this case,
all potential losses cause a reduction in the throughput. This forms a loss process
similar (even more general) to the one used in many previous works [6, 11, 15]. These
works suppose that in steady state, the window (or the input rate) varies linearly
between two values w and 2w. They calculate the average window size over a long
time interval as being equal to 3w/2. The average time (or the average number of
packets) between two losses is used to calculate w. It is taken equal to the increase in
the window size during this average time. Given the average window size, they divide
it by the Round Trip Time of the connection in oder to get the average throughput
as a function of the average time between losses or the average loss rate.

Now, our model shows well that in the presence of a non-bursty channel with p =1,
the average input rate just prior to a loss is equal to 2ad. The average window

RR n° 3740



14 Altman , Avrachenkov , Barakat

size just after a real loss is simply ad. Thus, ad in our model corresponds to their
w. However, our model doesn’t give the average window size 3w/2 they find. In
addition to their result, we see the appearance of the second moment of the time
between losses (d?)). To get their result, the second moment of the time between
losses must be equal to the square of its average. This is only the case for a de-
terministic loss distribution of value d. Although they use a Bernoulli loss model,
which corresponds to an exponential loss distribution in the continuous time space,
these works transform the loss distribution into a deterministic one which results in
the disappearance of the term d® in their analysis. Our model however, in addition
to the consideration of the burstiness, considers the exact expression of the average
throughput over a long time interval. In addition to the average time between losses,
the second moment of this time must be considered otherwise the throughput will
be underestimated. In the case of an exponential loss distribution, d® is equal to
2d? and the average window size (or the average input rate) is equal simply to the
average window size just prior to losses, hence to 2w.

4 A case study

In the sequel we consider the special case where

Pe = 0,7, =1, Py =17, =1/2.

In other words, we suppose that if the channel is in the bad state, each potential
loss is transformed into a real loss, and if it is in the good state, no real losses occur.
This model is sufficiently general to allow to vary both the average loss rate as well
as its burstiness.

Substituting in the expressions of =, and z, (theorem 1), we get:
x, = 2ad, g, =ad(b+7,)/g. (5)
The average input rate is given by

1 1 4@
isz+§xB+§a7. (6)

INRIA



TCP in presence of bursty losses 15

Remark 2 It may seem remarkable that x, does not depend on the transition prob-
abilities of the Markov chain. This can easily be explained using the following argu-
ment. The mean time between losses is clearly

1 d

R =w,’

B

so the mean increase in the X between two consecutive losses is ad/m,. Since we
assume that we are in steady-state, the mean decrease in X between losses should
thus equal to the mean increase. But the mean decrease in X is half its mean value

at loss. Thus,

EIX, |V, = B] = 222,

B

We conclude that, indeed,

z, = E[X,1{Y, = B}] = E[X,|Y, = B]|P(Y, = B) = 2ad.

4.1 The deviation of z from Zz,

The non-bursty channel that has the same average loss rate is obtained when taking
a loss probability p equal to m,. Recall that p is the probability that a potential loss
causes a real loss regardless of the channel state. Choosing the same loss probability
in the two states results in a non-bursty loss process. The value of p however is
chosen so that we get the same average loss rate as a bursty channel. The reference
throughput in the non-bursty case is then

z —Z—Q—ad+1a@
"R 2 d°

Given a certain distribution of potential losses and a certain average loss rate, we
increase the burstiness by increasing b and ¢ in such a way that their ratio remains
unchanged. This guarantees that 7, and 7, and therefore the average loss rate R,
remain the same. To study the deviation of the throughput from the non-bursty
case, we express T as a function of Z, and the parameters of the Markov chain. We

get
1 1
7:7,,, d - — —. 7
z x—l—awc[g 7"3] (7)

RR n° 3740



16 Altman , Avrachenkov , Barakat

It is clear from this expression of Z, that the non-bursty case is obtained when
g = b= m,. In our particular case, g is the probability that the next potential loss
causes a real loss given that we are in the good state. b is that the probability that it
causes a loss given that we are in the bad state. On a non-bursty channel, these two
probabilities must be equal. At the same time, they must be equal to the average
probability that a potential loss occurs while the channel in the bad state 7, and
this independently of the current state.

