Integrating TwoTowers and GreatSPN
through a Compact Net Semantics

Marco Bernardo?

Universita di Urbino, Centro per ’Appl. delle Scienze e Tecnol. dell’Informazione
Piazza della Repubblica 18, 61029 Urbino, Italy

Nadia Busi

Universita di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Marina Ribaudo

Universita di Genova, Dipartimento di Informatica e Scienze dell’Informazione
Via Dodecaneso 35, 16146 Genova, Italy

Abstract

Stochastic process algebras (SPAs) and stochastic Petri nets (SPNs) are two well
known formal methods for the functional and performance modeling and analysis of
computer, communication and software systems. Starting from the mappings from
process algebras to Petri nets proposed in the literature to provide a truly concurrent
semantic framework to concurrent programming languages, in this paper we define
a new SPN semantics for SPAs in order to facilitate the integration and the cross
fertilization between the two formalisms. We then prove that our net semantics
is correct via a retrievability result. Afterwards, we demonstrate that it improves
on the previously proposed net semantics with respect to the size of the resulting
SPNs and on the standard interleaving semantics because of the detection of system
symmetries. Furthermore, we illustrate its usefulness by showing how to reinterpret
at the SPA level the results efficiently obtainable at the SPN level. Finally, we
describe the implementation of our net semantics that has been realized to integrate
the EMPA,, based software tool TwoTowers with the GSPN based software tool
GreatSPN.

I Corresponding author. E-mail: bernardo@sti.uniurb.it

Preprint submitted to Elsevier Preprint 12 July 2006

1 Introduction

The complexity of the modern computer, communication and software systems
calls for the development of suitable formal description techniques for their
modeling and analysis. In the literature, both process algebras and Petri nets
have received much attention, as witnessed by their extensive investigation
in the last four decades (see, e.g., [24,27] and the references therein). Process
algebras and Petri nets have been studied not only in isolation but also jointly,
the purpose being that of providing a truly concurrent semantic framework to
concurrent programming languages. This has been accomplished by means of
semantic mappings from process algebras to Petri nets [19,16,25,9].

More recently, it has been recognized that the net semantics for process alge-
bras have an applicative relevance, as they facilitate the integration of the two
formalisms making possible the exchange of modeling capabilities and analysis
techniques between them [25,28,4,3]. This is especially important since the two
formalisms are characterized by complementary strengths. On the one hand,
process algebras offer a compositional linguistic support to system modeling
together with congruences that are useful for compositionally reducing the
state space underlying the process terms before analyzing them [24]. On the
other hand, Petri nets provide a truly concurrent framework equipped with
structural analysis techniques that avoid the construction of the underlying
state space [27]. Such considerations are valid not only from the functional
point of view, but also from the performance point of view [22,20,8,11]. In
particular, they have been taken into account in [3], where a formal approach
to the modeling and analysis of complex systems has been proposed, which is
based on stochastic process algebras (SPAs) and stochastic Petri nets (SPNs).
The objective of the approach is to allow both functional and performance
aspects of systems to be considered from the early stages of their design, so
that malfunctionings and inefficiency can be detected from the very beginning,
thereby avoiding project cost increases that would be caused by their late dis-
covery. In order to be effective, this integrated approach must be implemented
through a software tool that should assist the performance modeler. Addition-
ally, such a software tool should made transparent to the performance modeler
the transformation of SPA models into SPN models and the reinterpretation
at the SPA level of the results of the analysis conducted at the SPN level.

Two fundamental techniques are known in the literature for defining the se-
mantics for a language: the denotational one and the operational one [30]. In
this paper we concentrate on the latter technique, i.e. we consider only op-
erational SPN semantics for SPAs. The reason is that operational mappings
define abstract machines, whose implementation is straightforward in a soft-
ware tool, that generate SPN models in an incremental way. The operational
mappings from SPAs to SPNs can be evaluated on the basis of their com-

pactness. By compactness we mean the size of the resulting SPNs in terms of
number of places and transitions. Obtaining a more compact SPN may lead to
a more efficient functional and performance analysis of the modeled system,
since the underlying linear equation system on which the analysis is based can
be smaller.

In the literature, two different approaches to operational Petri net semantics
for process algebras have been defined. In the location oriented approach, the
Petri net corresponding to a process term contains a place for every position of
the sequential subterms with respect to the static operators (such as hiding,
relabeling, and parallel composition). As a consequence, the resulting nets
turn out to be 1-safe, i.e. every place contains at most one token at any time.
All the information about the syntactical structure of the terms is encoded
within the places, so that the relationships among the sequential terms are
smoothly preserved. This is exploited to define the net transitions by means
of inductive rules similar to those for the interleaving semantics for the process
algebra, as shown in [16,25].

In the label oriented approach, instead, each net place corresponds to a se-
quential subterm independently of its position with respect to the static oper-
ators. As a consequence, the instances of the same sequential term occurring
in different positions with respect to the static operators can be represented by
multiple tokens within the same place. This is possible because the syntactical
structure of the process terms with respect to the static operators is no longer
fully retained within the net places associated with the sequential subterms.
Therefore, the correspondence between the inductive rules for generating the
net transitions and the inductive rules of the interleaving semantics for the
process algebra no longer holds. In this approach the net transitions are de-
fined by axioms. For instance, in [9] five axioms are employed to derive the
net transitions, with the resulting nets including places with inhibitor arcs to
model scope extrusion and unguarded choice. As another example, in [4,3] only
one axiom is employed, the price to be paid being the introduction of places
with inhibitor and contextual arcs in which information about the syntactical
structure is kept.

In terms of compactness, the label oriented approach is advantageous since the
resulting nets are not necessarily 1-safe and therefore they can be smaller than
those obtained with the location oriented approach. Furthermore some terms,
for which an infinite net is generated in the location oriented approach, give
rise to a finite net in the label oriented approach [10]. Given the applicative
relevance of the integration of SPAs and SPNs, the label oriented approach
seems to be the approach of choice to realize such an integration due to its
compactness.

The weakness of this approach is that additional places with inhibitor and

contextual arcs are employed to handle static operators. Actually, in [4,3] it has
been proved that these places with the related arcs can be removed a posteriori;
this makes the nets simpler but requires an additional computational step.
The purpose of this paper 2 is to further elaborate on the label oriented
SPN semantics of [4,3] by avoiding the introduction of additional places with
inhibitor and contextual arcs altogether. The novel idea to achieve that is to
suitably decorate the actions within the sequential terms associated with the
net places in order to keep track of the occurrences of the static operators,
without falling in the excess of information of the location oriented approach.

The new label oriented net semantics is developed by focusing on EMPA,,
(Extended Markovian Process Algebra with generative-reactive synchroniza-
tions) [8] and on GSPNs (Generalized Stochastic Petri Nets) [1]. The reason
is twofold. First, the structure of EMPA,, actions has been strongly influ-
enced by the structure of GSPN transitions, so the mapping from EMPA,,
terms to GSPNs should be natural. Second, analysis tools — TwoTowers [3]
and GreatSPN [13] — have been developed for both formalisms, so that the
integration of the two formalisms can be realized in practice. It is worth noting
that, since the semantics is intended to be implemented in a software tool that
should assist the performance modeler, all the details of the transformation
are completely transparent.

This paper is organized as follows. In Sect. 2 we recall EMPA,, and GSPNs.
In Sect. 3 we define an improved, label oriented GSPN semantics for EMPA,,
and we prove its correctness by showing that the interleaving semantics for
EMPA,, can be retrieved from it. In Sect. 4 we discuss the compactness of
the generated GSPNs both at the net level, with respect to the previously
proposed net semantics, and at the state space level, by showing that some
system symmetries are captured; we also exhibit a sufficient condition for the
finiteness of the generated GSPNs and we investigate the reinterpretability
of the analysis results. In Sect. 5 we describe how the novel label oriented
GSPN semantics for EMPA,, is implemented to integrate TwoTowers with
GreatSPN. In Sect. 6 we present an example in which we exploit the features
of the net semantics to measure the performance of a random polling system
when varying its parameters. Finally, Sect. 7 concludes the paper with some
remarks on related and future work.

2 Background

In this section we recall some concepts about the two specific instances of SPAs
and SPNs, respectively, we shall consider in the rest of the paper. In Sect. 2.1

2 Full and revised version of [5,6].

we introduce EMPA,, while in Sect. 2.2 we present GSPNs. The reader who
is already familiar with EMPA,, or GSPNs can safely skip the related section.

2.1 FExtended Markovian Process Algebra

EMPA,, [8] is a process algebra that allows both functional and performance
aspects of complex systems to be modeled. * The main ingredients of EMPA,,
are the actions and the algebraic operators. Each action is composed of a type
and a rate. Based on rates, an action is classified as exponentially timed if its
rate is a positive real number, immediate if its rate is infinite (denoted by 00,4,
with priority level [and weight w), and passive if its rate is left unspecified
(denoted by *,, with reactive weight w *).

Definition 2.1 Let AType be the set of action types, including the invisible
type 7, and ARate = Ry U {00 |1 € Ny Aw € Ry} U{x, | w € Ry}
be the set of action rates. We use a to range over AType, \ to range over
exponentially timed rates, A to range over nonpassive rates, and \ to range
over ARate. The set of actions is defined by

Act = AType x ARate
We define function priority level PL : ARate — Z by:

PL(%,) = —1
PL()\) =0
PL(OOLU,) =

The real number summation is extended to rates of the same priority level as
follows:

T = *witws

OOI,W1 + Ool,’uJQ = Ool,w1+w2
The multiplication of a rate by a real number is defined as follows:

*w P = kup
Rlw = P = Rl wp |

Definition 2.2 Let Const be a set of constants ranged over by A and let
ATRFun = {¢ : AType — AType | o (1) = {7}} be a set of action type
relabeling functions ranged over by ¢. The set L of process terms of EMPA,,

3 EMPA,, is an extension of EMPA [3] in which passive actions are given priority
levels and weights which are interpreted reactively, i.e. only among passive actions
of the same type.

4 We slightly depart from the definition of the syntax of the actions given in [§]
as no reactive priority level is associated with passive actions. The reason will be
explained in Appendix B.

is generated by the following syntax
E:=Y <a,\>E |E/L|Elg] | E|lsE| A

where I is a finite set of indices, > ;1 <aji, \i>.E; is denoted by 0 whenever
I =0,LS C AType — {7}, and A is equipped with a constant defining
equation of the form A £ E. We denote by sort(E) the set of action types

occurring in E. Moreover, we denote by G the set of closed and guarded terms
of L. |

The guarded alternative composition operator “Y ;c; <a;, \>._" expresses a
choice between several alternative behaviors whose first actions are made ex-
plicit. Term ;7 <a;, 5\1>E2 can execute an action with type a; and rate 5\1
and then behaves as term F;. In the case of exponentially timed actions, the
choice is solved according to the race policy: the action sampling the least du-
ration succeeds. In the case of immediate actions, they take precedence over
exponentially timed actions and the choice is solved according to the preselec-
tion policy: the immediate actions having the highest priority level are singled
out, then each of them is given an execution probability proportional to its
weight. In the case of passive actions, the choice is solved according to the re-
active preselection policy: the choice among passive actions of different types
is nondeterministic, while the choice among passive actions of the same type
is determined by giving each action an execution probability proportional to
its weight.

