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Abstract 

We consider the scenario where users access Next 
Generation Networks via Network Access Providers 
(NAP). We assume that users belong to N different 
classes and the bandwidth received by each class is 
determined by a user share differentiation (USD) 
scheme. According to USD, each class is guaranteed a 
minimum bandwidth and all users accepted into the 
NAP are allocated the minimum bandwidth 
corresponding to their class and any remaining 
bandwidth is shared according to the ratio of the 
minimum bandwidths of each class. We develop a 
queueing-based model and solve an optimization 
problem to determine the minimum bandwidth 
(defined in USD) for each of the N classes that 
maximizes the revenue of the NAP, subject to 
satisfying a request blocking performance guarantee.  

1 INTRODUCTION 

In this paper we consider Next Generation Networks, 
where users, with the aid of Network Providers, 
access the network for information transfer (non-real 
time data files like images, graphics, animation and 
texts, web browsing, and real time multimedia 
applications like telephony, chat sessions, 
videoconferencing, telemedicine, live web television 
etc.). The current Internet offers only best-effort 
service, i.e. on a first come first serve basis. However 
real time multimedia applications require stringent 
Quality of Service (QoS) guarantees from the 
network, meaning hard bounds on bandwidth, end-to-

end delay and jitter, packet loss probability etc. For a 
network to provide performance guarantees, it has to 
reserve resources and exercise call admission control. 
Due to the increased demand of real-time multimedia 
applications in the last few years, lot of work has been 
done by the industry as well as the research 
community on providing end-to-end network 
guarantees. Providing end-to-end QoS guarantee can 
be broadly divided into three areas (see Figure 0), call 
admission and resource reservation between: the client 
and the network domain manager, intra-domain and 
inter-domain. 

 
Figure 0: Representing the Internet using domains 

A domain (or AS, Autonomous System) is a part of 
the Internet under a single organization or Internet 
Service Provider (ISP). Currently the Differentiated 
Services (DS) architecture (RFC 2475, 2638) is the 
most popular framework for providing QoS. As per 
this model, every domain has a centralized network 
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manager, known as the Bandwidth Broker (BB) [19], 
which is aware of the domain topology and status, 
using the underlying routing protocols. First the client 
(maybe a single user, corporate network or aggregated 
sub-networks) negotiates its QoS requirement, known 
as Service Level Agreement (SLA) negotiation, with 
the BB in its domain. Then the source domain BB 
negotiates resource allocation with the intermediate 
and destination domain BBs. We note here that 
currently these are areas of active research in the 
networking community, and that there is no existing 
IETF standard for any of these mechanisms.  

In this paper we concentrate on resource negotiation 
and call admission between the client and the source 
domain BB. We assume that the negotiated bandwidth 
can be provided through the remainder of the network. 
To provide this guaranteed QoS, the Network 
Provider charges the users a price.  

 

 

 

 

 

 

 

 

 

Consider users accessing information through the 
Internet. The users connect to the Internet via ISPs  
(see Figure 1). Note that several independent users 
subscribe to an ISP and typically dial up using a 
telephone line. However with the increasing 
bandwidth requirements, users are shifting to faster 
connections to the ISP such as cable modems. Users 
and the ISP agree on a contract, where the ISP 
guarantees the users a minimum level of network 
resources and performance, which we refer to as the 
QoS parameters. Typically, end-to-end delay, delay 
jitter, packet loss probability, bandwidth, and call 
blocking probability, are the QoS parameters of 
interest. 

Under the above mentioned contract stipulations, the 
ISP must guarantee the negotiated Quality of Service 
(QoS) for the connections established (we’ll use the 
words connections and calls interchangeably to refer 
to successful access to the network by the users). In 
this paper, we concentrate on two of the above QoS 

parameters namely, required bandwidth and 
probability of blocking a connection. 

The users accessing the network via the ISP are 
guaranteed a minimum bandwidth of the total 
available link capacity (determined via the SLAs 
negotiated by the bandwidth brokers) for their 
connections. The network chooses an optimal sharing 
scheme for the different users of the total bandwidth 
(available link capacity) to fulfill connection 
requirements. In addition, the probability of rejection 
of connection requests (due to lack of resources) is 
kept below a negotiated level. 

The scheme used by the NAP to allocate bandwidths 
to the connections is based on a User-Share 
Differentiation (USD) mechanism and is explained in 
detail in Section 4.1. This scheme has been proposed 
by Zheng Wang [13] in the working Internet draft 
“User-Share Differentiation (USD) Scalable 
bandwidth allocation for differentiated services”. 
When requests for connections are accepted by the 
NAP, the NAP first allocates a negotiated minimum 
bandwidth. Additionally, any remaining link capacity 
to the network is distributed to all the connections in a 
proportion stipulated by the contract. 

The major difficulty faced by the NAP in 
guaranteeing the negotiated QoS criteria is 
congestion. One way to regulate an overwhelming 
number of connections is to introduce a pricing 
scheme as a control mechanism. Establishing a pricing 
scheme that charges the users for demanding hard 
QoS guarantees from the network would reduce 
network resource allocation for non-critical 
applications, thereby facilitating provisioning of 
guaranteed service to users performing critical 
applications during congestion times. 

Pricing mainly depends on fixed connection-based 
charges or subscriptions and usage charges to cover 
the resource operating cost (based on the duration, the 
volume and the distance of a connection). The ISP can 
also enforce extra charges for congestion periods and 
for the QoS. These factors are explained in more 
details in more specific works, for example in 
Walrand and Varaiya [12]. We now discuss some of 
the literature dealing with pricing issues: 

Kelly [3] describes a charging and accounting 
mechanism based on an effective bandwidth concept. 
Edell, McKeown and Varaiya [2] present a system for 
billing users for their TCP traffic. MacKie-Mason and 
Varian [6] discusses issues on pricing in the Internet. 
Parris, Keshav and Ferrari [8] present a framework for 

ISP/NAP 

INTERNET 

Figure 1: The Internet, ISP & users 
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pricing services and study the effect of pricing on user 
behavior and network performance. Cocchi et al [1] 
study the role of pricing policies in multiple service 
class networks. Shenker et al [9] state that the research 
agenda on pricing in computer networks should shift 
away from the optimality paradigm and focus on 
certain structural/architectural issues. 

