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Abstract

We introduce and analyze new randomized policies for the management of web caches. The pro-

posed policies are fully scalable, that is, handling a hit or an eviction requires only O(1) time. Our

analysis is probabilistic, in nature, and based on an extended version of the IR model. The extension is

needed in order to deal with the varying-cost and varying-size features of web documents. Under this

assumption, we derive closed-form expressions for the stationary probabilities of �nding each possible

arrangement of the documents within the cache. Our analysis shows that the performance of the

proposed algorithms are close to that of the optimal o�-line algorithm. Using simulations and real

traces, we also show that the new algorithms perform at least as well as existing algorithms of higher

complexity. Variations on the algorithms, aimed at increasing their responsiveness to non-stationary

trends, are also investigated.
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1 Introduction

Web caches play a prominent part in improving the performance of web services [CaI97, AWY99].

By storing frequently requested documents in high-speed memories, they allow signi�cant reduction

in bandwidth consumption and response latencies.

Caching can be implemented at various points in the network, as shown in Fig. 1. At the lowest

level, caches are implemented in Web browsers where they store the most recently documents

accessed by a (single) client. At a higher level, caches are often implemented in proxies. Proxies,

usually located near gateways, act as transparent servers on behalf of a large community of clients

such as a corporation or an ISP. Finally, at the highest level, caches may be implemented in front

of the web servers themselves. Such caches are referred to as reverse proxies or httpd accelerators.

Web caches distinguish themselves from CPU caches in at least two key aspects. First, web

documents vary signi�cantly in size. If objects are requested with equal frequency, then the hit

ratio, that is, the proportion of requests served by the cache, is maximized when the caching

algorithms are biased towards the smaller objects. This is because a cache is able to store a larger

number of small objects. Second, web documents have di�erent access costs. For example, the

transfer time cost for larger documents is higher. Similarly, the cost of an object requested from an

overloaded or distant server is typically more signi�cant that of one requested from an underloaded

or nearby server.

Replacement policies for web caches have been been subject of extensive research in the litera-

ture. In particular, a competitive algorithm [BoE98], referred to as GreedyDual-Size (GDS), was

introduced in [CaI97] and shown to outperform previously proposed algorithms. Re�nements of

the GDS policy have been proposed in [DiA99, JiB00].

Beside hit ratio, caching systems are typically evaluated according to the following three met-
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rics: speed, scalability, and reliability [BaO00]. Speed and scalability are of signi�cant importance,

since proxy servers frequently have to deal with very high load. In fact, the performance bottle-

neck of a proxy cache more often lies in its access speed rather than memory size. The policies

developed in [CaI97] are not fully scalable since a hit or a replacement requires O(logK) time,

where K corresponds to the cache size. Moreover, these policies need a �xed amount of metadata

for each object, in order to store the object's value (or priority). Resorting to metadata is generally

undesirable, from both storage and reliability points of view.

In this work, we develop and analyze new management techniques for web caches. The pro-

posed policies are fully scalable, that is, a hit or a replacement requires only O(1) time. This

salient property is achieved by judicious use of randomization. In addition, our algorithms do not

su�er from metadata overhead since the value of a document is represented by its position within

the cache. Our work naturally complements other recent research [PsP01] that advocates use of

randomization techniques in order to cope with scalability problems.

This paper is devoted to a presentation of the new algorithms and their performance evaluation.

Our analysis is probabilistic in nature and based on the Independent Reference (IR) model. In
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Section 2, we introduce the IR model, justify its use in the context of web proxy caches, and

briey review some known results related to the analysis of caching replacement algorithms under

the IR model. Next, in Section 3, we augment the IR model in order to include the varying-size

and varying-cost features of web documents. We present the new caching algorithms, and derive

closed-form expressions for the probability of �nding each possible arrangement of pages within

the cache. Our analysis shows that the proposed algorithms achieved performances close to those

of the optimal o�-line algorithm. In Section 4, we investigate variations on the algorithms aimed

at speeding-up their rate of convergence to steady-state. Then, in Section 5, we show through

numerical simulations and real traces experiments that the new algorithms perform at least as well

as existing algorithms of higher complexity. The last section is devoted to concluding remarks.