The functional abstraction operator “_/L” abstracts from the type of the ac-
tions. Term F/L behaves as term FE except that the type a of each executed
action is turned into 7 whenever a € L.

The functional relabeling operator “_[¢]” changes the type of the actions. Term
E[¢p] behaves as term E except that the type a of each executed action becomes

o(a).

7

The parallel composition operator “_||s ” expresses the concurrent execution
of two terms. Term F ||g Ey asynchronously executes actions of E; or F; not
belonging to S and synchronously executes actions of F; and Es belonging to S
according to the two following synchronization disciplines. The synchroniza-
tion discipline on action types establishes that two actions can synchronize
if and only if they have the same visible type in S, which becomes the re-
sulting type. The synchronization discipline on action rates is the generative
master-reactive slaves mechanism. In the case of synchronization of a nonpas-
sive action of type a having rate A executed by E; (FE5) with a passive action
of type a having rate *,, executed by Es (E}), the resulting nonpassive action
of type a has a rate/weight given by the original rate/weight multiplied by the
probability that Ey (E7) chooses the passive action at hand among its passive
actions of type a. Instead, in case of synchronization of two passive actions
of type a having rate x,, and *,, executed by E; and Es, respectively, the

resulting passive action of type a has a weight given by the probability that F
and Fy independently choose the two actions, multiplied by a normalization
factor equal to the overall weight of the passive actions of type a executable
by E; and E,. A synchronization between two nonpassive actions of the same
visible type in S is not allowed.

The functional abstraction operator, the functional relabeling operator, and
the parallel composition operator are said to be static operators. A term is
said to be sequential if its outermost operator is the guarded alternative com-
position.

The operational semantics for EMPA,, is the least labeled transition system
(LTS for short) satisfying the inference rules of Table 1. We consider the
operational rules as generating a multiset of transitions, where a transition
has arity m if and only if it can be derived in m possible ways from the
operational rules. As far as multisets are concerned, in the following we use
“{” and “[}” as brackets for multisets, “- @ 7 (“.©) to denote multiset
union (difference), and M(S) (P(S)) to denote the collection of multisets

over (subsets of) set S. In the table, W,(E) =Y {w | IE". E- L p }.

Definition 2.3 The integrated interleaving semantics of £ € G is the LTS
I[[Eﬂ = (Q’E, ACt, —E, E)

where G is the least subset of G such that:

o F € Gg;
a\
o if I} € Gg and By —— FE5, then Es € Gg;

and ———p is the restriction of ———— to the transitions between terms
in Gg. We say that E € G is performance closed if and only if Z[E] does not
contain passive transitions. |

We conclude by recalling that from Z[E] two projected semantic models can
be obtained by essentially dropping action rates or action types, respectively.
Before applying such a transformation to Z[E], lower priority nonpassive tran-
sitions are pruned because E is no longer to be composed with other terms as
it describes the whole system we are interested in; in other words, F represents
a closed system. The functional semantics F[E] is a LTS whose transitions are
decorated with action types only. The Markovian semantics M[E] is instead
a continuous or discrete time Markov chain, which is well defined only if E is
performance closed.

~ i, .
(GAC) Y cr<ap, \i>FE;——E; i€l

, X
E-— . F E-— . F
(FA1) 3 a¢ L (FA2) 3
a? T7
E/L-" EL E/L—" /L
a\
E—F
(FR) pla) A
Elp] —— E'y]
a\
B E
(PC1y) — a¢ S
By ||s B2 —— Ei |5 E2
a\
Bk
(PC1,) — ags
Eills B —— E ||s B}
a, U/,*w
Fl— Ei Ey— é
(PCZ[) ax w a € S
7 Wa (Eg) / ,
By |ls B2 ———— B ||s B
a,*qy a,\
El _— Ei EQ _— Eé
(PC2,) o a€S
’ Wa(El) ’ /
By ||s By —— E ||s £
Ak , Q¥ wy ,
BB B R
(PC3) e a€s
Ei|ls B ——— By ||s B
where: p=les witg W= Wo(Er) + W (E»)

1>

©crn — A

ac€l

EMPA,, operational semantics

2.2 Generalized Stochastic Petri Nets

GSPNs [1] are an extension of classical Petri nets which is suited to perfor-
mance evaluation purposes. A Petri net [27] is a bipartite graph whose classes
of nodes are called places (representing system conditions and resources) and
transitions (representing system activities), respectively. Unlike LTSs, Petri
nets support a distributed notion of state given by the marking of places with
tokens, which is formalized through a multiset.

GSPNs are Petri nets that comprise inhibitor arcs as well as exponentially
timed transitions with marking dependent rates and immediate transitions
equipped with priorities and marking dependent weights. We introduce below
a slightly different definition of GSPN where inhibitor arcs are removed and
passive transitions are added. This is because, when defining the new net
semantics for EMPA,,, inhibitor arcs will not be necessary whereas passive
actions will be mapped to passive transitions. Passive transitions will not be
generated in the case of performance closed terms. We assume an infinite
server semantics for transition firing.

Definition 2.4 A GSPN is a tuple
(P, AType x ARateM®) T, M)

where:

e P is a set whose elements are called places.

o T C M(P) x (AType x ARateMP)) x M(P) is a set whose elements are
called transitions.

o My € M(P) is called the initial marking.

The set M(P) of possible markings will be ranged over by M. n

In the graphical representation of a GSPN, places are drawn as circles con-
taining black dots called tokens (which describe the current marking of the
net) while transitions are drawn as boxes if exponentially timed, bars if imme-
diate, or black boxes if passive, with the appropriate labels. Each transition
t can be written as a function of the current marking M., which returns
the triple (°t, <a,5\(Mcurr)>,t') where °t is the weighted preset of ¢ (places
where tokens are consumed) and t* is the weighted postset of ¢ (places where
tokens are produced). Given a transition ¢, we draw an arrow headed arc from
each place in °t to t as well as from ¢ to each place in t*, where each arc is
labeled with the multiplicity of the related place (one is the default value for
arc labels), and we denote by PL(t) the priority level of the action associated
with it.

Definition 2.5 Let N = (P, AType x ARate™ ™) T, My) be a GSPN.

e Transition ¢ € T has concession at marking M € M(P) if and only if
*t C M. We denote by ET(M) the set of transitions enabled at marking
M.

e Transition t € ET (M), where M € M(P), can fire if and only if PL(t) €
{—1,max{PL(t") | ¥ € ET(M)}}. The firing of transition ¢t € ET(M)
produces marking M’ = (M © *t) @ t*. This is written M [a, \(M)) M".

e The reachability graph (or interleaving marking graph) of N is the LTS

Rg[[N]] = (RS<MO)7 ACt7 D’ MO)
where RS(Mjy) is the least subset of M(P) such that:
- Mo € RS(Mo);
- if My € RS(My) and M, [a, \(M,)) My, then M, € RS(M,). n

3 A New Label Oriented Net Semantics

In this section we present a new label oriented GSPN semantics for EMPA,,.
As we have seen in the introduction, the purpose of this semantics is to in-
tegrate the two formalisms, so that the performance modeler can profitably
exploit the corresponding analysis techniques. This semantics is intended to
be implemented in a software tool that should assist the performance modeler,
so that all the details of the transformation are made transparent.

The semantics is defined in three steps. In Sect. 3.1 we introduce a suitable
term oriented syntax for places and we show how to map terms onto the
places themselves. In Sect. 3.2 we provide a technique by means of which all
the transitions can be generated. In Sect. 3.3 we exhibit the definition of the
GSPN associated with a given EMPA,, term. In Sect. 3.4 we show that the new
net semantics satisfies the retrievability principle. For the sake of readability,
the definition of the semantics is presented pictorially and is guided by a small
running example. The reader interested in the formal definitions is referred to
Appendix A and B.

3.1 Net Places

The first step consists of introducing a suitable set of places as well as defining
a function which decomposes the terms into their sequential components and
maps them onto the places.

Since the sequential terms are represented by guarded alternative composi-
tions, these are used to formalize the places. Here the novel idea to keep track
of the static operators is to suitably decorate the actions within the net places,
thus avoiding the introduction of inhibitor and contextual arcs as well as the

10

excess of information of the location oriented approach. Each action type a

becomes
aG,R,U

Decoration 6 € {7,e} is used to remember to hide certain actions. Decoration
R is a set of conflicts employed to avoid clashes within the scope of a func-
tional relabeling operator. Its presence is required by the fact that the actions
will be directly relabeled within the net places. We define Conf as an infinite
set of conflicts (ranged over by r) on which the following operation is defined
to introduce the notion of complementary conflicts:

~: Conf — Conf,r=r
Finally, decoration ¢ is a string of combinators used to correctly handle the
synchronizations. We define Comb as an infinite set of combinators (ranged
over by k) and we consider the set Comb™ of combinator strings (ranged over
by o), on which the two following operations are defined to introduce the no-
tions of complementary combinators and combinator reduction:

~: Comb — Comb, k=k

® : Comb* x Comb* —e» Comb*, ck ® ok = o
The reduction operator is extended to a multiset m over Comb™ as follows:

Om— O ey @m!)if o, k,m'.m = { ok, ok} &m'

m otherwise

Definition 3.1 The set of places is defined by
V= {Sier<al™ 7 N>.E; | 0; € {1,¢} A
R; € P(Conf) A
o; € Comb™ N
E, g’}
where the summation is associative and commutative, G’ is obtained from G
by replacing AType with AType' = AType x {1,e} x P(Conf) x Comb* with

(a,0, R, o) denoted by a7, a®%¢ denoted by a, and AType’ x ARate denoted
by Act’. V and M(V) will be ranged over by V and @, respectively. n

Now we pictorially show how terms are decomposed into sequential subterms
and then mapped onto places having the syntax above. The reader interested
in the formal definition of the decomposition function dec is referred to Ap-
pendix A.

In the case of the guarded alternative composition, dec(>;c; <as, 5\1>Ez) is
given by

Z <as, 5\i>-Ei
i€l

11

In the case of the functional abstraction, dec(<a, A>.F)/{a}) is given by

Q <a™e A\>.FE{a""¢ /a}

where syntactical substitution {a™”¢/a} applied to term E gives rise to a
variant of E where every occurrence of a is replaced by a™?¢. Note that the
first decoration of action type a, i.e. 7, provides the information that a is
hidden and this will be subsequently used when generating the net transitions.