We note here that quantifying the amount of 
bandwidth required by a connection is a well-known 
problem in the Internet community. It is easier for a 
user to specify the observed call blocking probability 
(which is application independent) rather than 
translating the application requirements into an exact 
bandwidth requirement model (such as peak and 
average bandwidth rates, or other application specific 
statistical models). Most of the existing proposed 
pricing schemes do not address this problem and 
assume a bandwidth requirement model specified by 
the user.  One of the main aims of this paper is to 
determine the minimum bandwidth allocation that 
maximizes the revenue (as defined in our pricing 
mechanism) for the NAP subject to satisfying the 
constraint of the user’s required call blocking 
probability. The pricing scheme that we consider is 
discussed in detail in the next section, and takes into 
account not only the amount of bandwidth allocated 
but also the time-of-the-day. These two goals are 
important in an environment where many NAPs share 
the market, and have to respond to users behavior and 
demand.  

Queueing models have been extensively used in the 
design and control of communication networks (for 
example, see Kleinrock [4] and Walrand [11]). We 
will describe the system (NAP and users) using a 
queueing model with service (from NAP) according to 
a processor sharing mechanism, and where requests 
for connections represent customers arriving at the 
system, with no waiting line. As soon as requests are 
accepted by the system, the service begins. Processor 
Sharing models have been studied by de Veciana and 
Kesidis [10], Parekh and Gallager [7], etc. 

In Section 2 we explain the pricing mechanism 
adopted in this paper. In Section 3 we describe a 
queueing model for the single class connection 
requests arriving at the NAP. We solve an 
optimization problem to determine the minimum 
bandwidth allocation that maximizes the NAP’s 
revenue subject to the blocking probability QoS 
constraint. Similar analysis is performed for the case 
when we consider multiple classes of users in Section 
4, and a Connection Admission Control policy is 

discussed. We conclude by summarizing the results in 
Section 5. 

2 PRICING SCHEME 

2.1 The purpose of a pricing scheme 

Certain goals are to be taken into consideration when 
designing a pricing scheme. Essentially, the Network 
Access Provider (NAP) must recover the operating 
costs incurred for setting and maintaining a 
connection. These costs depend on the type of 
information being transmitted, and the duration of the 
connection. For example, a videoconference will use 
more resources (say bandwidth) than an email. Other 
than recovering costs, the NAP can indirectly perform 
congestion control by charging the users for time-of-
the-day access, especially regulating the arrival rate of 
the connections during peak periods. Otherwise, an 
excessive congestion will result in the inability to 
provide service to critical applications for which users 
will be willing to pay a price. 

Therefore, the components of an efficient pricing 
scheme must deal with the main features offered by 
applications in Next Generation Networks with 
multiple classes of traffic and Quality of Service 
(QoS) required by each class. The operating costs can 
be determined by the type of traffic transmitted (data, 
voice, video) and the QoS guaranteed for such transfer 
(limited delay, small cell loss probability, delay jitter, 
reserved bandwidth and blocking probability). As far 
as QoS is concerned, the concepts of reserved 
bandwidth and blocking probability are the key 
elements of the pricing scheme considered in the 
following sections. 

In this paper, we develop the following pricing 
scheme. The users are charged a cost Cb per unit of 
minimum bandwidth the network allocates. The users 
are also charged a cost Ct per unit of time for the 
amount of time they spend accessing the network. 
Note that Ct could be different for different classes of 
traffic. Besides, Cb and Ct can possibly be varied 
according to the time of the day to serve as a 
congestion control mechanism. 

2.2 Objective 

The goal of this study is to determine the minimum 
bandwidth allocated for each class of traffic so that 
the revenue per unit of time earned by the NAP is 
maximized. 
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For a given class of traffic, let λ be the rate at which 
connection calls arrive at the server. And let bm be the 
minimum bandwidth assigned to each connection. Let 
pk be the long run probability for the server to have k 
on-going connections simultaneously of the given 
class. Let pcon be the long-run probability of not 
rejecting (i.e. providing connection to) an incoming 
user. 

The long run average revenue per unit time (AvR) for 
the given class of traffic is then expressed in terms of 
bm as 

conmb
k

kt pbCpkCAvR ..... λ+=∑ .        (1) 

Note that pk and pcon are functions of bm. 

The total long run average revenue is obtained by 
summing over Equation (1) for all classes of traffic. 
This will be the objective function of an optimization 
problem discussed in the following sections. A 
constraint in the optimization problem is to keep the 
rejection probability user requests below a certain 
negotiated value ε. For example, ε=0.01 implies that 
users of a given class see no more than one in a 
hundred of their requests on an average rejected by 
the network at different times. 

In this paper, we assume that the NAP enforces a 
given set of charges (interchangeably called costs) as 
suggested by the pricing model studied above. We 
will not discuss how to set those charges in this paper. 
We will rather be interested in setting an optimal 
resource allocation policy (namely, the minimum 
bandwidth) to maximize the NAP's revenue while 
satisfying the users demands for quality of service. 

3 SINGLE CLASS CALLS 
In order to elucidate the analysis, we first present a 
simple model where we assume that there is only one 
class of traffic. Later we extend the results to a more 
general N class setting. 

3.1 Model 

Consider users who connect to an NAP to access the 
network. This server (NAP) has a total link capacity 
(or total bandwidth of the link between the NAP and 
the Internet) B (in MegaBits per Second) available for 
all the users (see Figure 1). User calls or requests 
arrive at the server according to a Poisson Process 
with parameter λ (represented as PP(λ)). Therefore, 
on an average, there are λ incoming requests at the 
server per unit time. 

In this section, we assume that all requests are 
considered identical, hence we refer to them as 
requests belonging to a “single class”. Each single 
class call results in a transfer of a random amount of 
information whose size is assumed to be exponentially 
distributed with mean 1/α. All the calls that are on, 
simultaneously share the bandwidth equally. 
Therefore if there are k simultaneous connections, 
each connection receives a bandwidth of B/k (this is 
the rate at which information is transferred to the 
user). This is frequently denoted as Processor Sharing 
(see [7] and [10]). Hence when there are k users 
simultaneously accessing the NAP, the holding time 
for each connection is exponentially distributed with 
mean ( )αα

B
k

k
B =1

. We denote  

µk=Bα/k. (2). 

