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ABSTRACT

In recent years, several studies have shown that network traÆc exhibits the property of self-similarity. Traditional
(Poissonian) modelling approaches have been shown not to be able to describe this property and generally lead
to the underestimation of interesting performance measures. Crovella and Bestavros1 have shown that network
traÆc that is due to World Wide Web transfers shows characteristics of self-similarity and they argue that this
can be explained by the heavy-tailedness of many of the involved distributions. Considering these facts, developing
methods which are able to handle self-similarity and heavy-tailedness is of great importance for network capacity
planing purposes.

In this paper we discuss two methods to �t hyper-exponential distributions to data sets which exhibit heavy-
tails. One method is taken from the literature and shown to fall short. The other, new method, is shown to perform
well in a number of case studies.

Keywords: World wide web, heavy-tailed distributions, hyper-exponential distributions, ML-�tting, EM-�tting,
queueing analysis, traÆc characterisation

1. INTRODUCTION

Over the last decade, extensive traÆc measurements have shown the presence of properties such as self-similarity,
fractality and long-range dependency in network traÆc. The seminal paper by Leland et al.,2 showed self-similarity
in Ethernet traÆc; later, similar e�ects were shown to exist in wide area network traÆc, signaling traÆc, and in
multimedia and video traÆc. Also, it has been have shown that ignoring these e�ects in the analysis of queueing
systems leads in general to undervaluation of important performance measures.3 Additionally, studies have shown
that the presence of these properties is generally correlated with the presence of heavy-tailed distributions (HTDs).

Various e�orts have been persued to develop appropriate traÆc models to evaluate the performance of systems
und self-similar traÆc.4{6 In the sequel we will focus on the approach put forward by Feldmann and Whitt5 (the
FW approach). The FW-approach proposes a method to �t a hyper-exponential distribution to a given HTD.
Although this method is fast, it requires an explicit representation of an HTD, for which either a Weibull or a
Pareto distribution can be used. However, as will be shown below, often the measurements to be �tted do not suit
a Weibull or a Pareto distribution, so that the �nal HED obtained does not describe the measurements well. The
FW-approach is illustrated in the upper-half of Figure 1.

To avoid the use of an intermediate HTD, we have decided to directly �t a HED to the measured data via the
Expectation Maximization (EM-) algorithm. This is described in detail in the paper; see also the lower half of
Figure 1.

To validate the new �tting approach, we use both a large trace from the RWTH proxy server and a well-known
NASA trace and �t the requested object-size distribution. We both study the �t itself, as well as performance
results obtained when using the �tted distributions in a discrete-event simulation of an MjGj1 queue for di�erent
utilisations (also in Figure 1; the right-most comparison).

This paper is further organised as follows. We will give some background on HTDs in Section 2. Then, we
describe the FW-approach in Section 3. The new �tting approach is discussed in Section 4. We validate (and
compare) the new approach in Section 5. The paper is concluded in Section 6 with some �nal remarks. Two
appendices, on statistical �tting procedures, are included to make the paper self-contained.

Further author information: http://www-lvs.informatik.rwth-aachen.de/
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Figure 1. Graphical representation of the two �tting procedures

2. HEAVY-TAILED DISTRIBUTIONS

Self-similarity in network traÆc has been explained by the fact that many of the involved distributions, e.g., of
�le sizes, are heavy-tailed. In a HTD, the complementary cumulative distribution function F c decays more slowly
than exponentially, i.e., e
tF c(t)!1 as t!1 for all 
 > 0. For a random variable X, distributed according to
some HTD, we typically have:

P [X > x] � x��; x!1; 0 < � < 2: (1)

Heavy-tailed distributions have an in�nite variance. The degree of the heavy-tailedness is given by the value of the
shape parameter �.

The following table gives some characteristics of two well-known HTDs, namely the Pareto and the Weibull
distribution (in case the stated conditions are not met, the expectation and/or variance do not exist)7:

Name Density f(x) Expectation Variance

Pareto akax�(a+1) ak
a�1 , for a > 1 ak2

(a�2)(a�1)2 , for a > 2

Weibull b
ab
xb�1e�( x

a
)b , for a > 0 and b > 0 a

b�(1=b)
a2

b2 f2b�(2=b)� [�(1=b)]2g

3. APPROXIMATION OF HTDS WITH HEDS

In this section we present the FW-approach towards approximating HTDs with HEDs.