4.2 Effect of the loss model parameters on the performance

In this section, we study how the throughput varies as a function of R and the
burstiness (via d, b and g). We shall show in particular that for a fixed loss rate
R, the average throughput increases when the burstiness increases. To facilitate
the analysis, we suppose that the time between potential losses is exponentially
distributed which means that d®) is equal to 2d%. This is similar to the geometrical
distribution used in the literature [11, 15] to model the number of packets correctly
received between real losses.

First, we study the effect of an increase in R on the performance. An increase in R
can be caused by an increase in the number of potential losses per unit of time (1/d)
or by an increase in 7,. To study these two cases, we write Z as

2+ -+

.T_de L
g gbb+3g)|

(8)

It is clear that when d decreases, the throughput deteriorates. The increase in 7,
can be caused by an increase in g or a decrease in b. The two cases result also in
throughput deterioration.

Now, we suppose that d is fixed as well as 7, and m,. We increase b and g in order to
increase the burstiness. Note that the change in the Markov chain parameters doesn’t
affect the reference throughput, which is equal to 2a/R in the exponential case. Z,
is only a function of the average loss rate. However, it is clear from equation (7) that
the average input rate improves when losses appear in bursts.

Theoretically, equation (7) shows that the throughput increases indefinitely when
g moves to zero. This is because we didn’t limit the input rate when the channel
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TCP in presence of bursty losses 17

is in the good state. In reality, the throughput cannot move to infinity and it is
limited by the available resources in the network. Even if the channel is always in
the good state, congestion losses will occur forcing the source to reduce its rate. We
can consider as if there is always a minimum loss probability prohibiting the input
rate from reaching higher values than the available bandwidth.

4.3 Computation of second moments

In this section, we briefly mention our calculation of the second moments of X,
in steady state. These moments will be shown to have an impact on the average
throughput. We define,

22 = lim B[X;1{Y, = B}],
22 = lim EX;1{Y, = G},
2 = lim E[X2].

n—oo

It is clear that z(2) = 33532) -I—zg). The variance of X,, in steady state is no other than
Var(X,) =2® —2? = 2 + 29 — (2, + )% (9)
By using, either the relation between the expectations of X2 41 and X2 as in equa-

tions (2) and (3), or the Laplace Transform approach, we can prove the following
theorem

Theorem 4 In steady state,

2 = g [2adz, + adz, +a2d®)],
1 1- 1- 4
wg) — - [azd@) <§b+ 7TG> + 2 <§b—|— g) adz, + gbade

As in the case of the average throughput over a long time interval (theorem 3), we
can also prove that
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18 Altman , Avrachenkov , Barakat

Theorem 5 Let d®) be the third moment of the time between potential losses. The
second moment of the input rate over a long time interval is equal to:

t
z» = Jlim E X2(t)dt

, 1, d® 1 d® 1 ,d®

= T+ 175 + AT + 2 s + 3

The effect of the variance of X, on the average throughput can be showed if we write
Z as a function of the first and second moments of X,,. It is easy to show that in our
particular case, the average throughput can be written as

3z

T = .
4 x,

By substituting :cg) by its value in this new expression of Z, we get the previous
expression (equation (6)). As we know, z, is independent of the parameters of the
Markov chain (equation (5)). Thus, the increase in throughput caused by an increase
in burstiness can be only the result of an increase in the second moment of the input
rate upon real losses. Indeed, when losses become clustered, the input rate suffers
from an important reduction in its value when a burst of losses occurs. Then, the
channel enters a long good state where the source has enough time to increase its
rate again to an important value. Thus, the variance of the input rate increases
causing an improvement in performance. The expression for a:g) we gave shows this
increase as a function of burstiness.

4.4 Congestion versus random losses

In the absence of the random losses, the input rate increases until reaching the
maximum available bandwidth in the network. Beyond this point, queues start to
build up in network buffers. Some time later, these buffers overflow leading to loss of
packets. Here, the network is said to be congested. When detecting these losses, the
source reduces its input rate by one half to alleviate the congestion in the network.