2 The Classical IR Model and Caching Algorithms

2.1 The Independent Reference Model

Let N denote the total number of web pages. Under the Independent Reference model, one assumes

that, independently of previous requests, page i, i = 1; 2; : : : ; N , is requested with probability pi.

For convenience, and without any loss of generality, we rank the pages in the decreasing order of

their popularity, i.e., if i < j then pi � pj. Note that several experimental studies have shown that

the popularity of web pages follows a Zipf distribution [Bre99], i.e., pi is proportional to 1=i
� where

� is some positive constant. Nevertheless, in the sequel, we do not assume any speci�c distributions

for the the popularity of web pages.

Although the pattern of page requests from a particular client typically exhibits a strong tem-

poral locality (or temporal correlation), the IR model is certainly a reasonable qualitative model

for representing accesses to proxy and reverse proxy caches. This is because proxy caches serve a

large community of clients and therefore mitigate the temporal locality of requests from each par-
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ticular client. Moreover, a signi�cant amount of the temporal locality is absorbed by the browser

caches of the clients. Experimental studies show indeed that proxy caches are mostly useful for

objects requested by one client and later retrieved by another client [Dus97]. Other studies show

that predictions based on the IR model are in excellent agreement with the qualitative behavior of

proxy caches [Bre99].

2.2 Performance of Classical Caching Algorithms

In this section, we shortly review known results related to the performance of caching algorithms

under the IR model. The seminal work in this area appeared in [Kin71, Gel73]. A comprehensive

survey of literature results can be found in [ACK87].

We consider a cache memory with a capacity storage of K pages, where K < N . All the

pages are assumed to have the same size and access cost. Under the IR model, if the request

probabilities are known a priori, then the optimal algorithm OPT is to place the K most popular

pages i = 1; 2; : : : ;K into the cache. In practice, the popularity ranking among the pages is unknown

a priori and practical caching algorithms need to learn this ranking. Such caching algorithms are

referred to as self-organizing algorithms.

A straightforward approach for learning the popularity ranking is simply to count the number

of requests for each of the N pages. This approach, known as the COUNT algorithm (or perfect-

LFU [Bre99]), will converge to the true ranking as the size of the sample grows. One of the obvious

disadvantages of this method is the major overhead required for implementing a separate counter

for each of the N pages. Another problem of this algorithm in practice is that it reacts very slowly

to any drift in the popularity of pages and may therefore lead to \cache pollution."

Several self-organizing algorithms are available to keep the cache in near-optimal order without

resorting to counters. The most well-known is LRU, which, upon a request for a page not stored in
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the cache, replaces the least recently used document. Another algorithm is CLIMB. This algorithm

views the cache memory as a stack. Each time a page is requested, it is exchanged with the

immediately preceding page; if the requested page is at the head of the stack nothing is done.

Upon a request for a page not stored in the cache, CLIMB replaces the document positioned at the

bottom of the stack. The time complexity, per access, of LRU and CLIMB is O(1).

Under the IR model, the dynamics of the LRU and CLIMB algorithms can both described by

an ergodic Markov chain. As a consequence, there exist unique stationary probabilities of �nding

the cache in each possible state ~� = f�1; �2; : : : ; �Kg. Each state corresponds to a particular

arrangement of K distinct pages within the cache. The pages �i should be viewed as stacked, with

�1 at the top and �K at the bottom. We denote by �(~�) the steady-state probability of �nding the

cache in some state ~�. Simple closed-form expressions for this quantity are available (see [ACK87],

Section 4.6):

�LRU(~�) =
KY
i=1

 
p�i

1�
Pi�1

j=1 p�j

!
; (1)

�CLIMB(~�) = C1 �
KY
i=1

(p�i)
K�i+1 ; (2)

where C1 is a normalization constant. The self-organizing property of the algorithms is illustrated

from eqs. (1) and (2) by the fact that the state ~� = f1; 2; : : : ;Kg is the most likely among all the

possible states.

The hit ratio is obtained by summing over all the indices i, the probability that page i is

requested and found in the cache, i.e.,

H:R: =
NX
i=1

pi
X
i2~�

�(~�): (3)

The CLIMB algorithm is known to achieve higher hit ratio than LRU, although this result does
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not seem to have been formally proven. The key reason for the success of LRU, in practice, is

that it is much more responsive to non-stationary trends. This important property can also been

observed with the IR model, where the convergence rate to steady-state of LRU is much faster than

CLIMB [HeH85].