3.1. Description of the method

In the FW-approach, it is assumed that an HTD is given in an explicit form. How this HTD is obtained from, for
instance, measurement data, is not described by Feldmann and Whitt; see our comments below. Provided that an
explicit representation of the HTD F (x) is available, an I-phase HED distribution of the form

H(x) = 1�
IX

i=1

cie
��ix (2)

is �tted to F . Note that, for I ! 1, one can represent any distribution, with squared coeÆcient of variation at
least 1, with completely monotone probability density function arbitrary close by hyper-exponentials. However, it
is shown5 that with values of I up to 20, HTDs can approximate Weibull and Pareto distributions for large ranges
of x. For given HTD F (x) and number of phases I the FW-approach operates as follows:

1. Choose quantiles 0 < qI < qI�1 < : : : < q1 with suÆciently large qi=qi+1, e.g., qi=qi+1 � 10 (for i =
1; � � � ; I � 1). Furthermore, let b be such that 1 < b < qi=qi+1 for all i.
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2. In I iterative steps, the parameters for the phases in the HED are computed. We start with setting j := 1
and F c

1 (x) = 1� F (x).

3. In the j-th phase, we compute cj and �j by solving the equations

cje
��jqj = F c

j (qj);

cje
��jbqj = F c

j (bqj);

yielding

�j =
1

(b� 1)qj
ln

 
F c
j (qj)

F c
j (bqj)

!
;

cj = F c
j (qj)e

�jqj :

4. Repeat step 3 for j = 2; : : : ; I � 1 where

Fi(qi) = Fi�1(qi)� ci�1e
��i�1qi ;

Fi(bqi) = Fj�i(bqi)� cj�ie
��i�1bqi :

5. Finally, for the last phase I we �nd: cI := 1�PI�1
j=1 cj and �I follows from cIe

��IqI = F c
I (qI).

The complexity of the algorithm is O(I). However, since the algorithm cannot be applied directly to measure-
ment data, the costs of an algorithm, like the maximum likelihood (ML) algorithm8 (see Appendix A) to �t the
measurements to an explicit HTD must be considered as well.

3.2. Application and validation

When applying the FW-approach to �nd object-size distribution from the log-�les used in our case study (for a
detailed description of the traces and its statistical parameters, see Section 5), we found that the typically employed
HTDs, like Pareto and Weibull do not describe the object size distributions well. Both distributions �t the tail
of emperical measurement distribution well, but fail to �t the head properly. For example, a Weibull distribution
whose �rst and second moment have been �tted to the data, results in a median that is half the median found in
the data (the median is located in the head). Hence, even when the FW-approach does give a good �t with respect
to a given HTD, if the provided HTD does not describe the data well, then the �nally �tted HED does not describe
the measurements well, too.

Feldmann and Whitt5 point out that it might be possible to extend their approach so it can be directly applied
to measurement data. They also warned that the algorithm, at least without extension, is not designed to directly
treat data but might well be applied after some initial smoothing of the data. In fact, our studies have shown that
the smoothing is absolute necessary, since otherwise the algorithm is too sensitive to the location of the quantiles
qi. Furthermore, the quality of the approximation heavily depends on the quality of the smoothing.

4. FITTING DIRECTLY TO HEDS

The Expectation Maximization (EM) algorithm is a well-known algorithm to �t measurements to distributions9{12;
a detailed description can be found in Appendix B. The EM-algorithm works iteratively and does require neither
an intermediate HTD nor heuristics. Below, we outline the method in general, and then specialise it to the case
where the distribution function to �t to is a HED.
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4.1. General approach

Given measurement data x1; : : : ; xN , we search the parameters c = (c1; : : : ; cI) and � = (�1,. . . ,�I) of a distribution
with density function

p(xj(c; �)) =
IX

i=1

ci � p(xj�i) (3)

so that this distribution \best" �ts the distribution of the measurement data. The density in (3) is a convex

combination of basic density functions p(xj�i) parameterized by �i with weights ci � 0 and
PI

i=1 ci = 1. For
instance, for Weibull distributions as basic distributions �i would be (ai; bi), and for exponential distributions we
would have �i = (�i).