In our work, we study the impact of undesirable random losses on the performance.
We assumed that random losses are so frequent so that the input rate is reduced
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before the occurrence of congestion in the network. It is clear that if random losses
are not so frequent, the input rate will increase until a congestion occurs. As a
consequence, the source reduces its performance which is not predicted by our model.

In this section, we explain how much transmission errors must be frequent so as to
be able to neglect the effect of congestion losses and, then to apply our results. For
simplicity, our particular case is considered in the section.

Suppose that the maximum possible input rate is X;nq.2. A congestion collapse occurs
when the input rate exceeds this maximum rate. In the case of a window-based
protocol, X,,4, denotes the maximum window size, which is equal to the maximum
number of packets that can be in flight between the source and the destination
(the pipe size). Congestion losses are avoided if the input rate X(¢) is reduced
due to a transmission error before it reaches X,,4,. This requires a certain minimum
transmission error rate. Also, given a certain average loss rate, this requires a certain
maximum burstiness. As we will see later, the increase in burstiness increases the
length of the good state and therefore lets the input rate reach higher values during
this state. It is not enough to consider the average loss rate in the calculation of the
required condition to neglect congestion losses. The burstiness of the loss process
must also be considered.

The maximum value of X (¢) is seen just before the first potential loss in a bad state.
This is the first reduction in the input rate after getting out of a good state. On
average, the expectation of the input rate at this point must be much smaller than
the maximum input rate. In steady state, this condition can be written as

E[Xn|Yn = B,Yn,1 = G] << Xma:c;
(10)
ie. Ty +x, +ad << Xpgg.

The larger the average loss rate and the lower the burstiness are, the more likely
it is that the the above condition holds. Even if the average loss rate remains the
same (via the same d, 7, and 7), the increase in burstiness stretches the duration
in which the channel is in the good state and increases then the input rate X,, that
appears in (10). This behavior cannot be seen if we consider all the points at which
the input rate is reduced. The expectation in this later case is equal to

T
E[X,|Y, =B]=

o8
?
7TB
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20 Altman , Avrachenkov , Barakat

and it accounts for the average loss rate not for the burstiness.

The farther F[X,,|Y,, = B,Y,,_1 = G] increases beyond the maximum input rate, the
more important congestion losses become. The evolution of the input rate is more
and more controlled by the available bandwidth in the network and the buffer sizes
rather than by random losses. This is the assumption a congestion control protocol
as TCP/IP [9] makes about the network. The best performance is obtained when
random losses are sufficiently rare. The condition for random losses to be negligible
is that the average input rate during the bad state of the channel given by our model
(i.e. when ignoring congestion losses) is much larger than the maximum input rate
in the network (in absence of random losses). This can be written as

E[X,|Y, = B,Y,—1 = B] >> Wy,

ie. (g +25)/2 4+ ad >> Wi

For a random loss process satisfying the later condition, congestion losses are dom-
inant, regardless of the channel state. In contrast to the first region where random
losses are frequent, the performance in this region is mainly a function of network
parameters (bandwidth and buffer sizes) rather than the loss process parameters.

4.5 Simulations

To validate our analysis, we simulate a flow control protocol that reduces its rate by
half upon loss detection, and that increases its rate linearly as a function of time.
The protocol used is TCP and the simulator is ns, the Network Simulator [13]. TCP
uses a sliding window to control the flow of packets in the network. The window
is increased by one packet for every Acknowledgment (ACK) during slow start and
by one packet for every window’s worth of ACKs during congestion avoidance. The
window growth during congestion avoidance can be considered as linear if queuing
time in network buffers is negligible with respect to the propagation delay. To run
the protocol in this linear phase, we consider frequent losses so that the window is
reduced in general before the building of queues in network buffers. Also, we use
the SACK version of TCP that manages most of the time to recover from losses
without resorting to Timeout and slow start [5]. Note that when a Timeout occurs,
the slow start threshold is set to half the current window, the window is reset to the
value of 1 packet instead of halving it and a slow start phase is called. The increase
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d = 8 seconds, D(n) exponential, b=g=0.6
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Figure 2: The variation of X (¢) as a function of time

in the window during that phase is exponential instead of linear. Once the slow
start threshold is reached, slow start ends and the linear increase in the window is
resumed.