According to the contract stipulations each accepted 
request is guaranteed a minimum bandwidth bm for the 
information flow. Note that a maximum of S=B/bm  
connections can be handled simultaneously. Therefore 
if there are S requests being processed, there is no 
more available capacity to accept another request. 
Hence any incoming request is rejected. 

Based on the parameters λ and bm and the costs Ct and 
Cb defined in the Section 2.1, the long run average 
revenue per unit time for the NAP is indeed Equation 
(1) itself since we are considering a single class of 
calls. The objective is to calculate an optimal bm that 
maximizes the revenue (AvR) in Equation (1), subject 
to the blocking probability QoS constraint to keep the 
blocking probability lower than a certain level. We 
solve an optimization problem to calculate the optimal 
bandwidth in Section 3.4. We begin by calculating pk 
defined in Equation (1). 

3.2 Analysis 

The above model can be thought of as a multiserver 
queueing system with state-dependent service and no 
waiting where customers (or requests) arrive into the 
system according to PP(λ), a Poisson process with 
rate λ. There can be a maximum of S customers in the 
queueing system simultaneously. An arriving 
customer who finds S other customers in the system 
leaves immediately. Service begins as soon as a 
customer is accepted into the system. 

Let X(t), the state of the system, be the number of on-
going requests at time t. Since the maximum number 
of connections is B/bm , we have 0≤X(t)≤S for all t. 
Each customer departs after an exp(µk) amount of time 
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when there are k customers in the system, where µk is 
defined in (2). Thus the time for the first of the k 
customers to depart the system is distributed as 
exp(kµk) (the minimum of k exponential random 
variables (see Kulkarni [5]), which can be written as 
exp(kµk)=exp(Bα). Henceforth µ will denote Bα. 

 

 

 

 

 

 

 

Therefore {X(t), t≥0} is a Continuous Time Markov 
Chain (CTMC) with: 

State space: {0, 1,…, S}, 

Infinitesimal generator matrix Q=[qij] such that 
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The transition diagram is represented in Figure 2. 

Note that the {X(t), t≥0} process is analogous to the 
queue length process in an M/M/1/S queueing system. 
From [5], solving the balance equations related to the 
above rate diagram provides us with the long run 
probability for the system to be in state S and the long 
run expected queue length, as expressed in Equations 
(4) and (5). 
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where         ρ=λ/µ (6) 

and L(S) is the long-run queue length in terms of S. 

We can then write pcon as: 

Pcon = 1 - P{being in state S} = 1 - pS. 

Substituting L(S) for Σkpk and pcon in Equation (1), we 
get  

)p(
S
BCSLCAvR Sbt −+= 1)(. λ . (7) 

An incoming call will see S customers in the system 
with probability pS (due to PASTA, [5]) and hence be 
rejected. The probability at which customers are 
rejected is pS. Then the constraint to satisfy is: 

ε≤Sp   (8) 

where ε (in terms of number of calls blocked per day) 
is the negotiated QoS call blocking probability. 

3.3 Optimization Problem 

The goal is to maximize AvR as expressed in Equation 
(7) with respect to S, the decision variable, while 
satisfying the constraint (8). Therefore we can 
formulate the above optimization problem: 

integer ,0                
   

)1()(.  max

≥
≤







 −+=

S
ptosubject

p
S
BCSLCAvR

S

Sbt

ε

λ

(9) 

Once an optimal value S* is obtained, the equivalent 
optimal minimum bandwidth allocation bm* is directly 
derived from bm*=B/S*. 

3.4 Results 

Since no closed form algebraic expression of the 
optimal S* exists, we plot the objective function and 
the constraints in (9) and solve it numerically. We use 
the following numerical values in Figure 3: λ=2 
customers/second, µ=3 customers/s, B=10 MBPS, 
Ct=25 cents/s, Cb=5 cents/MBPS, ε=10-2. 

Figure 3 characterizes the revenue function (AvR) for 
the above set of input values. At first, as S tends to 
zero, the part of the revenue attributed to the 
bandwidth gets high (due to the B/S term) but is offset 
by the high blocking probability yielding 1-pS≈0. As S 
increases, the time spent on the network takes the 
greatest share and becomes more significant: the 
requests take more time to be processed because of a 
smaller bandwidth. For large values of S, the revenue 
approaches a constant asymptotically. This constant 
corresponds to Ct times the long run average queue 
length of a queueing system with an infinite number 

0 1 2 

S S-1 

λ λ 

λ 

Bα Bα 

Bα 

Figure 2: Transition diagram of the single 
class process 
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of servers: 
λµ

λ
−tC (=50 in the computational 

example). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

The vertical line represents the value of S satisfying  

pS=ε. Therefore, the feasible region (satisfying (9)) is 
only to the right of the vertical line. The maximum 
revenue is the largest AvR in this feasible region. In 
this case, the optimal value turns out to be AvR=56.69 
cents/s, for S*=11 users, and bm

*=0.909 MBPS. 

Note that the numbers used in this example may not 
seem realistic when compared to real scale problems. 
We used them purely for illustration purposes.  

3.5 Equilibrium 

Notice that the arrival rate λ into an NAP is dependent 
on the user behavior. We conjecture that λ is very 
sensitive to changes in the minimum bandwidth 
provided as users switch NAPs when the QoS 
(minimum bandwidth) is not satisfactory. 

Therefore, it is of great interest to study the 
interactions between the parameters of our model, 
such as the arrival rate, and how they may drive it to 
an eventual equilibrium. In the above model, those 
parameters were chosen a priori and others constitute 
an output: bm*. 

The purpose of this section is to describe how a 
further interaction between these parameters can 
affect the equilibrium of our model. Specifically, we 
studied the effect of modifying λ on bm. On one hand, 

the model suggests that the lower the arrival rate λ, 
the higher the minimum bandwidth bm. This is 
intuitive: high arrival rates yield a high blocking 
probability, unless the number of admitted requests is 
high, or equivalently the minimum bandwidth is low. 
On the contrary, low arrival rates lead to low revenue 
unless the NAP provides a high minimum bandwidth. 
In fact, this is true of any QoS parameter as the higher 
the arrival rate the worse the QoS provisioned. The 
curve describing the model (Figure 4) is obtained by 
determining the optimal values bm* for different 
values of λ. 