In the case of the functional relabeling, dec(<a,\>.E)[¢]) where p(a) =
©(b) = b is given by

Q e e ys B ek g, o))

Observe that the second decoration of action type b, i.e. rq, provides the
information that such an action originally had type a. This will be used at
transition generation time to avoid the creation of erroneous transitions, such
as the one that would result from the synchronization of action <a, \> with
action <b, %,,> within the scope of the same functional relabeling as above.
This is avoided by rewriting such an action type b as b*{7e}s with 7,, com-
plementary to 74, hence in conflict with it. A synchronization among a set of
decorated actions of the same type can occur only if no conflict exists among
their second decorations.

In the case of the parallel composition, we distinguish between two limiting
scenarios. In the case of full synchronization, dec(<a, A>.E ||1q) <a, *,>.F>)
is given by

<a®Pke \> B {a®VFa /a} @ Q <a® ke x> FBy{as0Fa /q})

Note that the two action types are given as third decoration two complemen-
tary combinators k and k, respectively, that reduce to . This information
will be used later to derive a synchronization transition. In the case of full

parallelism of replicas, dec(<a, A>.F ||y <a, A>.FE) is given by

Q <a,\>.FE

where the place above has multiplicity two. Having just one place captures
the symmetry of the term at hand and would have not been possible with the
location oriented approach.

Example 3.2 Let us a consider a simple system composed of two identical
processes accessing the same memory module in mutual exclusion. This sys-
tem can be described in EMPA,, as follows:

12

Sys = ((Proc||p Proc) ||{acq,rety Mem)/{comp}

1>

Proc

Mem = <acq, *,>.<rel, x,>. Mem
where comp denotes a local computation (which is therefore hidden) while acg,
use, and rel denote the acquisition, use, and release of the memory module,
respectively.

<comp, \>.<acq, p>.<use,d>.<rel,y>.Proc

1>

The decomposition of Sys is computed as follows:
dec(Sys) = dec(((Proc ||g Proc) ||{acq,rety Mem)/{ comp})
= dec(((Proc ||y Proc) || tacq.rety Mem){comp™®</ comp})
= dec((Proc ||p Proc){comp™®= /comp} ||{acqrer}
Mem{ comp™®= / comp})
— dec((Proc{ comp™<] comp} ll Proc{ comp™ /comp}) llacqsets
<acq, k> <rel, %, >. Mem)
= dec((<comp™° \>.<acq, p>.<use, §>.<rel,y>.Proc’ ||
<comp™= A\>.<acq, p>.<use,§>.<rel,y>.Proc’) | {acq,ret}
<acq, k> <rel, x,>. Mem)
= dec((<comp™° \>.<acq, p>.<use, §>.<rel,y>.Proc’ ||y
<comp™=, A>.<acq, p>.<use,6>.<rel,v>.Proc’)
{acq®"F1 [acq, rel>P*2 [rel}) &
dec((<acq, %> <rel, %, > . Mem){ acg"*' / acq, rels’w’EQ/rel})
= dec(<comp™®, A\>.<acg®®* | u>.<use, §>.<rel*V 2 ~> Proc” llo
<comp™€ N> . <acg®PF > <use, §>.<relsVk2 v>.Proc") ®
dec(<acg="*1, s> <1l k> Mem”)
= dec(<comp™®, A\>.<acg®P* | u>.<use, §>.<rel*0ke v>.Proc") @
dec(<comp™, \>.<acg®P | 1> <use, §>.<relsVkz v>.Proc") ®

{| <acg®®1 s> <rel2 x> Mem' [}

= {| <comp™<, \>.<acg= M, > <use, 6> . <rel”*:

,v>.Proc”,
<comp™= \>.<acg®"* | > . <use, 5>. <rel*0ke ~v>.Proc”,

<acq5’@’E1, >l<w>.<7"ele’(/)’k27 k> Mem/ [}
where

13

A
Proc’ = <comp™* \>.<acq, u>.<use,6>.<rel,y>.Proc’
Proc”

Mem/

Note that the decomposition comprises two places, the former of which has
multiplicity two (it appears twice in the multiset). This correctly captures the
symmetry in the system due to the presence of two independent replicas of
Proc. |

1>

<comp™= \>.<acg®"* | > . <use, 5>. <rel*0ke, ~v>. Proc”

>

<acg®PF x> <relPF2 x> Mem!

3.2 Net Transitions

The second step consists of connecting by transitions the places arising from
the decomposition of the terms. This is achieved by exploiting the action
decorations introduced in the first step. Again, we pictorially show how the
transitions are generated. The reader interested in the formal definition of the
transition generation is referred to Appendix B.

In the case of the guarded alternative composition, > ;c; <a;, \i>.F; has the
following transitions

a17>\1

dec(E1) dec(Es) dec(Ey,)

In the case of the functional abstraction, (<a, A\>.FE)/{a} has the following 7

transition
Q <a™% \>.F{a™"¢ /a}

[N

dec(E{a™"¢/a})

In the case of the functional relabeling, (<a, A>.F)[p| where p(a) = ¢(b) = b
has the following b transition

14

Q e ys B e pe ke)

)

dec(E{b*Arav}2 Jq be{Tav}e /b))

In the case of full synchronization, <a, A>.E; H{a} <a, *,,>.FE5 has the follow-
ing a transition

<a®Vka > By {a®Fa Ja} <as ke s> Ey{as0Fe [q}

a, A\

N\

dec(E1{as"< /a}) dec(E2{a®"F< /a})

In the case of full parallelism of replicas, <a, \>.FE ||y <a, A>.F has the fol-

lowing a transition
Q <a,\>.F

|::| a, A Mcurr(<aa A>E)

dec(E ||p E)

Notice that the transition has a rate which depends on the current marking
My Initially, the input place will contain two tokens representing the two
identical subterms of the parallel composition, hence the rate will be 2 - \.
After one firing of the transition, the input place will contain only one token,
hence the rate will decrease to A, as expected.

Example 3.3 Let us a consider again the simple system of Ex. 3.2. Starting
from the two places

Vi = <comp™e A> . <acg®PF | > <use, §>.<reloVk2 ~v>. Proc”

Vo = <acq®PM s, >.< rel®0k2 k> Mem/

forming its decomposition, a single transition labeled with 7, A can be gener-
ated whose preset is V; and whose postset is given by

15

Vy = dec(<acg™" ™ u>.<use, 6>.< rels0kz v>.Proc")

= {| <acg®®*, u>.<use, §>.<rel%*2 ~> Proc" I3
In contrast, no transition can be generated having as preset the place V5 be-
cause combinator k; does not reduce to the empty string. Such a reduction
is instead possible when considering V3 and V5 together. They constitute the
preset of a transition labeled with acq, 1 whose postset is composed of places

Vi = dec(<use, 5>.<rel®%*2 ~> Proc") = {| <use, §>.<rel*"*2 > Proc" |}

Vs = dec(<rel®™2 x> Mem') = {| <rel®™*2 x> Mem' |}

By proceeding in this way, we can generate all the transitions in the net cor-
responding to Sys. Along with the transitions, an additional place will be
generated:

Vo = dec(<rel®®2 > Proc") = {| <rel®%*2 ~> Proc" | n

3.3 Net Construction

Once all the places and all the transitions have been generated in the first two
steps, a GSPN can be constructed for the term under consideration.

Definition 3.4 The integrated net semantics of E € G is the GSPN
N[E] = (P, AType x ARateMPEN) 0\ dec(E))

where, recalling that ———,r is formally defined in Appendix B, Py is the
least subset of V' such that:

o dec(E) C Ppy;

norm(<a,A\>,B,f1,f2)

o if Q1 C Pgpy and (4 N Q2, then Q2 C Pg pr;

and ———p n is the restriction of ———, to the transitions whose preset
and postset are entirely in Pg . |

Example 3.5 Let us a consider again the simple system of Ex. 3.2 and 3.3.
The corresponding GSPN is shown in Fig. 1, where the names of the places
are as indicated in Ex. 3.3. |

3.4 Retrievability Principle

In order to prove the correctness of the net semantics for EMPA,, we have just
illustrated, we follow the approach of [25] by establishing a retrievability result.
Such a result shows that the interleaving semantics for EMPA,, is retrievable

16

rel,y

Fig. 1. N[Sys]

from the net semantics for EMPA,,, which means that the net semantics and
the interleaving semantics of a given term represent the same system both
from the functional and the performance point of view. In particular, from
the performance viewpoint it turns out that an EMPA,, term and its corre-
sponding GSPN give rise to two Markov chains that are lumping equivalent,
i.e. they can be transformed via lumping into the same minimal Markov chain.
This entails that, given a performance measure expressed through a reward

structure, the value of the measure is the same for the two Markov chains.

The retrievability result is established by proving for all E € G that RG[N[E]]
is Markovian bisimilar [8] to Z[E]. We first observe that these two LTSs are
not isomorphic in general. For instance, Fig. 2 shows RGN [Sys]] and Z[Sys].
As can be noted, there is no 1-1 correspondence between the states in the two
LTSs, but a Markovian bisimulation can be recognized in which several states
in Z[Sys] correspond to a single state in RG[N[Sys]]. This correspondence is
shown in Table 2, where we have introduced the following shorthands:

Procy = <acq, u>.<use,6>.<rel,~v>.Proc

1>

Procy = <use,d>.<rel,v>.Proc

1>

Procs

Mem1

<rel,~v>.Proc

(1>

<rel, x,>.Mem

Theorem 3.6 Let B={(E,Q) € Gx M(V) | Q = dec(F)} and let B’ be the
reflexive, symmetric and transitive closure of B. Whenever (F, Q) € B, then
for all a € AType, | € NU{—1}, and equivalence classes C' € (GUM(V))/B’

17

Fig. 2. RG[N[Sys]] and Z[Sys]

- a\ -
SUN 3B € C.E—" E'APL)\) =1]} =

SUAN3Q € C.Q—2 ' A PL(Y) = 1]}

Proof See Appendix C.]