We suppose that the receiver acknowledges every data packet. This results in a
window growth of one packet every Round Trip Time (RTT). In practice there are
implementations of TCP in which only every second RTT the window grows by one
packet; this happens when only each second received packet generates an ACK. Such
ACKs are known as “Delayed ACKs” [16].

When plotting our results, we show the window size in packets instead of TCP
throughput. The throughput of a TCP connection at any instant is simply the
window size divided by the RTT.

The simulation scenario consists of a TCP connection crossing a 2Mbps lossy link.
TCP packets are of total size 1000 Bytes. We add our loss model to the simulator.
Time between potential losses is considered to be exponential. Figure 2 shows a
typical variation of the congestion window of the TCP connection when operating
over a lossy channel. We see well how potential losses are transformed into real
losses and how real losses cause a reduction of the window by a factor of two. In
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b =g=0.6, D(n) exponential
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Figure 3: The variation of x, as a function of d

what follows, we run the connection for one hour and then we calculate the values
of z, v, and z. These simulation results are then compared to those given by our
analysis. When simulating, z, (resp. z,) is calculated by summing the window
sizes when a potential loss occurs and the channel in the good state (resp. in the
bad state), then by dividing this sum by the total number of potential losses. Z is
calculated as the throughput of the connection over the one hour expressed in terms
of Packets/s times the RTT.

First, we fix the parameters of the Markov chain of the channel and we vary the time
between potential losses. This allows to check the impact of the average loss rate
on the throughput for a given burstiness. Afterwards, we shall vary the burstiness
while fixing the average rate of losses. In both cases, we choose the parameters for
the lossy channel so that congestion losses can be ignored.

In our first set of simulations, d is varied between 1 and 10 seconds. b and g are
however taken equal to 0.6. Our analysis predicts a linear variation of the three
quantities z,, x, and T (equations (5) and (8)). Figures 3, 4 and 5 show well the
match between simulation and analytical results.
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Figure 5: The variation of Z as a function of d
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We shall give some more details about the way the losses are generated and then
explain the small deviations from the analytical results. We see that the slope of
the line given by simulation is slightly smaller than the one given by analysis. The
simulated model consists of individual packets that are sent in bursts on the channel
rather than a fluid, as in our approximating model. In the simulated scenario, the
lossy channel may not be carrying TCP packets when a potential loss has to be
transformed into a real loss. At small d, losses are frequent and the window is most
of the time of small size. When the window is very small and an event of loss is
simulated, there might not be an actual packet on the channel to which this loss
corresponds. This results in many real losses considered by the analytical model but
not considered by the simulation.

Now, when d increases, the window becomes larger and the probability that the
channel is not carrying TCP packets when a potential loss occurs becomes smaller.
Thus, the simulation line becomes closer to the analytical line.

To overcome the above problem, we simulate a loss as an event that causes the loss
of all the packets that cross the lossy link during a certain time interval. By taking
a large time interval to represent potential losses, we solve the problem of small
windows. However, large windows see a large number of lost packets which causes
sometimes a Timeout and a slow start. For this reason, we see that the simulation
results fall below the analytical ones at large d.

Next we consider the impact of burstiness on the average throughput. We thus
keep the average rate of losses constant. We fix the average time between potential
losses to 5 seconds and we change the transition probabilities b and g but keeping
b = g. This results in 7, = m, = 0.5. Our analysis shows that =, must not
change (equation (5)). z, and Z however must increase as a result of the increase
in burstiness (equations (5) and (8)). The simulation validates our analytic results,
as can be seen in figures 6, 7 and 8. In particular, it is seen from Figure 8 that by
increasing b from 0.1 to 0.8, the average throughput increases by around 60% even
though the average loss rate remains unchanged. This confirms our result concerning
the improvement in performance when losses become more and more clustered.