Now, let � = (c; �) and �̂ = (ĉ; �̂) be two sets of parameters for the density p. The EM-algorithm de�nes a new
distribution with density function

h(ijxn; �i) =
ci � p(xnj�i)
p(xnj�) ; (4)

as well as the following function

Q(�; �̂) =
NX
n=1

IX
i=1

h(ijxn; �i) � log (ĉi � p(xnj�)h(ijxn; �)) : (5)

The function Q provides a quality criterion for � and �̂: it says how much better the density function p(xj�̂) �ts
the measurement data than the density function p(xj�).

The EM algorithm proceeds iteratively: starting from an initial parameter set � = (c; �), it computes a new
parameter set �0 = (c0; �0) which maximizes Q(�; �0), that is, with �0 such that Q(�; �̂ := �0) is maximized, we
improve the �t the most. This �0 is used as starting point for the next iteration. The algorithm stops when � � �0

(see below). To �nd the next value �0, the EM algorithm has to solve the equation system (possibly non-linear):

@Q

@�0
= 0) @Q

@�1
= 0; � � � ; @Q

@�I
= 0: (6)

Using Lagrange multipliers (with auxiliary condition
PI

i=1 ci = 1), the new weights are given by:

c0i =
1

N

NX
n=1

cip(xnj�i)
p(xnj�) : (7)

In general, the non-linear equation system (6) is diÆcult to solve. However, in case we take HEDs as basic densities,
it is feasible. We discuss this in the next section.

4.2. Specialisation to HEDs

We now take HEDs as basic distribution functions: p(xj�i) = �ie
��ix. Equation (6) yields

@Q

@�0
i

= 0 )
NX
n=1

h(ijxn; �i) � @

@�0
i

log (c0i � p(xnji; �0
i)) = 0: (8)

)
NX
n=1

h(ijxn; �i) � @

@�0
i

log
�
c0i � �0

i � e��
0

ixn
�
= 0: (9)

)
NX
n=1

h(ijxn; �i) � @

@�0
i

(log c0i + log �0
i � �0

ixn) = 0: (10)

)
NX
n=1

h(ijxn; �i) � (1=�0
i � xn) = 0: (11)
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)
PN

n=1 h(ijxn; �i)
�0
i

=
NX
n=1

h(ijxn; �0
i) � xn: (12)

) �0
i =

PN
n=1 h(ijxn; �i)PN

n=1 h(ijxn; �i) � xn
: (13)

The EM-algorithm now takes the following form:

1. Select an appropriate number of distributions I and select start values �i and ci (i = 1; � � � ; I), as well as a
positive real error boundary value � (with p(xnj�i) = �ie

��ixn).

2. Compute for i := 1 to I:

(a) p(ijxn; �i) = ci�p(xnj�i)
p(xn)

(b) c0i =
1
N

PN
n=1 p(ijxn; �i)

(c) �0
i =

P
N

n=1
p(ijxn;�i)P

n
p(ijxn;�i)�xn

3. Return to step 2 with ci := c0i and �i := �0
i until the di�erence between ci and c0i and/or the di�erence

between �i and �0
i for all i is smaller than the boundary value �.

In the above algorithm we have preset the number of phases I (also called the number of centers). In a di�erent
variant of the EM-algorithm, this number does not have to be preset, but is computed on-the-
y, thus yielding a
number of phases that is large enough to describe the required HTD, yet as small as possible to keep the �tted
HED small.10,13

Regarding computational complexity, the EM-algorithm is an iterative algorithm where the complexity of each
iteration is O(N � I), with N the number of measurement samples and I the number of centers. A problem with
the EM-algorithm is the fact that it is diÆcult to predict the number of iterations needed to reach a given precision
of the result.9 However, in our experiments, good results generally have been obtained within 5{10 iterations.
Additionally, it should be noted that even for a case study with N well over 17 million (see below) and I = 6, one
iteration took approximately 1 minute on a standard personal computer.

5. APPLICATION

5.1. Statistics of the measurement data

Crovella and Bestavros1 have shown that network traÆc that is due to WWW transfers can show characteristics
that are consistent with self-similarity and that this can be explained by the heavy-tailedness of many of the
involved distributions. Since traÆc originating from HTTP transfers amounts to at least 85% of all Internet traÆc,14

understanding its nature is crucial.