4 Properties of the Net Semantics

In this section we investigate the properties of the net semantics just intro-
duced. We recall from the introduction that we aim at improving on the pre-
viously proposed net semantics in terms of the compactness of the resulting
GSPNs (number of places and transitions) and of their reachability graphs
(number of states and transitions). This is especially important for the anal-
ysis since the linear equation systems underlying the generated GSPNs can
be smaller. Likewise, it is important that the net semantics allows for an easy
reinterpretation at the process algebraic level of the results of the analysis
conducted at the net level. This is indispensable for the net semantics to be

18

Moy = {|V1,V1,Va lt|so = (Proc||g Proc) ||{acq,rel} Mem

M, = {| Vi, Vo, Vs |} 51 = (P?“OCl H@ PTOC) ||{acq,7’el} Mem

51

(PTOC ”@ PTOCl) ”{acq,rel} Mem
My = {| Va, V3, V3 |} S2 = (P?“OCl H@ PT’OCl) H{acq,rel} Mem

Mz = {| Vi, Vi, Vs ’} (PTOCQ H@ PTOC) H{acq,rel} Mem;

@
w
I

@
w
Il

(PTOC ”@ PTOCQ) ||{acq,7’el} Mem;

My = {| V3, Vi, Vs ’} 54 (PTOCQ H@ PT’OCl) H{acqmel} Mem,

o
2
Il

(P?“OCl H@ PTOCQ) H{acq,rel} Mem,

Ms = {{V1, V5, Vs [}|s5 = (Procs [lg Proc) || {acq,rery Mema

@
at
Il

(PTOC ”@ PTOCg) ||{acq,7’el} Mem;

M = {| V5, V5, Vi [} s6

(PTOC3 H@ PTOCI) H{acq,rel} Mem;

5/6 = (PTOCl H@ PTOC?)) H{acq,rel} Mem,

Table 2
Markovian bisimilar states in RG[N[Sys]] and Z[Sys]

used in practice.

In Sect. 4.1 we discuss the compactness of the generated GSPNs with respect
to both those generated by the location oriented approach of [16,25] and those
generated by the label oriented approach of [4,3]. In Sect. 4.2 we study the
compactness of the reachability graphs underlying the generated GSPNs with
respect to the LTSs of the corresponding process terms. In Sect. 4.3 we provide
some conditions under which the generated GSPNs are finite and we compare
them with the corresponding conditions for the location oriented approach.
Finally, in Sect. 4.4 we illustrate how to reinterpret at the process algebraic
level the results obtained at the GSPN level.

4.1 Comparison at the Net Level

In the location oriented approach of [16,25] the resulting nets are 1-safe,
i.e. every place contains at most one token at any time. As formally ex-
plained in Appendix A, this is a consequence of the decomposition clause
decioe(E ||s F2) = decioc(Eh) ||s id @ id ||s decioe(E2) for the parallel composi-
tion operator, which always keeps distinct the two subnets corresponding to
the two operand terms of the parallel composition operator. In our approach,
instead, the two subnets can collapse into a single one depending on Ey, FEs,

19

and S.

Theorem 4.1 Let Ey, Ey € G be two sequential terms. Then |dec(E; ||s Eq)| <
2 = |decioc(E1 ||s E2)|. Moreover, if Fy = Fy and (sort(Ey)Usort(E2))NS = 0,
then |dec(E ||s E2)| = 1.]

The theorem above straightforwardly generalizes to an arbitrary number of
sequential terms and gives an idea of the compactness that can be gained
using the proposed label oriented net semantics. This justifies why the label
oriented approach should be preferred to the location oriented approach from
an applicative point of view, especially when dealing with large systems in
which some parts are replicated.

We conclude by observing that the new label oriented net semantics improves
on that of [4,3]. In fact, the latter requires the introduction of additional
places with inhibitor and contextual arcs to store some information about the
syntactical structure of terms. Let us recall that in the graphical representation
of a net an inhibitor (contextual) arc is drawn as a circle headed line (simple
line), and that a transition having an incoming inhibitor (contextual) arc can
be fired only if the place from which the arc departs is unmarked (marked).
The three static operators are treated as follows according to the net semantics

N of [4,3]:

e The net semantics of (<a, A\>.F)/{a} is
I, <a,\>.E Ruir

where [, is an inhibitor place for all the transitions of type a and R,.; is a
contextual place for all the transitions of type a to be hidden.
e The net semantics of (<a, A>.F)[p] with p(a) = ¢(b) = b is

<a,\>.F Ra;b
b, A

I
a E/K:

N'TE[¢]

where R, is a contextual place for transitions of type a to be relabeled b.
e The net semantics of <a, A\>.E} ||{a} <a, *,>.Fy is

I, <a,A>.E1 Ry, 4,0 <a,%y>.Eo I,

SPANY, N

am:

N’[[El ll{a} Ez]]

where Ry, 4., is a contextual place for transitions of type a; or a, to be re-
labeled a.

By a direct comparison with the corresponding figures in Sect. 3.2, we imme-
diately see that the new label oriented net semantics produces GSPNs that
are more compact than those produced by the net semantics of [4,3] as the
former does not need any inhibitor or contextual place. Actually, in [4,3] it
has been proved that the introduced inhibitor and contextual places can be
removed a posteriori, but still this requires an additional computational step
with respect to the new net semantics.

4.2 Comparison at the State Level

As shown in Fig. 2, RG[N[Sys]] is smaller than Z[Sys]. Actually, with an
easy adaptation of the proof of the retrievability result, it can be shown that
the reverse never happens.

Theorem 4.2 Let E € G be a finite state term and let state(Z) be the set
of states of LTS Z. Then |state(RGIN[E]])| < |state(Z[E])|. In particular,
if £ = E)||s Ea, then |state(RG[N[E]])| < |state(Z[E])| whenever E; = E,
and (sort(Ey) U sort(Ey)) NS = 0. n

The second part of the theorem above straightforwardly generalizes to an arbi-
trary number of terms. Again, this is particularly important when dealing with
large systems in which some parts are replicated, since aggregated (with re-
spect to the Markovian bisimulation equivalence [8]) state spaces are obtained
without applying minimization algorithms such as [26].

21

4.8 Finiteness Result

Another nice property of our net semantics is that, in certain cases, it yields
finite GSPNs for infinite state terms. As an example, consider

A2 <, A>.(<a, p>.01lp <b,y>.A)
Then NA] is the finite net depicted in Fig. 3, while M.[A] has infinitely
many places and Z[A] has infinitely many states.

v i Vi = <d, >.(<a, u>.0]|p <b,v>.4)
Va Vs Vo = <a,pu>.0
7 7 Vs = <b,v>.A
L 1b,y
a, —
V4\? V,=0

O

Fig. 3. Finite net semantics of A = <d, >.(<a,p>.0||p <b,v>.A)

Theorem 4.3 Let £ € G be an infinite state term. If the three following
conditions hold:

e For each functional abstraction operator _/L occurring within a recursive
constant definition, sort(E) N L = .

e For each functional relabeling operator _[p| occurring within a recursive
constant definition, sort(E) N {a | p(a) # a} = 0.

e For each parallel composition operator _||s_ occurring within a recursive
constant definition, sort(E) NS = .

then N[E] is finite while N.[E] has infinitely many places and Z[E] has
infinitely many states. |

The theorem above shows that, for the considered class of infinite state terms,
a finite hence analyzable representation can be obtained only with our label
oriented net semantics. We conclude by recalling that, given a term F, we are
guaranteed that Nj..[E] has finitely many places and Z[E] has finitely many
states only if no recursive constant invocation occurs within the scope of a
functional abstraction, functional relabeling or parallel composition operator.

4.4 Analysis Result Reinterpretation

A desirable property of the net semantics is that of allowing functional and
performance properties derived from a GSPN to be reinterpreted at the level

22

of the process algebraic specification mapped onto that net. In this way one
can take advantage of the efficiency of the structural techniques developed for
GSPNs [27,11], thus importing such techniques in a formalism that does not
directly support them.

For GSPNs there are several structural analysis techniques which can be used
to derive functional properties without generating the underlying state space.
The most important structural technique is the one based on the computation
of P-invariants and T-invariants [27].

Definition 4.4 Let N = (P, AType x ARate™") T M) be a GSPN such
that |P| = m and |T'| = n. The incidence matriz of N is the matrix

A=la;] €Z™, a5 =1i°(j) —*i(j)
A P-invariant is an integer solution of
A-y=0
A T-invariant is an integer solution of

AT . x=0

P-invariants single out places that do not change their token count during
transition firings, whereas T-invariants indicate how often each transition has
to fire in order to reproduce a given marking. P-invariants and T-invariants
are computed starting from the incidence matrix and are independent from
any initial marking, which is only instrumental for their interpretation. As an
example of functional properties that can be proved by exploiting invariants,
it can be shown that a GSPN is bounded if for each of its places there exists
a P-invariant associating a positive value with that place, while a necessary
condition in order for a GSPN to be live and bounded is that for each of its
transitions there exists a T-invariant associating a positive value with that
transition.

As far as invariants are concerned, our net semantics allows for their reinterpre-
tation at the process algebraic level because net places are in correspondence
with (decorated) sequential subterms of the process algebraic specification
and net transitions are labeled with actions occurring in the process algebraic
specification.

Example 4.5 Let us consider again the system introduced in Ex. 3.2, whose
net semantics is depicted in Fig. 1. Its incidence matrix A is

23

Vi Vo Vs Vi Vs Vg
T|-10 1 0 0 0

acgl 0 =1 -1 1 1 O
usel 0 0 0 -1 0 1
rell 1 1 0 0 —1-1

The net has four P-invariants

yi=[101101]

ys =[101010]

ya=[010010]

yi=[010101]
and one T-invariant

xT=[1111]

By exploiting the P-invariants above, we are able to prove that the memory
is used in a mutually exclusive way. Since each P-invariant identifies a subset
of the places of the net whose token count is invariant under transition firing,
we know that

M(Vy) 4+ M(Vs) + M(Vy) + M(Vg) = 2
M(V1) + M(V3) + M(V5) = 2
M(V2) + M(V5) = 1

(

where M denotes an arbitrary marking while the constant occurring in each
equation is determined by the initial marking. To prove mutual exclusion, we
have to demonstrate that there is no state in which both processes can execute
an action of type use. At the net level, V} is the place representing a process
ready to perform action <use,d>, so we have to demonstrate that there is no
marking in which place V; contains more than one token. This can obviously
be done by constructing the reachability graph of the GSPN, but it can be
also done more efficiently by exploiting the information provided by the fourth
P-invariant, as it establishes that, for each reachable marking, the sum of the
number of tokens in places V5, V4, and Vg is one.

By exploiting the only T-invariant, instead, we are able to prove that the initial
state of the process algebraic specification is a home state, because the initial
marking of the GSPN enables the transition sequence <7, \>, <acq, u>, <use,
0>, <rel,y> whose transition count vector coincides with the T-invariant. m

24

On the performance side, we mention the existence of structural analysis tech-
niques for the computation of the maximum and the average numbers of tokens
in the places (which provide a measure of the level of parallelism of the mod-
eled system) as well as upper bounds on the throughput of the transitions
(hence of the corresponding actions), without generating the underlying state
space. This is accomplished at the net level by solving suitable linear pro-
gramming problems [11]. Also in this case our net semantics turns out to be
useful, because it allows for the reinterpretation of the bounds at the process
algebraic level. Again, this is made possible by the correspondence between
net places and sequential subterms as well as net transitions and actions. For
an example, the reader is referred to Sect. 6.