Another important property of LRU is that it can never perform signi�cantly worse than OPT.

Namely, for arbitrary p1; p2; : : : ; pN , the ratio between the optimal hit ratio and the hit ratio of

LRU is bounded [FrW74].

3 New Web Caching Algorithms

3.1 Extending the Independent Reference Model

The IR model has to be extended in order to address the non-uniform access cost and non-uniform

size features of web documents. For simplicity, we present separately algorithms for each of these

two issues. However, the combination of the algorithms is straightforward, as pointed out at the

end of Section 3.3.

Let �rst assume that each page i has an access cost ci. Under the IR model, the expected cost

is minimized by placing in the cache the K documents with the largest pici values. This optimal

o�-line policy will be referred to as OPT-C, where C stands for cost. In the next section, we devise

two new on-line randomized algorithms, termed LRU-C and CLIMB-C, which tend to keep the

cache in an ordering similar to OPT-C. We show that the performances of LRU-C and CLIMB-C

with respect to OPT-C are identical to those of LRU and CLIMB with respect to OPT. From this

point of view, LRU-C and CLIMB-C are dual to LRU and CLIMB.

Next, let si be the size (in bytes) of page i. The capacity storage of the cache is K bytes. The

number of documents that the cache can accommodate depends, of course, on the respective sizes of
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the documents. The o�-line problem of �nding which documents should be placed in the cache, in

order to maximize the hit ratio, is known as the Knapsack problem which is NP-Complete [MoS91].

A simple greedy approximation is to �ll the cache with the documents having the highest \density"

values pi=si. This policy is known to perform at most twice worse than the optimal solution,

except for pathological case (see [MoS91], p.265). We refer to this sub-optimal policy, as OPT-S (S

standing for size). In Subsection 3.3, we devise self-organizing algorithms, LRU-S and CLIMB-S,

which learn to order the cache similarly to OPT-S. Once again, a duality property prevails between

the new algorithms and the classical LRU and CLIMB algorithms.

3.2 Caching Algorithms for Documents with Di�erent Access Costs

We de�ne cmax = max(c1; c2; : : : ; cN ) as being the maximal access cost among all the N pages.

Further, we de�ne the normalized access costs as ~ci = ci=cmax. The algorithm LRU-C performs

as follows. When a page i is requested, it is moved to the head of the cache with probability ~ci;

otherwise, nothing is done. Similarly, upon a request for page i, the CLIMB-C algorithm acts as

CLIMB with probability ~ci, and the state of the cache is left unmodi�ed with a complementary

probability 1� ~ci.

The rationale behind these new algorithms is very simple. Let's consider two pages with re-

spective access costs c1 = 10 and c2 = 1. It is valuable to place page 2 in the cache, instead of

page 1, only if it is requested at least 10 times more frequently. In other words, a hit for page 2 is

worth one tenth of a hit for page 1. By introducing randomization, each hit is given its appropriate

weight.

The newly proposed caching algorithms lend themselves to a performance analysis. Using the

same notation as in Section 2.2, the stationary probabilities of the Markov chains describing the

LRU-C and CLIMB-C algorithms possess the following closed-form expressions:
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Theorem 1

�LRU-C(~�) =
KY
i=1

 
p�ic�iPN

j=1 pjcj �
Pi�1

j=1 p�jc�j

!
; (4)

�CLIMB-C(~�) = C2 �
KY
i=1

(p�ic�i)
K�i+1 ; (5)

where C2 correspond to normalization constant.

Proof: (i) LRU-C: we prove eq. (4) by using a probabilistic argument. The lines of our reasoning

follow [Hen76]. We look at the present state ~� and attempt to reconstruct the past history by

looking backwards in time. In the following, we refer to a request to a page as successful, if the

page is subsequently moved to the head of the cache (which, for page i, happens with probability

~ci); otherwise the request is referred to as unsuccessful.

In order for the cache to be in state ~�, the past history of requests, listed in reverse order from

most remote to most recent, must be as follows:

2K. A last successful request for page �K is made.

2K-1. Requests (successful or unsuccessful) for pages f�1; �2; : : : ; �K�1g or unsuccessful requests for

any other pages may be made.