On the other hand, users have an option to choose 
their NAP. From a user's perspective, the higher the 
minimum bandwidth, the more attractive the NAP. So 
a model for users behavior is the higher the minimum 
bandwidth, the higher the arrival rate. Thus the arrival 
rate is an increasing function of the minimum 
bandwidth. However, we conjecture that a typical user 
behavior suggests that the function be concave with 
declining margins, and asymptotically reaching a limit 
λ0 (the users’ arrival rate cannot keep on increasing 
indefinitely). We assume that such dependence can be 
modeled using the following function: 

)1(
*

0
mbe−−= λλ  (10). 

We briefly discuss two different cases of convergence. 

Figure 4 represents the above scenario. The graph 
uses the same values of B, µ, Ct, Cb, and ε, as used in 
Section 3.4. 
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Figure 4: illustration of an equilibrium point between 
the arrival rate and the offered bandwidth 
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For example, by first choosing an arrival rate of 1.9, 
the optimal minimum bandwidth turns out to be about 
0.75 (Megabits per second). This yields a new user 
behavior corresponding to an arrival rate of 0.8, that 
in turn leads to bm*=3.25, and so on. An equilibrium 
point is the intersection of the model curve and the 
user behavior representation. 

In theory, a second case can occur when this iterative 
process converges to another point, as represented in 
Figure 5 where the model curve does not decrease 
rapidly towards zero. In this case, the convergence 
point is the intersection between the model curve and 
the line λ=λ0. Slightly moving the minimum 
bandwidth from the convergence point forces a great 
disturbance in the system, since it requires the NAP to 
set a large value of bm in order to bring the arrival rate 
close to λ0. Obviously, this convergence point is not 
stable, unlike the first one (see Figure 4). 

In most practical cases, the model curve will decrease 
towards zero, because a large minimum bandwidth 
can never welcome enough users due to the system’s 
limited capacity. However, it is useful to have a plot 
of the user behavior, so that the provider makes a 
judicious choice of the initial minimum bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now present a mathematical analysis to determine 
if the system would be stable and converge or not. 
Consider variables x and y (surrogates for minimum 
bandwidth and arrival rates). Let f(.) be a decreasing 
function, a surrogate for the model curve, that maps y 
to x values. Similarly, let g(.) be an increasing 
function, a surrogate for user behavior, that maps x to 
y values. Therefore we have x = f(y) and y = g(x). 

Given an initial value y0, by iterating over i = 
0,1,2,…, xi = f(yi) and yi+1 = g(xi), we get the series of 
coordinate points (xi,yi). Next we derive the conditions 
under which a stable equilibrium point (xn,yn) exists as 
n ∞→ . It follows directly from the definition of the 
process that  

|)()(||)()(||| 1
11

11 −
−−

++ −=−=− iiiiii ygfygfxgxgyy
By the Lagrange Theorem the right hand side of this 
equality is equal to |||)()(| 1

'1
−

− −⋅ ii yygf ξ , where 
( )ii yy ,1−∈ξ , or ( )1, −ii yy  if 1−≤ ii yy . 

So the convergence exists provided that 
1|)()'(| 1 <− ygf on all such segments. By 

continuity and concavity of both functions one can 
find some neighborhood 0U  of the point 

)( 00 xfy =  where this condition holds for every 

interior point. Hence if the condition 1|)()'(| 1 <− ygf  
is satisfied for an arbitrary point in 0U , the iterative 
process is guaranteed to have convergence within the 
domain 0U . It is easy to show that in this case the 
limit is unique and is equal to 

)()(lim 00
1

0 xgxfyynn
=== −

∞→
. Indeed, by 

continuity of function g , we have 

00 lim)(lim)lim()( yyxgxgxg nnnnnn
====

∞→∞→∞→
. 

From the picture it’s clear that in case of divergence 
we will eventually reach the threshold value 0λ , 
corresponding to the unstable equilibrium mentioned 
above, which makes our convergence analysis 
complete. We do not present this analysis for the 
multi-class case with the understanding that the reader 
can extrapolate the results in multi-dimensions by 
letting x and y be vectors. 

3.6 General Distribution for File Sizes 
In Section 3.1 we considered single calls that result in 
a transfer of a random amount of information whose 
size is assumed to be exponentially distributed with 
mean 1/α. However the exponential assumption can 
be relaxed. In fact only the mean file size is required 
for the analysis, as we will see in this section. 
Therefore distributions with infinite variance (such as 
Pareto) can also be used. The reason we presented the 
exponential distribution analysis is that in the multi-
class case, the problem is tractable only under 
exponential distributions for which we extend the 
single-class analysis.  

λ0 

λinitial 

Figure 5: extreme case for illustration of 
an unstable convergence point 

Convergence 
point 

bmini
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Assume that the file size is distributed generally (with 
CDF G(.)) with mean 1/α..Using the result for 
M/G/C/C queues with state dependent service in 
Smith and Jain [14], we have the probability that there 
are i (0 ≤ i ≤ C) customers in the system, p(i), as 

)0(
)1()...1()(!

)/()( p
ririri

ip
i

−
= µλ

 

where r(i) is the ratio of the service rate of a single 
customer when there are i customers to the service 
rate when there is one customer.  The expression p(0) 

can be computed by solving ∑
=

=
C

i
ip

0

.1)(  

Our processor sharing queue can also be modeled as 
an M/G/S/S queue with state dependent service such 
that r(j) = 1/j for j = 1,2,…,S. Therefore the long run 
probability for the system to be in state S and the long 
run expected queue length, are the exact same 
expression in Equations (4) and (5). This leads us to 
believe that the exponential distribution results 
derived for the single-class case hold good for any 
general distribution with mean 1/α thereby making the 
analysis more powerful and generalized. 
Unfortunately this analysis cannot be easily extended 
to the multi-class case. At this time we only 
conjecture that for multi-class traffic, the results for 
general file sizes would be identical to those assuming 
exponential file sizes. This will be addressed in future 
work.  