RWTH trace

Early 2000, we collected the access logs of the RWTH Aachen proxy server. The logs comprise the description of
about 115 million HTTP and FTP requests made over a period of 54 days. After some preprocessing and �ltering,
about 17.3 million requests of interest remained. We studied the sizes of the objects requested by the clients.
Figure 2 shows the complementary distribution of the object sizes as log-log plot. Some statistics from these
traces:

minimum object size = 118 (byte)
maximum object size = 107 (byte)
expected object size = 6664 (byte)
median object size = 2638 (byte)

squared coeÆcient of variation = 6.12

As can be observed from both Figure 2 and the statistics listed above, the distribution function decays much slower
than a negative exponential distribution and is clearly heavy tailed. In particular, we also observe a median much
smaller than the mean.

Proc. SPIE Vol. 4523 215



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000 1e+06 1e+07

1-
F

(x
)

Document size

document size distribution
negative exponential

Figure 2. RWTH trace: Complementary log-log plot of document size distribution

RWTH trace Weibull FW:H5 FW:H10 FW:H20 EM:H5 EM:H10

E[X] 6663.69 6663.69 7025.25 5097.09 4977.77 6663.69 6663.69
CV2 6.12 6.11 1.949 4.20152 4.49 6.16 (0.3%) 6.22 (1.6%)

E[X3] 2:748 � 1014 4:04 � 1013 { { { 2:59 � 1014 (5.5%) 2:91 � 1014 (5.8%)
median 2638 1322 { { { 2638 (<0.1%) 2530 (4%)

Table 1. RWTH trace: Comparison of statistics of the measurement data, a �tted HTD and two �tted HEDs

NASA trace

The next trace we use for validation was �rst presented and evaluated in 1996 by Arlitt and Williamson.15 It
consists of about 3.1 million requests collected at the web server of the Kennedy Space Center. As in the RWTH
trace, the size distribution of the requested objects in the NASA trace is clearly heavy tailed yielding a high
coeÆcient of variation and an expectation much larger than the median:

minimum object size = 3 (byte)
maximum object size = 6:823 � 106 (byte)
expected object size = 20744.9 (byte)
median object size = 4142 (byte)

squared coeÆcient of variation = 13.3853

5.2. Matching HTDs

RWTH trace

In Table 1 we shows how well the two algorithms match the moments and median of the measurement data from
the RWTH-trace. As can be observed, the �tted Weibull distribution (using the ML approach) fails to �t the third
moment and the median of the data set well. The three hyperexponentials �tted with the FW-approach do not
match the expectation and squared coeÆcient of variation of the trace. We did not compute their third moment
and median. In contrast, both HEDs �tted with the new algorithm do �t these two statistics well. The relative
error (written in parenthesis) is below 6% for all statistics.
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NASA trace Weibull FW:H5 FW:H10 FW:H20 EM:H5 EM:H10

E[X] 20744.9 20793 169950 46829.5 12475 20744.9 20744.9
CV2 13.38 13.44 1.006 1.2068 11.24 13.67 (2.1%) 13.67 (2.1%)

E[X3] 5:02 � 1015 6:73 � 1015 { { { 5:74 � 1015 (12.5%) 5:74 � 1015 (12.5%)
median 4142 1764 { { { 3847 (7.6%) 3847 (7.6%)

Table 2. NASA trace: Comparison of statistics of the measurement data, a �tted HTD and two �tted HEDs

�rst-order queueing performance
� 0:67 0:83

E[N ] 5:47 15:83
E[W ] 48; 047 1; 199; 958

second-order queueing performance
measure c2W RE (%) c2W RE (%)

trace 10.40 (9.5%) 5.19 (2.3%)
Weibull 2.89 (3.3%) 72 1.71 (1.6%) 67.1

H5 10.56 (13%) 15 4.68 (5.0%) 9.8
H10 11.38 (15%) 9.4 5.41 (9.7%) 4.2

Table 3. RWTH trace: Queueing performance for the measurement data, a �tted HTD and two �tted HEDs

NASA trace

The matching results for the NASA trace are shown in Table 2. They are comparable to those obtained for the
RWTH trace. However, it seems that the higher degree of heavy tailedness of the NASA trace results in larger
errors for the matched HTDs.