2K-2. A last successful request for page �K�1 is made.

2K-3. Requests (successful or unsuccessful ) for pages f�1; �2; : : : ; �K�2g or unsuccessful requests for

any other pages may be made.

: : :

4. A last successful request for page �2 is made.
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3. Requests (successful or unsuccessful ) for page �1 or unsuccessful requests for any other pages

may be made.

2. A last successful request for page �1 is made.

1. Unsuccessful requests for all the pages may be made.

The probability of step 2i (1 � i � K) is given by p�i~c�i . The probability of steps 2i and 2i � 1,

together, is given by

p�i~c�i �
1X
n=0

0
@i�1X
j=1

p�j +
NX

j=1; j 6=f�1;�2;:::;�i�1g

(1� ~cj)pj

1
A
n

=
p�i~c�iPN

j=1 pj~cj �
Pi�1

j=1 p�j~c�j
:

The joint probability of step 1 up to step 2K, is thus

KY
i=1

p�i~c�iPN
j=1 pj~cj �

Pi�1
j=1 p�j ~c�j

=
KY
i=1

 
p�ic�iPN

j=1 pjcj �
Pi�1

j=1 p�j c�j

!
;

which establishes the result.

(ii) CLIMB-C: Our approach is to show that the expressions given by eq. (5) satis�es the balance

equations. The proof follows from the uniqueness of the stationary probabilities.

We denote by q(~�; ~�0), the transition probability from state ~� to state ~�0. We show next that,

for this Markov chain, the following equations hold

q(~�; ~�0)�(~�) = q(~�0; ~�)�(~�0) 8~�; ~�0: (6)

These equations are known as detailed balanced equations, and a Markov chain satisfying them is

termed reversible [Kel79]. Note that if a Markov chain satis�es the detailed balanced equations,

then the global balance equations are satis�ed as well.

We show now that eq. (5) satis�es eq. (6). We distinguish between two types of transition. The

�rst is when pages, already stored in the cache, have their positions exchanged. The second is when
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the page currently positioned at the bottom of the cache is replaced by a new page. In the �rst

case, assume ~� = f�1; �2; : : : ; �j ; �j+1; : : : ; �Kg and ~�0 = f�1; �2; : : : ; �j+1; �j ; : : : ; �Kg. Then

q(~�; ~�0)�(~�) =

�
p�j+1 �

c�j+1
cmax

�
�

 
C2 �

KY
i=1

(p�ic�i)
K�i+1

!

=

�
p�j �

c�j
cmax

�
�

 
C2 �

KY
i=1

(p�ic�i)
K�i+1 �

p�j+1c�j+1
p�j c�j

!

= q(~�0; ~�)�(~�0):

The second case can be handled in a similar way (see proof of Theorem 3).

Looking at eqs. (1) and (2) we remark that if we replace the request probabilities pi by the

\weighted" request probabilities

piciPN
j=1 pjcj

; (7)

then we exactly obtain eqs. (4) and (5) (note that the denominator in eq. (7) is just a normalization

constant). This shows duality between the performances of the newly proposed algorithms and those

of the classical caching algorithms.

The hit ratio is computed, in this case, with respect to the weighted request probabilities de�ned

by eq. (7). The duality property guarantees that the ratio between the hit ratio of OPT-C and the

hit ratio of LRU-C is bounded.

3.3 Caching Algorithms for Documents with Di�erent Sizes

The randomization technique is very similar to that introduced in the previous section. We let

smin = min(c1; c2; : : : ; cN ) be the size of the smallest documents among the N documents, and ~di =

smin=si be the normalized \density" of page i. Then, following a request for page i, the algorithm
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LRU-S (respectively, CLIMB-S) acts as LRU (resp., CLIMB) with probability ~di; otherwise the

cache state is left unmodi�ed.

The analysis of these algorithms is somewhat more di�cult, since the number of documents

stored in the cache changes over time. For LRU-S, a simple analysis can still be carried out by

slightly modifying the de�nition of the state-space of the Markov chain. A state is now described

by a N -length vector ~� = f�1; �2; : : : ; �Ng which corresponds to the order at which each document

has last been put at the head of the cache. The stationary probabilities of this Markov chain are

given by the following theorem:

Theorem 2

�LRU-S(~�) =
NY
i=1

 
p�i=s�iPN

j=1 pj=sj �
Pi�1

j=1 p�j=s�j

!
: (8)

The proof of this theorem is essentially the same as of eq. (4) in Theorem 1.