4 MULTI-CLASS CALLS 

The single-class model in Section 3 can be extended 
to multi-class calls that take into account the multi-
class DS architecture proposed for Next Generation 
Networks. We are considering the case where 
different levels of Quality of Service are required, 
which could happen in two different ways: either the 
type of information conveyed requires a higher 
amount of bandwidth to meet the regular needs of 
QoS, or the users themselves ask for a “privileged” 
(higher priority) service that they are ready to pay for 
to fulfill their needs in case of delay sensitive or 
urgent information transfers. 

4.1 Model 

Consider that there are N different classes of calls. 
Class n connections (n=1,…, N) arrive according to a 
Poisson Process PP(λn) with a mean of λn calls per 
unit time. The size of information transfers is 

exponentially distributed with mean 1/αn for class n 
connections. 

The bandwidth allocation to an arriving call is based 
on the following. Class n connections are allocated a 
minimum bandwidth 

nmb , n=1,…, N. Without loss of 

generality, we assume 
1mb <

2mb <…<
Nmb . When a 

call of type m requests a connection of type m, given 
that there are already kn calls of type n (n=1,…,N) in 
progress, the service provider accepts the request if 
there is enough bandwidth for the new call. This is 
equivalent to satisfying the condition 

Bbbk
mn m

N

n
mn ≤+∑

=1

.  (10) 

Let bn be the instantaneous bandwidth assigned to 
each connection of type n. Note that the instantaneous 
bandwidth changes whenever a new call arrives or an 
existing call terminates, but it always is greater than 
the minimum allocated bandwidth 

nmb . Keeping 

class-1 as a reference, let βn be the ratio 
nmb :

1mb . 
Each class-n call is allocated the minimum bandwidth 

nmb , and then the rest of the total available bandwidth 
is shared among all the ongoing calls in the same 
proportion as the minimum bandwidths, that is βn. 
This is equivalent to having 

,...,Nn
b
b

b
b

n
m

mn n 1    

1 1

=∀== β  (11) 

at every instant. 

This is also referred to as the User Share 
Differentiation (USD) as proposed in [13]. In order to 
obtain insights into the model and also to slowly build 
the model from simple to complex we first start with a 
2-class model (N=2), then later generalize for any N. 

4.2 Two-Class Model: Analysis 

We consider two classes of traffic (i.e. N=2) to 
explain the analysis. 

Let λ1 and λ2 be the mean arrival rates of the 
connections of type 1 and 2 respectively. Their 
information transfer size is distributed exponentially 
with mean 1/α1 and 1/α2 respectively. Let k1 and k2 be 
the number of ongoing connections. Also, 

1mb  and 

2mb  are the minimum bandwidths allocated to each 

class. We denote β2= 2mb /
1mb as β. 
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When a new call arrives or an existing call departs, 
resulting in k1 and k2 calls of class 1 and 2 
respectively, the instantaneous bandwidths b1 and b2 
are chosen such that: 

β==+
1

2
2211   and  

b
bBbkbk .     (12) 

Therefore, 

2,1    
21 21

=
+

= nfor
bkbk

b
Bb

mm

m
n

n .   (13) 

Let µn,k1,k2 be the instantaneous rate at which a type n 
call is completed when there are k1 (respectively k2) 
ongoing calls of type 1 (respectively type 2) in the 
network. Therefore, similar to Equation (2), we obtain 

21 21
2,1, .

mm

mn
nnkkn bkbk

Bb
b n

+
==

α
αµ .   (14) 

Let X1(t) (respectively X2(t)) be the number of 
ongoing connections of type 1 (respectively of type 2) 
at time t. We model the stochastic process {(X1(t), 
X2(t)), t≥0} as a CTMC. The number of possible states 
depends on the values of B, 

1mb , and 
2mb . For a given 

set B, 
1mb , and 

2mb , the maximum number of users of 
type 2 (1) given that there are k1 type 1 (2) users is 











 −
=

2

1

1

1
,2

m

m
k b

bkB
S , (15) 











 −
=

1

2

2

2
,1

m

m
k b

bkB
S  (16). 

 

 

 

 

 

 

 

 

 

 

For B=10, 
1mb =2, 

2mb =3, we have: S1,k2=5-1.5k2  
and S2,k1=3.33-.66k1 . The states of {(X1(t), X2(t)), 
t≥0} are represented graphically by the set of points in 
Figure 6. To draw the transition diagram (Figure 8), 
the states are represented as in Figure 7. 

 

 

 

 

 

 

 

 

 

 

Consider the simple example represented in Tables 1 
and 2 and Figure 8 based on the following numerical 
values: B=5, 

1mb =1.5, 
2mb =2. 

k1 0 1 2 3 

S2,k1 2 1 1 0 

Table 1 Example for computing S2,k1. 

k2 0 1 2 

S1,k2 3 2 0 

Table 2: Example for computing S1,k2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0 0,1 0,S2,0 

1,S2,1 1,1 1,0 

S1,0,0 
S1,1,1 

Figure 7: The possible states for the 
two-class calls model 

k2 

k1 S1,0=5 

S2,0 
=3 

0 

0 

Figure 6: graphical representation of the 
possible states of the two-class calls model 

3.33 

5 

k2=3.33-.66k1 

State 
(2,1) 

 

3,0 

 

0,0 
 

0,1 
 

0,2 

 

1,0 
 

1,1 

 

2,1 
 

2,0 

Figure 8: Transition diagram of the two-
class CTMC example 
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Note that in Figure 8, the states with stripes are the 
ones where at least one class of calls cannot be 
accepted, and hence blocking occurs. The vertical 
stripes show the states where class-2 calls are blocked 
(extreme right of the rate diagram). Horizontal stripes 
show class-1 blocking (extreme bottom states). We 
call them class-n “blocking states” (n=1,2). We see 
that in some states (state (0,2), (2,1), and (3,0)) both 
classes of calls are blocked. Note that class-1 blocking 
states are a subset of class-2 blocking states: it is 
obvious that every class-2 blocking state is also a 
class-1 blocking state since 

2mb  ≥ 
1mb . 

As explained in Section 3.2, a state change will occur 
when either a connection (of type n) arrives into the 
system (at rate λn) or when such a connection 
terminates (at rate kn*µn,k1,k2). The transition rates are 
summarized generically in Figure 9: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let pij be the long run probability of being in state (i,j) 
of the CTMC. Let Q be the infinitesimal generator 
matrix with transition rates from state (i,j) to state (k,l) 
represented in Figure 9. 