5 Integrating TwoTowers and GreatSPN

In this section we present an implementation of the net semantics proposed
in this paper that is realized to integrate the EMPA,, based software tool
TwoTowers and the GSPN based software tool GreatSPN. In Sect. 5.1 and 5.2
we recall some features of the two software tools, then in Sect. 5.3 we discuss
their integration.

5.1 TwoTowers

TwoTowers [7] is a software tool for the functional verification and performance
evaluation of computer, communication and software systems described in
EMPA,,. TwoTowers is composed of a graphical user interface, a compiler, an
integrated analyzer, a functional analyzer, and a performance analyzer.

The graphical user interface allows the user to edit EMPA,, specifications,
compile them into the semantic models, and run the various analysis rou-
tines. Additionally, it permits the editing of the specifications of functional
requirements and performance metrics.

The compiler is in charge of parsing EMPA,, specifications and signaling pos-
sible errors occurring in them. If a specification is correct, the compiler can
produce the semantic model on which further analyses are based.

The integrated analyzer checks whether some given integrated (i.e. functional
and performance) requirements are satisfied by a correct EMPA,, specification.
More precisely, the integrated analyzer contains a routine to check two correct,
finite state EMPA,, specifications for Markovian bisimulation equivalence [3].

The functional analyzer takes care of verifying that certain functional require-

25

ments are satisfied by a correct EMPA,, specification. This is achieved by
interfacing TwoTowers with a version of CWB-NC [15] obtained via PAC-
NC [14], thereby providing support for model checking, equivalence checking,
and preorder checking.

Finally, the performance analyzer computes certain performance metrics for a
correct EMPA,, specification. This is carried out via Markovian analysis, by
interfacing TwoTowers with a suitably modified version of MarCA [29], or via
simulation.

5.2 GreatSPN

GreatSPN [13] is a software package for the description, verification, and per-
formance evaluation of computer, communication and software systems using
GSPNs (and their colored extension). It provides a graphical user interface
for model editing and for structural properties and performance results visu-
alization. Once a GSPN model has been completely specified, its structural
analysis can start allowing the investigation of interesting model properties
without building its state space. Among the structural analysis modules, we
recall the one responsible for the computation of invariants for checking state
space boundedness, the one responsible for the computation of implicit places,
i.e. places which are redundant in the net, and the one responsible for com-
puting performance bounds.

If the GSPN is bounded, the modules responsible for the generation and the
analysis of the underlying state space can be invoked. After the derivation of
the reachability graph, functional properties like the presence of home states,
deadlocks, and livelocks can be computed. If the GSPN has a finite state
space, the underlying Markov chain is derived and transient or stationary
marking probability distributions can be computed as well as a number of
default and user defined performance measures. The GreatSPN architecture
contains also several simulation modules that cooperate with each other in
order to obtain the interactive simulation (supported by animation of the
graphic representation) and performance estimations.

5.8 Implementation of the Net Semantics

Given an EMPA,, specification, the newly implemented module of TwoTowers
for interfacing with GreatSPN generates the corresponding GSPN according
to the new net semantics by initially producing all the places. This is ac-
complished by computing the decomposition of the initial constant defining
equation of the specification (which corresponds to the initial marking), and

26

by repeating this procedure for each sequential term associated with a place
after removing its outermost action prefixes. As an example, if the sequen-
tial term associated with a given place is Y ;c; <af“Ri’gi, 5\i>.E¢, we compute
dec(E;) for all ¢ € I. The places, as well as the sequential terms, are stored in
a hash table for efficient retrieval. The bucket of a term points to the buck-
ets of the related places resulting from its decomposition; in this way, it is
straightforward to see whether the decomposition of a given term has already
been computed or not. Similarly, the bucket of a place points to the bucket
of the related sequential term; this allows an efficient reinterpretation at the
process algebraic level of analysis results computed at the net level.

Once all the places have been generated, the transitions can be produced. To
do this, we examine the parallel composition related decorations of the actions
within the places in order to build transition presets according to Condition (3)
of Appendix B, which establishes that the combinator strings of the selected
actions in each place of the preset pairwise reduce until the empty string is
obtained. More precisely, in the first round we consider those places having
some actions with the empty string as combinator string. Such places cannot
synchronize with any others and hence give rise to transitions with a singleton
preset. In the next rounds, we consider the remaining places two by two and
we try to reduce the combinator strings of their selected actions. Three cases
arise:

e If two places combine and the resulting combinator string is not empty,
a new dummy place is generated which is considered in the subsequent
rounds instead of the two original places. The dummy place contains the
information about the two places that have generated it and is given the
resulting combinator string.

e If two places combine and the resulting combinator string is empty, a new
synchronization transition is generated and the two places will no longer
be considered in the subsequent rounds. The preset of the newly generated
transition is composed of these two places. When one or both of them are
dummy places, their expansion is included in the preset instead.

e If two places do not combine, nothing happens.

The number of rounds is bounded by the length of the longest combinator
string occurring in the generated places.

Given an EMPA,, specification, TwoTowers produces the corresponding GSPN
in the format expected by GreatSPN using the algorithm above. This GSPN
can be analyzed by invoking via TwoTowers the routines implemented in
GreatSPN for the computation of P-invariants, T-invariants, maximum and
average numbers of tokens in the places, and upper bounds on the throughput
of the transitions. Finally, some user defined performance measures can be
specified at the net level and then evaluated on the underlying state space.

27

6 Computing Performance Bounds for Random Polling Systems

In this section we apply the new GSPN semantics to the EMPA,, specifica-
tion of a simple multi-server multi-queue system (MSMQS) to show that the
semantics is able to detect and exploit symmetries and allows performance
bounds to be efficiently computed.

A MSMQS is composed of a set of waiting lines that receive arrivals from
the external world, and a set of servers that attend the queues (stations) and
provide service when required (i.e., when some customers are waiting in the
queues). Different MSMQSs can be obtained depending on the features which
are specified, such as the number of queues, their sizes, the customer arrival
process at each queue, the number of servers, the service time distribution,
the walk time distribution, and the service policy. Many variations of these
types of systems have been investigated in the literature since they are quite
easy to understand but their analysis is not trivial. Performance analysis of
MSMQSs through GSPNs can be found in [2], while SPA models of MSMQSs
are considered in [22].

Our example is a MSMQS composed of n € N, queues and m € N servers,
with m < n. For simplicity, each queue has capacity one including the cus-
tomer in service when appropriate. Each server randomly polls a queue and
checks if there is a customer to be served. If so, it removes the customer from
the buffer, serves it, and then walks to the next randomly chosen queue, even
the one it has just visited. We assume that the servers and the queues have
the same timing characteristics: arrival times, service times, and walk times
have rates A, 4, and w, respectively. Note that the system is symmetric with
respect to both the servers and the queues.

The EMPA,, specification of the architecture of the MSMQS at hand is the
following;:

RPSpn 2 (SlloSllo---lloS) I2(@llo @llo- - 0 @)
T = {is_full, serve}

Each server is specified as follows:
S 2 <walk,w>.(<is_full, 009 1>.<serve, u>.5 +

<is_empty, 001 1>.5)
After the execution of action <walk,w>, the server reaches a queue and checks
if there is a waiting customer. Immediate action <is_full, 0oz 1> models this
situation and, if enabled, it is executed in zero time; then a service is provided
(action <serve, i>) and the server repeats its behavior. If the queue is empty,
the server leaves it by executing immediate action <is_empty, 001> and re-

28

peats its behavior. Note that action with type is_full has priority level 2 while
action with type is_empty has priority level 1, meaning that if a customer is
waiting in the randomly chosen queue, the server does serve it, as expected.

Each queue is specified as follows:
Q 2 <arrive, \>.<is_full, x,>.<serve, x,>.0Q)

Customer arrivals are modeled through action <arrive, \>. The other two
actions are passive within this component: their rates will be determined upon
synchronization with the corresponding nonpassive actions performed by a
server when polling the queue.

Q1

n

arrive, A - Meyrr (Q1))
is-full, oca o serve, - Meury(S3)

Q2
—~O—l

S A Sy

nl

walk| w - Mey,r(S1) is_empty, 0011 ‘

Fig. 4. N[RPS 1]

The GSPN corresponding to RPS,,, is shown in Fig. 4. As explained in
Sect. 5.3, it is obtained by computing the initial marking

dec(RPSmn) = dec((SllaSlo--1loS) lgis_punserve} (@ llo @ llo - - [lo @))
oS llo - lloS){ds_fulle® Jis_full, serve=®*2 / serve} &

(
(S
dec(QlloQllo - - - o Q) {is_full ™™ Jis_full, serves®*2 / serve}
(
(

= dec

= dec(S1]loS1llo---|loS1) @
dec(Q1 1o Q1 llo---1lo Q1)
= {’Sl,sl,...,Sthlea"'7@1 ‘}

and then generating all the places

29

S

Sy = <z’s,fulla’®’k1, 00271>.Sg +

<walk,w>.5

<is_empty, 0011>.5]
Sy = <serve®l*2 > .S,
Q1 = <arrive, A>.()2
Qs = <i3,fulla’0’E1, k>3

Q3 = <servec*2 s, > 0,

Place S7 models the servers before polling a queue. When this place is marked,
the transition of type walk is enabled and its firing represents one server
reaching a queue. The rate of this transition varies according to the marking
of place S;. Place S5 represents the servers in front of the queues. The arrival
of a new customer is modeled by the transition of type arrive whose rate varies
according to the number of tokens in (). If there are waiting customers, i.e.
place ()5 is marked, the immediate transition of type is_full can fire modeling
a synchronization between one server and one queue. Now the transition of
type serve can fire modeling the provision of service. If there are no waiting
customers, the immediate transition of type is_empty can instead fire.

Note that the symmetry in the roles of the servers and the queues is reflected
at the net level by the presence of two subnets. The former is composed of
places S1, Ss, and S5, while the latter is composed of places @1, (2, and Q5.
Changes in the number of servers and/or queues do not alter the structure of
the net but only its initial marking.

Given the GSPN model of Fig. 4 automatically produced by TwoTowers, we
can run both TwoTowers and GreatSPN to compute the system throughput
for A =1, p = 2, and w = 3, when varying the numbers m of servers and
n of queues from 1 to 5. The results are shown in Table 3. The third and
fourth columns refer to TwoTowers and describe the number of states of the
integrated interleaving semantics and the value of the service throughput, re-
spectively. The last three columns, instead, refer to GreatSPN and describe
the number of states of the reachability graph of the integrated net seman-
tics, the system throughput, and an upper bound on the system throughput,
respectively. As can be observed, for systems exhibiting a high degree of sym-
metry, working with TwoTowers at the integrated interleaving semantic model
level requires an amount of time which grows exponentially with the number
of servers and queues. Instead, working with GreatSPN on the GSPN model
derived from TwoTowers by applying our net semantics requires an amount of
time which grows linearly with the number of servers and queues. Moreover,
with the GSPN model it is possible to avoid the state space construction if
we restrict ourselves to compute bounds on the system throughput.