5.3. Embedding HTDs in queueing models

In the second validation step we used the �tted distribution for the RWTH-trace as service-time distribution in
an MjGj1 queue (modelling a proxy server). Using a discrete-event simulator, we studied mean queueing measures
for two di�erent service loads (� = 2=3 and � = 5=6). These are depicted in the upper half of Table 3. As far as
mean queueing performance is concerned, the results for the �tted Weibull, the �tted HEDs and the measurement
data (in a trace-driven simulation) are all the same (we show these results only once). However, in the lower half
of Table 2 we show a number of higher-order queueing statistics for the four di�erent distributions. We show,
again for the two levels of utilisation, the squared coeÆcient of variation of the waiting time, the 95% con�dence
intervals relative to the mean (in parentheses), as well as the relative errors RE in percent, de�ned as RE(x; y)
= j(x � y)=yj � 100%. We observe that the relative errors for the �tted HEDs are the smallest. Furthermore, a
higher number of phases in the HED does not necessarily lead to a better �t when measured in terms of queueing
performance. Finally, the con�dence interval is the smallest when using the Weibull �t. It seems that the Weibull
�t does not describe the statistical properties in the trace well; it seems to be too deterministic.

6. CONCLUSIONS AND FINAL REMARKS

In this paper we have presented a new, direct way of �tting HEDs to measurement data that describes HTDs.
In comparison to a previous approach, the new method may be computationally less attractive (it has a higher
complexity) but its results are far more satisfying. Furthermore, the new method does not require any intermediate
distribution function (form) to be chosen.

At the same time, the proposed �tting procedure allows us to classify events (in the case study: objects), that is,
a �tted HED tells us that with probability ci, an object \belongs to" class i of which the mean length is 1=�i. We
are currently experimenting with such a classi�cation scheme, in order to make scheduling and caching decisions
in world-wide web servers.
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APPENDIX A. THE MAXIMUM-LIKELIHOOD METHOD

Let p(xjv) be the distribution density function of a distribution parameterized by the vector v = (v1; : : : ; vM ). Given
measurement data x1; : : : ; xN , we search a value for v (a so-called parameter estimator) so that the distribution
with density p(xjv) \best" �ts the distribution of the measurement data. In the maximum-likelihood (ML) method
the quality of the �tting is expressed by the likelihood-function:

L(x1; � � � ; xnjv) =
NY
i=1

p(xijv): (14)

The goal is to maximize L by choosing an appropriate value for v. This can be achieved by solving the following
set of equations:

@L

@v1
= 0; � � � ; @L

@vM
= 0; (15)

Instead of (15), one often solves
@ logL

@ log v1
= 0; � � � ; @ logL

@ log vM
= 0; (16)

since the log-function transforms the product into a sum.

Examples

� The exponential distribution with p(xj�) = �e��x yields

L(x1; � � � ; xN j�) = �Ne��(
P

N

i=1
xi)

with \maximizing" parameter estimator

� =
NPN
i=1 xi

:

� For the Weibull distribution with p(xja; b) = b
ab
xb�1e�(x=a)b , we �nd

L(x1; : : : xN ja; b) = (
b

ab
)b

NY
i=1

xb�1
i e

�
�P

N

i=1
(xi=a)

b
�

which yields

a =

 PN
i=1 x

b
i

N

!1=b

and
1

b
+

1

N

NX
i=1

log xi �
PN

i=1(xi)
b log(xi)Pn

i=1(xi)
b

= 0:

This system of equations should be solved iteratively, e.g., with the Newton iteration method.

APPENDIX B. THE EM METHOD

The EM (Expectation Maximization) method is an extension of the ML method (see Appendix A). Again measure-
ment data x1; : : : ; xN and a distribution to �t are given. In the EM method the density function is the weighted
sum of one or more \basic" densities p(xj�i), i.e.,

p(xj�) =
IX

i=1

ci � p(xj�i)

where � = (c; �) is the parameter of the composed distribution with c = (c1; : : : ; cI), and � = (�1; : : : ; �I). For the

mixture weights ci, we assume ci � 0 for i = 1; : : : ; I and
PI

i=1 ci = 1.
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As in the ML method we search a parameter estimator � that maximizes the likelihood function L(x1; : : : ; xN j�).
Alternatively, we can de�ne the optimal estimator as the estimator �̂ that maximizes the di�erence D(�; �̂) =
logL(x1; : : : ; xN j�̂)� logL(x1; : : : ; xN j�) for any other estimator �. Developing D we obtain