From [5], [pij] vector is the unique solution to the 
balance equations: 

 0=pQ (17) and 1=∑ ijp (18). 

Since no closed form algebraic expression exists for 
pij, we solve the Equations (17) and (18) numerically 
given the values of B, 

1mb and 
2mb . For the 

optimization problem stated in Equations (19-24) the 
decision variable is S1,0 (which is the maximum 

number of users of type 1 given that there are no type-
2 users = B/

1mb ). We assume that β is given and is 
part of a strategic decision made by the ISP. 

Once the elements of the [pij]-vector obtained, it is 
possible to compute AvR using the following objective 
function: 
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)(        
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      (19) 

We’re seeking to maximize the above objective 
function with respect to S1,0 (Q and pi,j depend on S1,0). 
We also aim at keeping the call blocking probability 
lower than εn for class-n calls. Therefore, the 
optimization problem is subject to the following 
constraints 
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0
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The expression in (20) sums up the long run 
probabilities of being in the class-1 blocking states. 
Hence the long-run probability of providing 
connection to an incoming type-1 user is computed as 
derived in Equation (22). Similarly, the expressions in 
(21) and (23) relate to the class-2 blocking states and 
the long run probability of providing connection to an 
incoming type-2 user. We solve the above 
optimization problem with respect to S1,0. Once S1,0 is 
obtained, the corresponding values of 

1mb and 
2mb  are 

derived using the equations in (24). 

 

i-1,j-1 i-1,j 

i,j i,j-1 

λ2 

λ2 

λ1 λ1 

jµ2,i-1,j 

jµ2,i,j 

 iµ1,i,j iµ1,i,j-1 

If i-1≥0 & j-1≥0 

If i≤S1,j-1 If i≤S1,j 

If j≤S2,i-1 

If j≤S2,i 

Figure 9: summary of the transition rates 
for the two-class calls model 
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4.3 Results for N=2 Classes 

For a given value of β, we seek the maximum of AvR 
versus the values of S1,0. The choice of β is dictated by 
the application, the market characteristics and user 
behavior. For β=1, it’s equivalent to the single class 
problem in Section 3. Although we assume that the 
choice of β is defined by exterior conditions (usually a 
strategic value decided by the ISP planners), we 
briefly discuss the effect of the choice of β on the 
revenue. We illustrate the cases of β=2 and β=3 in 
Figures 10 and 11. The figures also show the blocking 
probability constraints (20) and (21). For the Figures 
10 and 11, the numerical values used are: B=0.5 
MBPS, β=2 and 3, λ1=λ2=0.25 customers/s, 
α1=α2=10/3 MBPS-1, Ct1=Ct2=12 cents/s, Cb=10 
cents/MBPS, ε1=ε2=10-2. 

The vertical line on the left (respectively on the right) 
in Figures 10 and 11 represent the value of S1,0 where 
the blocking probability for connections of type 1 
(respectively type 2) is equal to ε1 (respectively ε2). 
The feasible region is to the right of the right hand 
side line. Note that for usual cases, for the same 
values of ε1 and ε2, we will always have the line 
corresponding to the type 2 on the right of that of type 
1. And that is because the class-1 blocking states are a 
subset of class-2 blocking states, as noticed in Section 
4.2, hence the sum in Inequality (20) is larger than 
that in Inequality (21). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the optimum point is the largest AvR in the 
feasible region. The optimal value for β=2 is 

AvR=5.57 cents/s when S1,0=7 users; for β=3, the 
optimum is AvR=5.55 cents/s at S1,0=10 users. Since 
the problem consists of a single variable, the solution 
methodology to the optimization problem is just 
complete enumeration.  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

In Figure 12 we plot AvR versus β, with B and 
1mb  

remaining constant (and we only represent the type-2, 
i.e. the more constraining user QoS constraint).  
 
 

 

 

 

 

 

 

 

 

 

 

 

We see from Equation (19) that the term of the 
revenue due to Cb increases linearly with β. And we 
see on Figure 12 that the variation with β of the term 
comprising Ct is decreasingly piecewise constant. 
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The revenue consists in two terms of opposite trends, 
and the combination of both terms could yield an 
undesirable result such as a strongly decreasing 
function. However, for an appropriate combination of 
the two charges Ct and Cb, the curve adopts the 
behavior shown in Figure 13. The most favorable cost 
combination and the choice of the best value of β can 
be determined through the study of price optimality 
for a given set of system parameters, and is beyond 
the scope of this paper. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figures 2, 10, 11, 12 and 13 are highly dependent on 
the numerical values of the parameters (λ, α, Ct, Cb) 
involved in the computations. For every change in 
these parameters, the shapes of the curves obtained 
can be different. The values of these parameters may 
depend on the applications and the user behavior: 
users with the same behavior (λ, and α), but 
requesting different classes of transfer, or users with 
totally different behaviors (large mean size transfer, 
but low arrival rate for example) and willing to pay 
much more for their special requests (Ct2>>Ct1). 
Hence, in Table 3, we summarize a qualitative 
description of how the changes in the above 
parameters affect the optimal revenue. 
Table 3: Effect of parameter changes on optimal revenue 

Effect 
of \ on 

Max. 
Revenue 

Blocking 

probability 

Min. bw. 
bm 

Inc. αααα Lower Lower Higher 

Inc. λλλλ Higher Higher Lower 

Cb<<Ct  Same Lower 

4.4 N-Class Model: Analysis and Results 

The study of the two-class calls is very useful to help 
set the frame of the problem, since it is easier to 
visualize two-dimensional CTMCs than N-
dimensional (N>2) CTMCs. It also helps understand 
the general behavior of the revenue function, the QoS 
constraint and the optimum bandwidth. 