30

m|n||#Z[RPSm] |throughput||#RG[N[RPS., »]] |throughput jupper bound
1)1 5 0.545455 5| 0.545455 0.666778
112 12| 0.923077 8| 0.923077 1.200000
2|2 29| 1.159270 11} 1.159270 1.333333
113 28| 1.116280 11} 1.116280 1.200000
2|3 78| 1.636170 16| 1.636170 2.000000
3|3 177 1.796080 191 1.796080 2.000000
114 64| 1.182550 14| 1.182550 1.200000
2|4 200| 1.997520 21] 1.997530 2.400000
34 504 2.318680 26| 2.318680 2.666700
4/4 1089 2.443010 29| 2.443010 2.666700
115 144 1.197440 17 1.197440 1.200000
2|5 496| 2.224840 26| 2.224850 2.400000
3|5 1368| 2.766000 33| 2.766010 3.333333
415 3210| 2.991610 38| 2.991610 3.333333
51} 6693 3.095440 41 3.095430 3.333333
Table 3

Results of the analysis of RPS,,

7 Conclusion

In this paper we have presented and proved correct a new label oriented GSPN
semantics for EMPA,,, which improves all the net semantics previously pub-
lished in the literature with respect to the size of the generated nets and
allows functional and performance properties efficiently derived at the GSPN
level via structural techniques to be reinterpreted at the EMPA,, level. Be-
cause of its practical advantages, such a label oriented GSPN semantics has
been implemented to integrate the EMPA,, based software tool TwoTowers
with the GSPN based software tool GreatSPN, in order to create a tool for
the formal modeling and analysis of complex systems that benefits from the
complementary strengths of both formalisms.

Related Work. A comparison with the net semantics for process algebras
previously proposed in the literature has been made throughout the paper. As
we have seen, one of the advantages of our new semantics — the compactness of
the resulting GSPNs — allows system symmetries to be captured and exploited
at analysis time.

31

The detection of symmetries for state space reduction is not new in the field of
SPAs. In [18] a reduced state space underlying a PEPA [22] model is obtained
by building equivalence classes of states and by considering one element for
each class only. Equivalence classes of states are computed syntactically by
looking at the structure of the terms and by considering as equivalent those
states which differ in the position of the components within a parallel com-
position. For example, if we consider the term F ||g F, its possible derivatives
FE||s E' and E' ||s E are considered equivalent and therefore belong to the same
equivalence class. The reduction in the size of the state space is not optimal
— it is still possible to find states which are Markovian bisimulation equiva-
lent but do not belong to the same equivalence class — but it is stronger than
ours since it works for synchronized replicas whose corresponding GSPNs are
kept distinct in our framework. In this respect, it is worth observing that the
advantage of having a GSPN representation of an EMPA,, term is not lim-
ited to state space reduction only. In fact, structural techniques for functional
verification and performance evaluation like those mentioned in Sect. 4.4 can
be applied to the GSPN representation of an EMPA,, specification, thereby
avoiding the construction of the underlying state space.

Another approach to state space reduction is discussed in [21]. Here a new
operator is introduced for representing sets of identical processes, all synchro-
nizing on the same sets of actions (possibly the empty set). New semantic rules
have been defined, which are consistent with those for the traditional parallel
composition operator but avoid the representation of all possible interleavings.
An informal net semantics which generates k-safe nets is also discussed.
Finally, we mention the work in [17] where an attempt is made to adapt for
PEPA the structural analysis techniques typical of Petri nets. This is achieved
thanks to a matrix representation of PEPA components that is reminiscent of
incidence matrices of Petri nets.

Future Work. The GSPN model of the random polling system we have
shown in Sect. 6 is very compact since the net semantics captures all the
intrinsic symmetries of the system. In order to be able to capture a higher
number of symmetries for more complex systems, we may think of changing
the underlying model of our semantics in favor of more appropriate models
for which reduced state space construction methods have been already pro-
posed. For instance, we may think of mapping EMPA,, terms onto stochastic
well formed nets (SWNs) [12] or stochastic activity networks (SANs) [23]. As
an example, in a random polling system there might be a customer that is
faster than the others. In such a case the customers are still equivalent from
a purely functional point of view, but the GSPN generated by applying our
net semantics to the EMPA,, specification of the system contains a distinct
subnet for the fast customer because of the different rate values. The same
would not happen e.g. in a SWN model since there it is possible to define
transition rates depending on the identity of the tokens, i.e. on the identity of
the customers.

32

References

1]

[10]

[11]

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets”, Wiley & Sons, 1995

M. Ajmone Marsan, S. Donatelli, F. Neri, “GSPN Models of Markovian
Multiserver Multiqueue Systems”, in Performance Evaluation 11:227-240,
1990

M. Bernardo, “Theory and Application of Eztended
Markovian Process Algebra”, Ph.D. Thesis, University of Bologna (Italy), 1999

M. Bernardo, N. Busi, R. Gorrieri, “A Distributed Semantics for EMPA Based
on Stochastic Contextual Nets”, in Computer Journal 38:492-509, 1995

M. Bernardo, N. Busi, M. Ribaudo, “Integrating TwoTowers and
GreatSPN”, in Proc. of the 8th Int. Workshop on Process Algebra and
Performance Modelling (PAPM °00), Carleton Scientific, pp. 551-563, Geneva
(Switzerland), 2000

M. Bernardo, N. Busi, M. Ribaudo, “Compact Net Semantics for Process
Algebras”, in Proc. of the IFIP Joint Int. Conf. on Formal Description
Techniques for Distributed Systems and Communication Protocols and
Protocol Specification, Testing and Verification (FORTE/PSTV ’00), Kluwer,
pp. 319-334, Pisa (Italy), 2000

M. Bernardo, W.R. Cleaveland, S.T. Sims, W.J. Stewart, “Two Towers: A Tool
Integrating Functional and Performance Analysis of Concurrent Systems”,
in Proc. of the IFIP Joint Int. Conf. on Formal Description Techniques for
Distributed Systems and Communication Protocols and Protocol Specification,
Testing and Verification (FORTE/PSTV ’98), Kluwer, pp. 457-467, Paris
(France), 1998

M. Bravetti, M. Bernardo, “Compositional Asymmetric Cooperations for
Process Algebras with Probabilities, Priorities, and Time”, Tech. Rep.
UBLCS-2000-01, University of Bologna (Italy), 2000 (extended abstract
in Proc. of the 1st Int. Workshop on Models for Time Critical Systems
(MTCS ’00), Electronic Notes in Theoretical Computer Science 39(3), State
College (PA), 2000)

N. Busi, R. Gorrieri, “A Petri Net Semantics for w-Calculus”, in Proc. of the
6th Int. Conf. on Concurrency Theory (CONCUR ’95), LNCS 962:145-159,
Philadelphia (PA), 1995

N. Busi, R. Gorrieri, G. Zavattaro, “On the Fxpressiveness of Linda
Coordination Primitives”, in Information and Computation 156:90-121, 2000

G. Chiola, C. Anglano, J. Campos, J.M. Colom, M. Silva, “Operational
Analysis of Timed Petri Nets and Applications to the Computation of
Performance Bounds”, in Proc. of the 5th Int. Workshop on Petri Nets and

33

[12]

[20]

[21]

Performance Models (PNPM °93), IEEE-CS Press, pp. 128-137, Toulouse
(France), 1993

G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, “On Well-Formed
Coloured Nets and their Symbolic Reachability Graph”, in Proc. of the 11th
Int. Conf. on Application and Theory of Petri Nets (ATPN ’90), Paris
(France), 1990

G. Chiola, G. Franceschinis, R. Gaeta, M. Ribaudo, “GreatSPN 1.7: Graphical
Editor and Analyzer for Timed and Stochastic Petri Nets”, in Performance
Evaluation 24:47-68, 1995

W.R. Cleaveland, E. Madelaine, S.T. Sims, “A Front-End Generator for
Verification Tools”, in Proc. of the 1st Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’95), LNCS 1019:153-173,
Aarhus (Denmark), 1995

W.R. Cleaveland, S.T. Sims, “The NCSU Concurrency Workbench”, in
Proc. of the 8th Int. Conf. on Computer Aided Verification (CAV ’°96),
LNCS 1102:394-397, New Brunswick (NJ), 1996

P. Degano, R. De Nicola, U. Montanari, “A Distributed Operational Semantics
for CCS Based on Condition/Event Systems”, in Acta Informatica 26:59-91,
1988

S. Gilmore, J. Hillston, L. Recalde, “Elementary Structural Analysis for
PEPA”, Tech. Rep. ECS-LFCS-97-377, University of Edinburgh (UK), 1997

S. Gilmore, J. Hillston, M. Ribaudo, “An Efficient Algorithm for Aggregating
PEPA Models”, in IEEE Trans. on Software Engineering 27:449-464, 2001

U. Goltz, “On Representing CCS Programs by Finite Petri Nets”, in Proc.
of the 15th Int. Symp. on Mathematical Foundations of Computer Science
(MFCS ’88), LNCS 324:339-350, Carlsbad (Czechoslovakia), 1988

H. Hermanns, “Interactive Markov Chains”, Ph.D. Thesis, University of
Erlangen (Germany), 1998

H. Hermanns, M. Ribaudo, “Fxploiting Symmetries in Stochastic Process
Algebras”, in Proc. of the 12th FEuropean Simulation Multiconference
(ESM ’98), SCS Europe, pp. 763-770, 1998

J. Hillston, “A Compositional Approach to Performance Modelling”,
Cambridge University Press, 1996

J.F. Meyer, W.H. Sanders, “Reduced Base Model Construction Methods
for Stochastic Activity Networks”, in IEEE Journal on Selected Areas in
Communications 9:25-36, 1991

R. Milner, “Communication and Concurrency”, Prentice Hall, 1989

E.-R. Olderog, “Nets, Terms and Formulas”, Cambridge University Press,
1991

34

[26] R. Paige, R.E. Tarjan, “Three Partition Refinement Algorithms”, in SIAM
Journal of Computing 16:973-989, 1987

[27] W. Reisig, “Petri Nets: An Introduction”, Springer-Verlag, 1985

[28] M. Ribaudo, “On the Relationship between Stochastic Process Algebras and
Stochastic Petri Nets”, Ph.D. Thesis, University of Torino (Italy), 1995

[29] W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994

[30] G. Winskel, “The Formal Semantics of Programming Languages”, MIT Press,
1993

A Definition of the Decomposition Function

The decomposition function introduces suitable decorations into the action
types through syntactical substitutions. In order to avoid undesired syntac-
tical substitutions, we identify binders arising from the static operators. In
E/L, all the action types in L are bound in E. In E[p], all the action types
in Dom(yp) = {c € AType | p(c) # ¢} are bound in E. For operational conve-
nience, we rewrite the synchronization set S of Ej ||g Ey as the function s =
{(a,a) | a € S}. In Ey ||s Es, all the action types in m1(s) = {a | 3b. (a,b) € s}
are bound in E; and E,. When dealing with syntactical substitutions, we
make explicit the action types occurring in the body E of each constant def-
inition A 2 E by rewriting the definition itself as A(aq,...,a,) 2 E, where
{ai,...,a,} = sort(E). The semantic rule (cr) in Table 1 is modified as follows

aX

a,\
Aby,. .. by) ——— E'

1>

E

Alay, ..., ap)

where E{b;/a; | 1 < i < n} is the term obtained from E by replacing each
free occurrence of a; with b;, as formalized below.