D(�; �̂) =
NX
n=1

log p(xnj�̂)�
NX
n=1

log p(xnj�) =
NX
n=1

log
p(xnj�̂)
p(xnj�) (17)

=
NX
n=1

X
y

h(yjxn; �)
| {z }

=1

log
p(xnj�̂)
p(xnj�) (18)

In the last equation we have introduced a so-called hidden variable y with distribution h(yjxn; �). Using y we can
de�ne a two-dimensional density function h(xn; yj�) = p(xnj�) � h(yjxn; �) and we obtain (by the use of the law of
conditional probabilities):

D(�; �̂) =
NX
n=1

X
y

h(yjxn; �) log
�
h(xn; yj�̂)
h(xn; yj�)

h(yjxn; �)
h(yjxn; �̂)

�
(19)

=
NX
n=1

X
y

h(yjxn; �) log h(xn; yj�̂)
h(xn; yj�) +

NX
n=1

X
y

h(yjxn; �) log h(yjxn; �)
h(yjxn; �̂) : (20)

It can be shown that the second additive term
PN

n=1

P
y h(yjxn; �) log h(yjxn;�)

h(yjxn;�̂)
) � 0. The proof of this statement

is simple: since it holds log(t) � t� 1, for t > 0, we have:

X
y

p(y) � p(y)
q(y)

= �
X
y

p(y) � log q(y)
p(y)

� �
X
y

p(y)

�
q(y)

p(y)
� 1

�
= �

X
y

q(y)�
X
y

p(y) = 1� 1 = 0: (21)

From this it follows that:

D(�; �̂) �
NX
n=1

X
y

h(yjxn; �) log h(xn; yj�̂)
h(xn; yj�) ;

or, by de�ning Q(�; �̂) =
PN

n=1

P
y h(yjxn; �) log h(xn; yj�̂):

D(�; �̂) � Q(�; �̂)�Q(�; �): (22)

The EM algorithm uses the following iteration scheme to �nd the optimal estimator �:

1. Choose an initial estimator �

2. Calculate a better estimator �0:= argmax�̂fQ(�; �̂)g
3. Continue iteration with � := �0 if j�� �0j > �.

To compute �0 in step 2, we �rst have to de�ne the hidden variable y and its density function. We choose
y 2 f1; : : : ; Ig with density function

h(yjxn; �) =
cy � p(xnj�y)
p(xnj�) :

Now, �0 = (c0; �0) can be computed by solving the non-linear equation:

@Q

@�0i
=

NX
n=1

h(ijxn; �i) Æ

Æ�0i
log(c0i � p(xnj�0i)) = 0; i = 1; � � � ; I: (23)
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Using a Lagrange multiplier, one obtains12

c0i =
1

N

NX
n=1

h(ijxn; �i) = 1

N

NX
n=1

ci � p(xnj�i)
p(xnj�) ; i = 1; � � � ; I: (24)

The following table gives an overview over some interesting distributions and their explicite solutions for �0. We
have used the results from the second row (exponential densities) to �t HEDs, other basic densities, e.g., Gauss or
lognormal can be successful applied as well.

Distribution Parameters (�i) p(xnj�i) Iterations

Exponential (�i) �ie
��ixn �0

i =

P
N

n=1
p(ijxn;�i)P

N

n=1
p(ijxn;�i)�xn

Gauss (�i; �i)
1p
2��2

i

e
�

(xn��i)
2

2�2
i �0

i =

P
N

n=1
p(ijxn;�i)�xnP

N

n=1
p(ijxn;�i)

, �02
i =

P
N

n=1
p(ijxn;�i)�(xn��

0

i)
2P

N

n=1
p(ijxn;�i)

Lognormal (�i; �i)
1p
2��2

i

e
�

(ln xn��i)
2

2�2
i �0

i =

P
N

n=1
p(ijxn;�i)�ln xnP

N

n=1
p(ijxn;�i)

, �02
i =

P
N

n=1
p(ijxn;�i)�(ln xn��

0

i)
2P

N

n=1
p(ijxn;�i)
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