The two-class model is a very simplistic case. Our 
model can then be generalized to N classes of calls 
with some computational effort. Consider N 
applications (for example FTP, SMTP, Telnet, etc) 
that require N different amounts of minimum 
bandwidths and different QoS constraints. Let Xn(t) be 
the number of ongoing connections of type n (for n = 
1,2,…,N) at time t. We model the stochastic process 
{(X1(t), X2(t), …, XN(t)), t≥0} as a CTMC. Since the 
arrival or departure of a class n call changes the state 
of the CTMC as an increase or decrease of “one” in 
the nth dimension, the CTMC is an N-dimensional 
birth and death process. To compute the stationary 
probabilities p = [pi1,i2,…,iN], we need to solve the 
balance equations (18). This is computationally 
intensive. Recent papers by Servi et al [15],[16] 
contain an extremely fast algorithm to solve the 
balance equations for N-dimensional birth and death 
processes.  However that algorithm requires a special 
structure not found in our birth and death process. 
Therefore we need to make some clever modification 
to our birth and death process. Before explaining the 
novel technique and details of the algorithm, the 
parameters used are first explained: 

The instantaneous bandwidth and transmission rate for 
class n traffic when there are ki class i traffic for i = 
1,2,…N, are: 

Nnfor
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In order to explain the algorithm to solve the balance 
equation we first start with the rate matrix Q. In case 
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of a birth-death process, Q  can be represented in the 
following recursively tri-diagonal form: 
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where s
jv  are the nn×  block tri-diagonal 

infinitesimal generator matrices whose ),( ki th 
component is the probability flow from ),,,( 1 ijj NK  
to ( )ksjsj NN ,,,11 ++ K . For skip-free birth-death 
processes with such matrices, a method was found 
(Servi et al [15],[16]), which allows to reduce the 
number of computations from )( 6nO  to )( 3nO . It 
essentially uses the recursively block tri-diagonal 
structure of the matrix and exploits recursive 
procedure to reduce the number of multiplications and 
hence memory usage.  

The difficulty in using the algorithm in Servi et al [16] 
is that it requires the N-dimensional grid for the birth 
and death process to be cuboidal. In this paper, since 
all states (k1, k2, …, kN) must satisfy the constraint 

Bbk
N

n
mn n
≤∑

=1

 the resulting N-dimensional grid is not 

cuboidal. In order to use the algorithm in Servi et al 
[15],[16], we convert our grid into a cuboidal one by 
inserting the appropriate states. Define state space S 
such that all states (k1, k2,…, kN) that satisfy the 

constraint Bbk
N

n
mn n
≤∑

=1

 , belong to S. This matrix for 

Servi et al [15],[16] algorithm can be obtained from 
the original rate matrix by adding “fictitious” states 
into the lattice, i.e. replacing the state space by the 
larger set S0 

{ },,1,0:),,( ,,,10 1
NiSkkkSS

NkkiiN KK K =≤≤=⊂
where S is the state space in the original setting. The 
dimension of so constructed matrix Q  is 

( )∏
=

+
N

i
kkki N

S
1

,,,, 1
21 K . Now that the fictitious states 

have been defined the next question is: what are the 
rates, i.e. the birth and death parameter? In fact, they 
would be zero and infinity in the appropriate places. 
But in order to make the matrix invertible, we assign 
birth and death parameter as follows (δ -sufficiently 
small): 

1. ,),( δ=jiv s
j when SksjSij ∉+∈ ),(,),(  

2. ,),( Ajiv s
j = when SksjSij ∈+∉ ),(,),(  

3. ,),( Ajiv s
j = when SksjSij ∉+∉ ),(,),(  

This perturbation introduces a small flow rates δ into 
virtual states compensated by high outgoing rates A to 
ensure low long run probability of being in fictitious 
states. We demonstrate this approach on the 2-
dimensional example considered in Section 4.2. 
Figure 14 is a modification of Figure 8 for perturbed 
situation.  

Following Ross [18], for the fictitious states we 
always pick the outgoing rate A to be of the order 
δ/1  to satisfy the time reversibility of the birth-death 

process, i.e. for the flows from state i to state j, we 
need to satisfy: jijiji qpqp =⋅ , wherein for the 
transition from “real” to “fictitious” state we have: 

Aqq jiij == ,δ . To preserve the order of magnitude, 
A  should be picked as δ/1  for the numerical model 

we consider. 

It has to be noted that the discrepancy of solution 
produced by such perturbation behaved as )( 2δO  in 
all numerical examples that we considered. Table 1 
shows solutions to both regular and perturbed systems 
for the example considered above (see Figure 10) 
where the exact solutions were obtained by solving 
the 2-dimensional birth and death process in Section 
4.2: 

31025.0 −⋅=δ , 5.0=B MBPS, 25.0, 21 =λλ cust/s,
3/10, 21 =αα MBPS-1, 22 =β . 

In all considered examples discrepancy became even 
smaller with increase of Smax(1), so it was dominated 
by its values at the early stages of the algorithm, 
which leads us to believe that the estimate 

2~ δCpp ijij ≤−  would have to be true for the whole 
convergence process. This agrees with the fact that 
partial pivoting elimination method used in our 
algorithm is stable to small perturbations of initial 
data, as shown in [17]. 

Numerical considerations showed, that deviation 
behaves similarly for large multi-class systems. 
However one can expect this estimate to grow when 
δ  is picked inadequately large, and at the same time 
reducing perturbation by several orders can lead to 
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increase in computational complexity and the problem 
becomes less stable. Hence one should seek a 
compromise between these two conditions when 
fixing the order of perturbation. 
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Figure 14: State diagram for a 2-class CTMC example 

with perturbed matrix, where δ  is the perturbation 
parameter, δ1=A . 

Table4: steady state probabilities ijp compared to 

solutions ijp~ of the perturbed system for S1,0=2 

State Exact probability 
ijp  

Approximated solution 
ijp~  

(0,0) 0.755946 0.755942 

(1,0) 0.113505 0.113508 

(2,0) 0.017043 0.017049 

(0,1) 0.113505 0.113502 

 

We can now resort to a modification of the method 
discussed in Servi et al [15],[16] for solving the 
nonsingular system. Although we follow the same 
idea as discussed in Servi et al [16], we choose a 
slightly different realization, more suitable for our 

purposes. Similar results could be obtained by directly 
following the algorithm [16] for a perturbed system. 

We now present some results of this algorithm 
obtained for perturbation parameter min

310 λδ ⋅= − , 
where nNn

λλ
≤≤

=
1min min . Complete list of numerical 

data used in these examples as well as other graphs 
are provided in Table 5 and Figures 17-18 in the 
Appendix. Figure 15 represents the graph of the 
revenue function in case of a 3-class model.  