Definition A.1 Let us assume a total ordering < be defined over AType. The
decomposition function dec : G — M(V) is defined by structural induction

as follows (assuming A(ay, ..., a,) 2 E):

35

dec(Yicr <a?i’Ri’Ui,5\i>.Ei) ={ Zicr <afi’Ri’Ui,5\,~>.Ei I3
dec(E/L) = dec(E{a™</a | a € L})
dec(E[y]) = dec(E{d*FYF a7 [a | a € sort(E) A
(a,d®Bo) € o A
Ry =A{rea | p(c) = ¢(a) A
c=<al/
Teq fresh} U
{Tac | p(c) = p(a) A
a<cA
Tqc fresh}})
dec(Ey ||s Bs) = dec(B{d*Fcka /g | (a,d) € s A
ko fresh}) @
dec(Eo{d®R%a Ja | (a,d"R7) € s A
k, fresh})
dec(A(BIV L W0 Rnon)) = dec(B{bY7 Ja; | 1 < i < n})

with the syntactical substitutions on G’ defined by structural induction as fol-

lows:
Rios X 0 .R.o *
(Zie] <af“Rz,m’)\Z->.Ei){b9’R’g/a} = S <c 01’)\i>.Ei{b9’R’”/a}

B/L{b"R Ja} = { POt L

E/L if a € L
Bl (52 fa} — { E{"" [a} (/) it a ¢ Dom(y)
E[¢] if a € Dom(yp)
E {67 [a} || E{b"1 /a}
(Er [|s E2){b"17 Ja} = if a ¢ m(s)
Ey ||« Eg if a € m(s)
A(aftReon gl B) (BB fqh — AT o)
where:
= {(di, ") | Jafo o (dy, a7 €)
= {(diy ™) | a7 (d) € 5)
and:

36

9; R o beie,RiUR70iO’ lf a; = a

LAt R g A,
0i,R;,04 ;
a; if a; #a =

It is worth recalling that in the location oriented approach an explicit track of
the parallel composition operator would be kept by decomposing F ||s E, into

decioc(E1) || id @ id ||s decioc(F2)
Here, instead, according to the label oriented approach, we do not explicitly
keep track of the parallel composition operator. As a consequence, instances of
the same sequential term occurring within the scope of a parallel composition
operator can be mapped onto the same place; e.g., term <a, A\>.0 ||p <a, A>.0
is mapped onto a single place <a, A>.0 with multiplicity two.

Let us see some critical examples showing how the decomposition function
and the decorations work. As far as the interplay of the parallel composition
and the functional abstraction is concerned, the binders are exploited to avoid
the synchronization of hidden actions. As an example, in term
(<a, \>.0)/{a} |l{a} <@, *,>.0

the synchronization of the two a actions is not possible because the left hand
one is hidden. This is reflected at the net level by the fact that the generated
places <a™"¢ A>.0 and <a®"*, %,,>.0 cannot synchronize because their com-
binators do not reduce. In particular, the combinator of the left hand a action
is € instead of k because that a action occurs within the scope of binder /{a}.

As far as the interplay of the parallel composition and the functional relabel-
ing is concerned, the related decorations are used in a combined way in order
to avoid the synchronization between different actions whose types collapse
after relabeling them. As an example, in term
(<a, A>.0lg} <b,%w>.0)[¢], ¢(a) = @(b) =b

no synchronization on b is possible because the parallel composition is within
the scope of the functional relabeling and not the other way around. Again, this
is reflected at the net level by the fact that the generated places <b*{"h* A\>.0
and 1hE x> .0 cannot synchronize, despite the fact that they have com-
plementary combinators k& and k reducing to e, because of the presence of
complementary conflicts » and 7.

We observe that the identification of binders to avoid undesired syntactical
substitutions is necessary mainly because, in the case of the functional rela-
beling operator, the actions are directly relabeled within the net places. As an
example, consider term
(<a,A>.0 + <b, p>.0)/{a}[¢], p(a) = (b)) =b

which can execute action <7, A> or action <b, u>. When decomposing this
term, there are two possible translations causing errors if /{a} is not correctly
taken into account. In the former case, one may think of relabeling the actions

37

occurring in /{a} as well, thus erroneously obtaining term
(<b5VHe A> .0 4+ <b51h > 0)/{b}
which gives rise to place <b™{"h X\>.0 + <b7{"h2 >0 from which only a
transition labeled with 7, A + p can be generated. In the latter case, one may
think of not considering /{a} at all, thereby erroneously obtaining term
(<= N>.0 + <b71H 4> 0) /{a}
which gives rise to place <b*{" A>.0 + <b={™h¢ ;>0 from which only a
transition labeled with b, A + 1 can be generated. In conclusion, the actions
occurring in the binders can be neither relabeled nor ignored. For this reason,
we decompose the term at hand into place <a™?% A>.0+{1}= 1> .0, where
we note that the a action is not relabeled to b because it occurs in /{a}, from
which two transitions labeled with 7, A resp. b, 1 can be generated, as expected.

As another example, consider term

((<a, A>.0 4 <b, 1>.0) [|1a} (<@, %4, >.0 + <b, %4,>.0)) [¢], p(a) = p(b) =b
which can execute synchronization action <a, A>, which is turned into <b, A>,
or actions <b, u> and <b, *,,>. Similarly to the previous example, if we re-
label |41 as ||{5) we erroneously introduce an additional synchronization be-
tween the two original b actions, while if we do not consider ||, at all we
get rid of the synchronization between the two original a actions. In order to
avoid the two cases above, we first rewrite the term as

((<a, A>.0 4 <b, 1>.0) |l{(a,a)} (<@, %, >.0 + <b, %4, >.0)) []
This gives rise to
(<a, A>.0 + <61 1> .0) [| (g1 (<0, 0y >0 + <677, >.0)

which results in set of places {<b™{"H* A> 04+ <b51he >0, <b5UHE 5 >0+
1™He %, >.0} from which the three expected transitions can be generated.
As usual, the application of each syntactical substitution may be preceded
by alpha conversion to avoid binding free names. This is necessary e.g. when
decomposing term

(<a, A>.0)/{b}[¢], ¢(a) = ¢(b) = b

B Definition of the Transition Generation

Formally, the set of net transitions ———, for a given EMPA,, term is
defined as the least subset of P(V) x (AType x ARate™™) x M(V) generated
by the axiom reported in Table B.1, where n € N, and n; € N, for all i =
1,...,n. It is worth observing that we have just one axiom for generating all
the net transitions. This is quite different from the location oriented approach,
where the net transitions are generated by means of a set of rules whose
structure is similar to the structure of the rules of the interleaving semantics.

38

n; ~ b,j\
{ Z <a6hRi,h,Ui7)\i,h>-Ei,h + F; | 1< < n} —N ‘él}l deC(Eiyl)
h=1 i=

Table B.1
Axiom for generating net transitions

For each transition generated by the axiom, the preset is a finite nonempty
multiset of places, from each of which a set of summands is factorized. If the
preset contains more than one place, then the generated transition results from
the synchronization of the actions of the factorized summands. The factorized
summands must have the same action type a at the same visibility level 6;
within the same place 7, the factorized summands must have the same combi-
nator string o;. The postset of the transition is the multiset composed of the
places representing the decomposition of the derivative terms of the factorized
summands in the preset. The axiom is subject to the following conditions:

(1)

(2)

Foralli=1,...,nand h,h' =1,...,n;

PL(X\ip) = PL(Aip)

)

dec(E;p) = dec(FEjp)

))

whereas

m; B
E = Z <aff}’lh’Ri’h’oi’h,)\i,h>-Ei,h
h=n;+1
is such that for all h = n; + 1,..., m; at least one of the following holds

aip # a

Oin #0

Oih 7# O
PL(\ip) # PL(\iy)
dec(E;p) # dec(E; 1)

Foralli,i=1,...,n,h=1,....,n;,and A’ =1,..., ny

i #i = Ar € Conf.{r,7} C R, N Ry

(3) & oi=1{ch
) b aif 0=c¢
Tif =171

()

Let V;,1 < j < n be the i-th place in the preset. If there exists one
and only one place in the preset, say V;, that contributes with nonpassive
actions, then \ is

39

ZZ 5\i,h : Mcurr(‘/i) :
h=1

n; ~
> A wljp=+wlt
h=1

n
I

J=Lj#i { w|aj,h:a/\0j7h:0/\oj’h:crjAijﬁ:*wAirGConf.{r,F}gRjyhﬂRj/,h/ [+

oceComb*
where:

e w(a,0,0) is obtained from the sums of the weights of all the passive
actions having type a, visibility #, no complementary conflicts, and
the factorized combinator string, that occur in a subset of places of the
preset of the transition at hand whose reduced combinator string is o, by
multiplying each such sum by the current marking of the corresponding
place;

e W(a,0,0) is obtained from the sums of the weights of all the passive
actions having type a, visibility €, no complementary conflicts, and
the factorized combinator string, that occur in a subset of places of the
preset of an enabled transition containing V; in its preset whose reduced
combinator string is o, by multiplying each such sum by the current
marking of the corresponding place;
w(a,8,0)/W(a,0,0) is taken to be 1 whenever W(a,0,0) = 0;

e the second and the third line have to be ignored if the preset is composed
of one place only.