Given the stationary probabilities, the hit ratio of LRU-S can be computed as follows. First we

de�ne a set Ai which includes all the states with page i in the cache

Ai = f~�j
iX

j=1

s�j � Kg: (9)

The hit ratio is then given by

H:R: =
NX
i=1

pi
X
Ai

�LRU-S(~�); (10)

where we sum over all the indices i, the probability that page i is requested and found in the cache.

Note that a similar analysis can be performed for CLIMB-S. However, for the sake of analysis,

an auxiliary memory maintaining the identity and size of documents not stored in the cache should

be implemented.

11



Finally, we remark that it is straightforward to design an algorithm which deals with both

varying-size and varying-cost documents. For this purpose, we de�ne the following quantities

�i = ci=si; �max = max
i

�i; ~�i = �i=�max:

Upon a request for page i, an algorithm generalizing the LRU (CLIMB) algorithm will perform the

same operation as LRU (CLIMB) with probability ~�i, and with a complementary probability will

leave the cache state unmodi�ed. The analysis of this algorithm is similar to the previous ones.

4 Speeding-up the Convergence Rate

As explained in Section 2.2, it is desirable that caching algorithms converge quickly. However, there

may be instances where the convergence rate of the new caching algorithms is slow. Consider, for

instance, the case of a single document having a high access cost, equal to 100, and all the N � 1

other documents having a same low access cost, equal to 1. Then, upon a request for a low cost

document, the probability that the state of the cache will be updated does not exceed 1/100.

The ability to speed-up the convergence rates of the caching algorithms would be of particular

signi�cance, from both theoretical and practical perspectives.

The convergence rate of CLIMB-C (and CLIMB-S) can be signi�cantly improved, without

a�ecting the steady-state probabilities. This is mainly due to the reversibility property that the

underlying Markov chain of this algorithm satis�es.

The quick converging version of CLIMB-C, which we refer to as CLIMB-CF, works as follows.

Assume that the current cache state is ~� = f�1; �2; : : : ; �i; �i+1; : : : ; �Kg. Then, if page �i+1 is

requested, its position is exchanged with the preceding page �i; with probability min(1; c�i+1=c�i).

With complementary probability, the cache state is left unchanged. Similarly, if the requested

page, say page j, is not currently stored in the cache, then it replaces page �K , with probability
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min(1; cj=c�K ); otherwise, nothing is done.

Note that the transition probabilities of CLIMB-CF are always greater or equal of those of

CLIMB-C. In particular, documents with the same access cost are exchanged with probability 1.

The following theorem shows that the stationary probabilities of CLIMB-C and CLIMB-CF are

identical.

Theorem 3 Under the IR model,

�CLIMB-CF(~�) = �CLIMB-C(~�)

Proof: We show that the detailed balanced equations, given by eq. (6), are satis�ed. We distin-

guish between the same two types of transition, as in the proof of Theorem 1, part (ii). This time,

we show the proof for the case where the page at the bottom of the cache is being replaced by a

new page. Let ~� = f�1; �2; ; : : : ; �K�1; �Kg and ~�
0 = f�1; �2; : : : ; �K�1; jg. Without any loss of the

generality, assume c�K > cj . Then,

q(~�; ~�0) = pj �
cj
c�K

; q(~�0; ~�) = p�K

and

q(~�; ~�0)�(~�) =

�
pj �

cj
c�K

�
�

 
C2 �

KY
i=1

(p�ic�i)
K�i+1

!

= p�K �

 
C2 �

KY
i=1

(p�ic�i)
K�i+1 �

pjcj
p�K c�K

!

= q(~�0; ~�)�(~�0);

which proves the statement.

One can envision a similar mechanism aiming at speeding-up LRU-S (or LRU-C). For instance,

with LRU-SF, when page i is requested, it is placed at the head of the cache with probability
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min(1; s�1=si), where s�1 is the size of the page currently at the head of the cache. Unfortunately,

the steady-state performance of LRU-SF is not identical to LRU-S. Nevertheless, LRU-SF still

performs comparably to caching algorithms of higher complexity, as shown in the next section.