0.00 4.00 8.00 12.00 16.00
Smax(1)

0.00
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4.00

6.00

A
vR

 
Figure 15: Average revenue per unit time versus Smax(1) 

for a 3 class problem B=1 MBPS;β1,2=3,4; Cb=10 
cents/MBPS. 

Taking into consideration QoS requirements, shown 
in Figure 15, the solution to optimization problem is 
found to be 4.6917 cents/s for Smax(1)=9 users.  

0.00 2.00 4.00 6.00 8.00
Smax(1)

2.00

4.00

6.00

8.00

10.00

12.00

A
vR

 
Figure 16: Average revenue per unit time versus Smax(1) 
for a 6 class problem B=1 MBPS; β=2;3.8;4;4.9;5; 
Cb=10 cents/MBPS. 
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Figure 16 shows the results of calculations for the 6-
class model. It has to be mentioned that higher 
dimensional models become more exposed to the 
“granularity”, or “round-off” effect, than smaller ones. 
By assuming Smax(1) to be an integer-valued function, 
we keep  rejecting customers of higher priority classes 
in case there is only enough space for a “fraction” of 
such  customer. When this fraction becomes large 
enough, a decrease in revenue can occur. Accordingly 
the graph can acquire sudden drops and does not in 
general preserve concavity. This effect can be most 
readily observed in Figure 17 in Appendix, where 
priorities were chosen to be sufficiently far apart from 
one another. Maximal average revenue for the system 
considered in Figure 16 is approximately equal to 
10.302 cents/s and corresponds to the maximum of 6 
users of class 1.  

4.5 Connection Admission Control (CAC) 

When a request for connection arrives, the NAP, based 
on the number of on-going connections of each class, 
can decide to accept or reject the arriving request. This 
kind of connection admission control (CAC) can be 
implemented to increase the revenue of the NAP. 
Notice that the connection admission policy enforced 
so far was to accept any arriving request that could be 
accommodated.  

However, when requests arrive, it could be more 
advantageous to block a certain class of call to 
anticipate the arrival of a more expensive class of calls, 
and hence reserve room for the users who pay more. 
For example, a simple CAC policy would be not to 
accept a type-1 user if there is only “enough room” for 
one other type-2 user. Thus not loosing the opportunity 
to have a client who pays well, such policies can 
possibly increase the revenue. We implemented several 
CAC policies, progressively reserving the bandwidth 
for one, or two, or more than two type-2 users. This 
procedure surprisingly turned out to yield less average 
revenue than the admission policy used in previous 
sections. 

However, a better control of the blocking probability is 
provided by this policy inasmuch as the vertical QoS 
lines were shifted to the left, allowing a larger feasible 
region. Hence such policies could be enforced during 
high peak usage periods to avoid congestion, and meet 
more easily the needs of the high priority users. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we modeled connections to Next 
Generation Networks using a bandwidth sharing 

mechanism. We defined an appropriate pricing scheme 
to charge the users for their use of the network, 
depending on the class of traffic and required Quality 
of Service (minimum bandwidth). We formulated an 
optimization problem to determine the optimal 
resource allocation in terms of minimum bandwidth, 
subject to a call-blocking probability QoS constraint. 
We show that for both the single-class calls and the 
multi-class calls, an optimal value of the reserved 
minimum bandwidth can be found that maximizes the 
Network Access Provider’s revenue, and guarantees a 
blocking probability (QoS) lower than a certain 
negotiated level. We solved the problem for a general 
N-class system by modeling the system as an N-
dimensional birth and death process. We showed that 
in order to plug in the algorithm in Servi et al [15],[16] 
we need to make a novel modification to the CTMC by 
suitably inserting dummy nodes. Although we only 
considered exponential distributions of file sizes, we 
conjectured (proved in case of N=1) that the results for 
general distributions of file sizes would not be any 
different. We also provided a mathematical framework 
for describing the interaction between user behavior (in 
terms of arrival rates and minimum bandwidth) and 
pricing structures. 

Future work will deal with different Quality of Service 
requirements (delay, packet loss). Other pricing 
schemes will be considered, along with their eventual 
equilibrium and the effects of Connection Admission 
Control policies. We will also focus on optimization 
problems to choose optimal pricing structures. We will 
explore more general distributions for service times for 
the N-class case. 
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APPENDIX 

 
Table 5. 

Numerical values for different N-class models 
( 10=bC cents/MBPS in all examples) 

 
 

Number of 
classes Parameters Rejection 

probabilities 
Maximal AvR 

(cents/s) 

Optimal 
Smax(1) 
(users) 

N=3 
(Figure 15) 

4;3=β  

2.0;23.0;25.0` =λ  customers/s 

3;1.3;3.3` =α  MBPS-1 

12;10;10=tC  cents/s 

01.01 =ε  

02.02 =ε  

03.03 =ε  

4.6917 9 

N=4 
(Figure 17) 

7;5;2=β  

15.0;2.0;23.0;25.0` =λ  customers/s 

5.3;2.3;3;33.3` =α  MBPS-1 

23;18;15;12=tC  cents/s 

06.01 =ε  

1.02 =ε  

12.03 =ε  

18.04 =ε  

6.14879 10 

N=5 
(Figure 18) 

9.4;4;8.3;2=β  

18.0;2.0;2.0;23.0;25.0` =λ  customers/s 

8.2;3;2.3;3.3;33.3` =α  MBPS-1 

16;15;13;12;10=tC  cents/s 

065.01 =ε  

09.02 =ε  

1.03 =ε  

12.04 =ε  

19.05 =ε  

6.37743 8 

N=6 
(Figure 16) 

5;9.4;4;8.3;2=β  

16.0;18.0;2.0;2.0;2.0;25.0` =λ  customers/s  

5.2;8.2;3;2.3;3.3;33.3` =α  MBPS-1 

17;16;15;13;12;10=tC  cents/s 

01.01 =ε  

03.02 =ε  

1.03 =ε  

12.04 =ε  

14.05 =ε  

2.06 =ε  

10.3023 6 
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Figure 17. Average revenue per unit time for a 4-class model. 
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Figure 18. Average revenue per unit time for a 5-class model. 
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