If all the places in the preset contribute with passive actions, then \is

nJ 5
> A wljp=+wlt
h=1

n
I

J=1,j#i {wlajn=an0; p=0Ac; =0 Aj\jﬁ:*w/\ETEC'onf.{'r,F}QRjyhﬂRj/ w

oeComb*

> W(a,0,0)
oceComb*
where:

e w(a,f,0) is obtained from the sums of the weights of all the passive
actions having type a, visibility €, no complementary conflicts, and
the factorized combinator string, that occur in a subset of places of the
preset of the transition at hand whose reduced combinator string is o, by
multiplying each such sum by the current marking of the corresponding
place;

e W(a,0,0) is obtained from the sums of the weights of all the passive
actions having type a, visibility #, no complementary conflicts, and the
factorized combinator string, that occur in a subset of places of the
preset of an enabled transition containing one of the places at hand in
its preset whose reduced combinator string is ¢, by multiplying each
such sum by the current marking of the corresponding place;

40

e w(a,0,0)/W(a,0,0) is taken to be 1 whenever W (a,0,0) = 0;

e in the last sum, every involved place is counted once;

e if the preset is composed of one place only, then) is just passive with a
weight equal to the sum of the weight of its factorized passive actions.

Condition (1) states that the summands factorized for each place in the preset
of the transition are all and only those involving the same priority level and
derivative terms having the same decomposition. We require terms to have
the same decomposition instead of being syntactically identical because dec
is not injective. Such a factorization, together with Condition (5), prevents
identical transitions from collapsing by summing up their rates (GSPNs do
not assign a multiplicity to the transitions). Condition (2) and (3) ensure that
the places in the preset correctly synchronize by considering the decorations
of the factorized actions. More precisely, Condition (2) avoids the generation
of synchronization transitions that would erroneously stem from the appli-
cation of a functional relabeling operator. Condition (3), instead, checks for
the correct reduction of combinator strings to the empty string. Condition (4)
determines the action type labeling the transition according to the functional
abstraction related decoration 6 of the selected summands.

As far as Condition (5) is concerned, we observe first of all that it allows only
master-slave synchronizations, thus complying with the interleaving semantics
for EMPA,,. There are two cases, depending on whether there is a place in the
preset that contributes with nonpassive actions or not. If one of the places in
the preset contributes with nonpassive actions, then the rate of the transition
is the product of three factors:

e The first factor is the sum of the rates of the actions that are factorized in
that place, multiplied by the number of tokens currently in the place itself.
As an example, if we consider term

((<a, A>.0+ <a, A>.0) [[p(<a, A>.0 + <a, A>.0)) ||{a} <@, *¥,,>.0
then its decomposition
{ <a®"* A>.0 + <a® A>.0, <a®* A>.0 + <a®®* A>.0, <a®®F 5, >0}
is the preset of a transition of type a whose rate is given by
A+ A) - Mo (<a®%% 21> .0)
When the transition is fired for the first time, the actual rate is 4 - A.

e The second factor is the product, computed over all the places in the preset
contributing with passive actions, of the probabilities of selecting within
each place those passive actions that are factorized. As an example, if we
consider term

<a, A>.0 |11 (<@, ¥y, > By + <a, *y,>.Fy)
where dec(F1) # dec(E,), then its decomposition
{ <a®P X>.0, <a®"* x> By + <a® x> Ey [}

41

is the preset of two transitions of type a whose rates are given by

>\ : Mcurr(<afe7®7k7)‘>Q) ’ 1

wi+wsa

A Mg (<a®%% A>.0) - 2

w1 +ws2

e The third factor takes into account the fact that the same place in the pre-
set of the transition at hand contributing with nonpassive actions can be in
the preset of several transitions of the same type. The places contributing
with passive actions that belong to different presets of such transitions are
independent of each other. All these places contribute to the computation
of the rate of the transition at hand, so we need to consider them. In or-
der to detect them, we look at the combinator string of their factorized
actions, because the factorized passive actions of the same type occurring
in different places and sharing the same combinator string come from the
decomposition of independent terms composed in parallel. As an example,
if we consider term

<a, A>.0 [|{} (<, %0, > E1 ||g <a, %0, > E || <a, %, >.Eo)
where wy # wy or Ey # FEy, then its decomposition
{| <a® 2>.0, <a®V* x> By, <a®PF x> By, <a® x> By |}
is the preset of two transitions of type a whose rates are given by

0,k
: &0,k Swr w1 Mourr(Sa” 00wy > B)
A Mcurr(<a))‘>'Q) w1 wi-Meurr (a0 0k sy > F1)+wa- Meurr (Ka 0k sy >)

0,k
. £7®7k L w2 | 11/12Mcurr(<a£’ ’ ’*w2>‘E2) _
)\ Mcurr(<a) >\>Q) w2 wl'Mcurr(<as‘®’k7*w1 >.E1)+'LU2'Mcurr(<as’®’k:*u12>-E2)

When the two transitions are fired for the first time, the actual rates are
(A1) - o w1 -2

w1 wi-24+wsz-1

(>\.1) w2, wal

w2 w1 -24+wsz-1

If all the places in the preset contribute with passive actions only, then again
the rate of the transition is the product of three factors. The first two factors
coincide with the second and the third factor of the previous case, respectively,
while the third factor is just the sum of the contributions of all the involved
places (compare with factor W in rule (pcs) of Table 1).

We conclude by observing that the reason why the full EMPA,, language has
not been considered in this paper, i.e. reactive priority levels are not attached
to passive actions, is due to the transition generation mechanism. If we con-
sider the full EMPA,, and we take term
<a, A>.0 || (o} (<, #1500, > Er o <@, *19,0,> . E2)
where [; > [y, then its decomposition
{| <a™™,X>.0, <a™F, 5, 0> By, <a 50 0,> B |}

would the preset of two exponentially timed transitions of type a. Here the
problem is that both transitions would be enabled, but only the former could

g0,k

42

be actually fired and the GSPN firing rule does not allow us to recognize that.
We conjecture that the introduction of suitable inhibitor arcs should make it
possible the generation of transitions for the full EMPA,,.

C Proof of the Retrievability Result

Let us first introduce the following notation: given a LTS whose label set is
Act and a partition R of its state space S, we pose for all s € S, a € AType,
le NU{-1},and C € S/R

Rate(s,a,1,C) = S A | 3¢ € C.s — 2 &' A PL() = 1]}
Given such a notation, and considered the closed interleaving semantics for
EMPA,, (i.e. lower priority nonpassive transitions are pruned), we have to
prove the following: whenever (F,Q) € B, then for all a € AType, | €
NU{-1}, and C € (GUM(V))/B
Rate(E,a,l,C) = Rate(Q, a,l,C)

Let (F,Q) € B. We first show that Rate(E,a,l,C) < Rate(Q,a,l,C) for all
a € AType, | € NU{—1}, and C € (GUM(V))/B'. If Rate(E,a,l,C) =0, i.e.
the summation is computed on an empty set, then there is nothing to prove,
otherwise we proceed by induction on the maximum depth d of the derivations
of the transitions for £ having type a, priority level [, and derivative term in

C.

e If d = 1 then only rule (¢ac) of Table 1 has been used to deduce the
existing transitions. Therefore E = Y ;¢; <a;, \>.F; with PL()\;) = | and
E; € C for some j € I. From the definition of B it follows that @ =
{| Sicr <ai, \i>.E; [}, hence the result trivially follows.

e If d > 1 then several subcases arise depending on the syntactical structure
of E.
- If E= FE'/L then Q = dec(E'{a™¢/a | a € L}). Since d is the maximum

depth of the derivations of the transitions for E having type a, priority
level [, and derivative term in C', either E’ has no transitions having type
a, priority level [, and derivative term in C’ (where C' = C"/L), or d — 1
is the maximum depth of the derivations of the transitions for £’ having
type a, priority level [, and derivative term in C’. Since

Rate(E',a,l,C")
ifag¢ LU{T}

Rate(E,a,l,C) =
Rate(E',7,1,C") + >{| Rate(E',b,1,C") | be L}

ifa=r1

43

and similarly for @ and dec(E"), the result follows by the induction hy-

pothesis.

- If E = E’[p] then the proof is similar to the one developed in the previous

subcase.

- If E = E ||s B> then Q = dec(E1{d*"% Ja | (a,d®"7) € s Nk, fresh}) &

dec(Ey{d** /q | (a,d®"7) € s Ak, fresh}).
Let a ¢ S. Since d is the maximum depth of the derivations of the
transitions for £ having type a, priority level [, and derivative term
in C, for each j € {1,2} either E; has no transitions having type a,
priority level [, and derivative term in C; (where C' = C} ||g Cs), or
d — 1 is the maximum depth of the derivations of the transitions for
E; having type a, priority level [, and derivative term in C;. Since

Rate(Ey,a,l,Cy) + Rate(Es, a,l,Cy)
if By € Ci\NEy e (Cy
Rate(E, a,l,Ch)
if By ¢ C1 A\ Ey € Cy
Rate(Es, a,l, Cy)
it By € Cy N Ey ¢ Cy

Rate(E,a,l,C) =

if B1 ¢ C1 A\ Ey ¢ Cy

and similarly for @, dec(E;), and dec(Fy), the result follows by the
induction hypothesis.

Let a € S. Since d is the maximum depth of the derivations of
the transitions for E having type a, priority level [, and derivative
term in C, let C' = C ||g Cy we have that if Rate(Esy,a,—1,C5) # 0
(Rate(Ey,a,—1,C1) # 0) then either E; (E3) has no transitions hav-
ing type a, priority level [, and derivative term in C (Cs), or d — 1 is
the maximum depth of the derivations of the transitions for F; (F»)
having type a, priority level [, and derivative term in Cy (Cy). If the
resulting transition is nonpassive, since

Rate(E4, a,l,Cy) - pp, + Rate(Es, a,1,Cy) - pg,
Rate(Ey,a,l,CY) - pg,
Rate(Es, a,1,Cy) - pp,

0

depending on whether Rate(Es, a,—1,C5) # OARate(Ey, a,—1,Ch) #
1 or Rate(Esy,a,—1,C5) # OA Rate(Ey,a,—1,C}) = 0 or Rate(Fs, a,
—1,C%) = 0 A Rate(Ey,a,—1,C1) # 0 or Rate(Ey,a,—1,Cs) = 0 A
Rate(Ey,a,—1,C,) = 0, where pg, (pg,) is the ratio of the total

Rate(E,a,l,C) =

44

weight of the passive transitions of type a from E; (Es) to Cy (Cs)
to the total weight of the passive transitions of type a from E; (E3),
and similarly for @, dec(E;), and dec(Fy), the result follows by the
induction hypothesis. If the resulting transition is passive, we reason
in a similar way.

. Let E = A with A £ E'. Since d is the maximum depth of the derivations
of the transitions for E having type a, priority level [, and derivative term
in C', d — 1 is the maximum depth of the derivations of the transitions
for £’ having type a, priority level [, and derivative term in C. From the
induction hypothesis it follows that Rate(E,a,l,C) = Rate(E’ a,l,C) <
Rate(dec(FE'),a,l,C) = Rate(Q,a,l,C).

To show the reverse inequality, we similarly proceed by induction on the num-
ber of applications of function dec to obtain () from FE.

45