Another simple way to accelerate the convergence rate, at the expense of possibly reduced

steady-state performance, is to set a higher value for the minimum size smin (or, respectively, a

lower value for the maximal cost cmax). For instance, if there are only a few documents of size

smaller than 1K, then smin may be set to 1K. If a document of size smaller than smin is requested,

then it is handled as a document of size smin.

5 Numerical Results

In this section, the performance of the new algorithms are illustrated through a couple of examples.

We focus on the LRU algorithm and its variants, which are expected to be the most useful in

practice. The following results show that the new randomized algorithms achieve high performance,

at low implementation complexity.

We �rst use simulation to compare the performance of the LRU-S, LRU-SF, GDS and LRU

algorithms. We consider N = 500 documents and assume that the popularity of the documents

follows a Zipf distribution, pi = !=i�, where � = 0:8 and ! is a normalization constant. The �le

sizes (in kilobytes) are generated according to the following heavy-tailed distribution

Pr(s > x) =
1

1 + x
:

Figure 2 depicts the hit ratio of the various algorithms as a function of the cache size. The

cache size is given as a fraction of the amount of memory needed to achieve 100% hit ratio. The

�gure shows that LRU-S exhibits the best performance, while LRU-SF and GDS are statistically

equivalent, and LRU performs the poorest.
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Figure 2: Simulation Results

In Fig. 3, we compare the performance of LRU-S, GDS and LRU, using real traces of requests

to a Web proxy cache [DEC96]. In this graph, we present the results we obtained from the �rst two

days of the traces, representing over 10G of data (results from other parts of the trace are similar).

The data were post-processed similarly to the method described in [CaI97]. The hit ratio depicted

in Fig. 3 is given as a fraction of the maximal achievable hit ratio. This latter quantity is smaller

than 1 (typically 0.5) because many documents are requested only once over the trace. In order to

speed-up LRU-S, we set smin equal to 10K. From Fig. 3, we observe that LRU-S performs slightly

better than GDS, and signi�cantly better than LRU. We note that the results obtained with real

traces are qualitatively similar to those obtained with simulation, although LRU seems to perform

better with the real traces. This reinforces the case for the IR model, as a useful tool for predicting

the relative performance of web caching algorithms.
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Figure 3: Trace Results

6 Concluding Remarks

In this paper, we have proposed new scalable algorithms for web caching. We have shown that

randomization is the key feature in achieving full scalability. We have introduced new algorithms

called LRU-C and CLIMB-C, and LRU-S and CLIMB-S, which, respectively, address the non-

uniform access cost and and the non-uniform size properties of web documents. We showed that

the performances of these algorithms under an augmented version of the IR model are fully dual

to those of the classical LRU and CLIMB algorithms under the standard IR model. Note that

this result is extendible to other Markovian algorithms [ACK87] such as FIFO. The analysis of the

CLIMB algorithm provided interesting insight into ways of increasing the responsiveness to non-

stationary trends. In particular, we showed that CLIMB-CF, a variant of the CLIMB-C algorithm,
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may exhibit a convergence rate signi�cantly faster than CLIMB-C while achieving the same steady-

state performance. Through numerical simulations and real traces experiments, we showed that

the new algorithms achieve performances comparable to existing algorithms of higher complexity.

Throughout the work, we have focused on optimizing the hit ratio metric. However, when

bandwidth is scarce, other performance measures may be of interest such as the \byte hit ratio"

and the \packet savings ratio" [CaI97] that is, the percentage of packet transmissions saved by the

cache. Our algorithms can easily be tuned to optimize these performance metrics by appropriately

setting the cost parameter ci. For instance, according to [CaI97], a cache hit's packet saving is (2+

dfile size=536e), as an estimate of the actual number of network packets needed to be transmitted

if the request is a cache miss (1 packet for the request, 1 for the reply, and dfile size=536e extra

data packet(s), assuming a 536-byte TCP segment size). In such a case, the access cost of document

i is ci = 2 + dsi=536e.

An important feature, which we haven't considered here, is the �nite life time of web documents.

Web caches may potentially store stale documents which are useless to the users, such as pages

reporting out-dated stock quotes. An important area for future research is in the development of

caching algorithms that do not only take into consideration the popularity of documents, but also

their degree of freshness.
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