Finally, we plot in Figure 9 the variance of the input rate upon potential loss occur-
rence (the window size in case of TCP). This variance is given in equation (9). As
predicted by our analysis, the simulations show the increase in the variation of X,
when burstiness increases. On a bursty channel, the source input rate varies between
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Figure 8: The variation of Z as a function of b

important values when the channel is in the good state and small values when the
bad state appears.

5 Conclusions

In this paper, we have studied the performance of a TCP-like congestion control
protocol over a lossy channel. In addition to the average loss rate considered in
previous works, we evaluate in our work the impact on the performance of burstiness
in the loss process. We define a model for losses using potential losses and a two-
states Markov chain to account for the change in the channel state. This model
lets us change the average loss rate as well as the correlation between losses. We
calculate then the average as well as the variance of the throughout over a long time
interval. Two approaches have been considered, a direct one and a Laplace Transform
approach. The average throughout is compared to the throughput achieved by the
protocol when it operates over a non-bursty lossy channel having the same average
loss rate.
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Figure 9: The variation of Var(X,) as a function of b

First, our mathematical analysis shows well a deterioration in the performance when
the average loss rate increases. Second, at constant average loss rate, we show that
the performance improves when losses tend to appear in bursts. This increase in
performance with burstiness is caused by an increase in the second moments of the
input rate. We conduct then a set of simulations with ns to validate the analytical
results. A good match between simulation and analysis has been noticed.

Another result of our analysis is a better understanding of how the average through-
put has to be calculated. Often in the literature, the source input rate (or the source
window in case of TCP) has been supposed to vary in steady state between two
fixed values w and 2w. The expectation of the time between two losses is used to
characterize this stationary behavior (calculate W and 2w). The average throughput
is taken equal 3w/2. We show in our analysis that, in the general case, the second
moment of the time between losses has to be considered. In the particular case of an
exponentially distributed inter-losses time, the average input has to be taken equal
to 2w rather than 3w/2.
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6 Appendix: Convergence of X, to a stationary regime

We rewrite the dynamics (1) of X, as
Xpp1 = Au X, + B, (11)
where
A, =01-U,/2)1{Y, =G} + (1 -V,/2)1{Y, = B},

and
B, = aD,,.

If we assume that Y, is initially in steady state then (A,, B,) are jointly stationary.
We denote by (AX, BY) this stationary process. We show in this section that the
process X,, converges to a stationary solution of (11), i.e. to a process X} satisfying

Xy = ALX; + B,
for all n > 0. For any initial condition Xy, we obtain by iterating (11)
n—1 n—1 n—1
Xo=> | Il 4i)Bnj1+ (H Ai) Xo,
§=0 \i=n—j i=0

for all n > 0.

Theorem 6 Assume that Y, contains a single recurrent class and is initially in
steady state. Consider an arbitrary initial state Xy. Then,

m=§(ﬁAJm+l (12)

§=0 \i=n—j

is the only stationary solution of (11). The sum on the right hand side of (12)
converges absolutely almost surely. Furthermore, |X,, — X}| — 0 a.s. for all Xy
on the same probability space as {(An.,Bn)}. In particular, the distribution of X,
converges to that of X5 as n — oo.

Proof: We use Theorem 2A in [7] (based on [3, 17]). The assertion follows directly
if we establish the following conditions of the Theorem:
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e (i) —oo < Eflog|Ayl] <0,

e (ii) Ellog |By|"] < o0 ,

We show that these conditions indeed hold.

The only possible values of Ay are 1/2 and 1. Thus the only possible values of
log |Ag| are log 0.5 or 0. Under the assumptions of our model, the value log 0.5 < 0
has positive probability. This implies conditions (i).

By Jensen’s inequality we have
ePllog|Boll < E|By|,

which is finite. This implies condition (ii). o

Remark 3 The conclusions of the above theorem can be extended to the case that
the Markov chain Y, is initially not in its steady state distribution. This is due to the
fact that coupling of Y, to a stationary regime occurs in a time which is a.s. finite
(since the Markov chain 'Y, contains a single ergodic class).
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