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Abstract: We analyze the transient behavior of stochastic fluid low models in which the input
and output rates are controlled by a finite homogeneous Markov process. Such models are used
in asynchronous transfer mode (ATM) to evaluate the performance of fast packet switching
and in manufacturing systems for the performance of producers and consumers coupled by a
buffer. The transient analysis of such models have already been considered in earlier works and
solutions have been obtained by the use of Laplace transform. We derive in this paper a new
transient solution only based on recurrence relations. We show that this solution is particularly
interesting for its numerical properties. The limiting behavior of the solution is also considered.
We empirically show that the algorithm for computing the transient solution can be stopped
when some stationary behavior is detected.
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Analyse transitoire de modeles stochastiques fluides

Résumé : On analyse le comportement transitoire de modeles stochastiques fluides dont
les taux d’entrée et de sortie sont controlés par un processus de Markov fini et homogene.
De tels modeles sont utilisés dans 'ATM (mode de transfert asynchrone) pour évaluer les
performances des réseaux haut débit et en productique pour les performances de systemes
producteurs et consommateurs couplés par un tampon. L’analyse transitoire de tels modeles
a déja été considérée lors de précédents travaux et des solutions ont été obtenues en utilisant
la transformée de Laplace. Dans cet article, on obtient une nouvelle solution transitoire basée
uniquement sur des relations de récurrence. On montre que cette solution est particulierement
intéressante pour ses propriétés numériques. On considere aussi le comportement limite de cette
solution. On montre de maniere empirique que l’algorithme calculant la solution transitoire peut
étre arreté quand un certain comportement stationnaire est détecté.

Mots-clé :  ATM, modeles fluides, processus de Markov, analyse transitoire.



Transient Analysis of Stochastic Fluid Models 3

1 Introduction

A stochastic fluid flow model describes the behavior of a fluid level in a storage device. The
input and output rates are supposed to be controlled by a finite homogeneous Markov pro-
cess. Such models are used in asynchronous transfer mode (ATM) to evaluate the performance
of fast packet switching and in manufacturing systems for the performance of producers and
consumers coupled by a buffer. There is a large number of papers dealing with the analysis
of stochastic fluid flow models. Most of these papers consider such models in stationary re-
gime. Anick et al. [1] and Kosten [2] analyzed the fluid model for several on-off input sources
controlled by a two-state homogeneous Markov process. Mitra [3] and [4] generalizes this model
by considering multiple on-off inputs and outputs. In [5] Stern and Elwalid considered such
models for separable Markov modulated rate process which lead to a solution of the equilibrium
equations expressed as a sum of terms in Kronecker product form. In [6] Igelnik et al. derive a
new approach, based on the use of interpolating polynomials, for the computation of the buffer
overflow probability. An extensive list of references can be found in [7] and [8].

For what concerns the transient analysis stochastic fluid flow models controlled by a finite
Markov process. Narayanan and Kulkarni [9] derive explicit expressions for the Laplace trans-
form of the joint distribution of the first time the buffer becomes empty and the state of the
Markov process at that time. Guillemin et al. consider the unbuffered model in [10] and obtain
a method to compute transient characteristics, such as the congestion period, with an unboun-
ded number of exponential on-off sources. These results have been extended by Dupuis et al.
in [11] to the case where the off periods are phase-type.

The Laplace transform has been largely used to evaluate the transient behavior of fluid flow
models. In [12] Ren and Kobayashi studied the transient distribution of the buffer content for
exponential on-off sources of a single type. The same authors deal with the case of multiple
types of inputs in [13] These studies have been extended to the Markov modulated input rate
model by Tanaka et al. in [14].

In this paper, we consider a general stochastic fluid flow model in which the buffer is infinite
and the input and output rates are controlled by a finite homogeneous Markov process. For
this model we derive a new transient solution for the distribution of the buffer content. This
solution do not make use of any transform, it is only based on simple recurrence relations
which are particularly interesting for their numerical properties. The algorithm implementing
this solution is very accurate since it uses essentially non negative numbers bounded by one
and it gives results with an error tolerance that can be specified in advance. Furthermore, by
considering the limiting behavior of the solution, we empirically show that the algorithm can
be stopped when some stationary behavior is detected.

The remainder of the paper is organized as follows. We describe in the following section the
model and we present our new transient solution with some of its properties. In Section 3 we
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4 B. Sericola

describe the algorithm implementing the solution. We empirically show in Section 4, through
numerical examples, that the computation time of the solution can be considerably reduced by
considering the limiting behavior of the solution. Section 5 is devoted to some conclusions.

2 A New Transient Solution

We describe in this section a general fluid model with an infinite buffer for which the input and
output rates are controlled by a homogeneous Markov process X = {X,,s > 0} on the finite
state space S with infinitesimal generator A and initial probability distribution «. The number
of states is denoted by |S|. The amount of fluid in the buffer at time ¢ is denoted by @Q; and we
suppose that Qg = 0. The pair (X;, Q;) forms a Markov process having a pair of discrete and
continuous states. Let p; be the input rate and ¢; be the output rate when the Markov process
X is in state .. We denote by d; the effective input rate of state ¢, that is d; = p; — ¢;. Let
m+ 1, m < |S], be the number of distinct values among all the effective rates d;. These m + 1
distinct effective rates are denoted by 7, r1,...,r, and ordered as follows

Tm > Tme1 > - ..>0y >0271, 1> ...>1 >,

where u is the index of the smallest positive effective rate. The state space S of the process X
can then be divided into m + 1 disjoint subsets B,,, By,_1, ..., By where B; is composed by the
states i of S having the same effective rate r;, that is B; = {j € S/d; = r;}. We will denote by
| B;| the cardinal of subset B;.

For a fixed ¢ > 0, the random variable @, takes its values in the interval [0, r,,t]. For ¢ > 0, the
distribution of Q; has m —wu-+1 jumps at positive values and one jump at point 0 corresponding
to the case where the buffer is empty at time ¢. The jumps at the m — u + 1 positive values
correspond to the case where the Markov process X remains during the whole interval [0, ?] in
the different subsets B,, B,i1, ..., By, provided that the initial probabilities of these subsets
are positive. These jumps probabilities are then given, for j = u,u+1,...,m by

Pr{X,=1i,Q, = rjt} = ag e’ """l if i € B;,

where Ap, g, is the sub-infinitesimal generator of dimension |B;| obtained from A by considering
only the internal transitions of the subset B; and agp, is the subvector of dimension |B;| obtained
from the row vector a by considering the initial probabilities of the subset B;. The vector 1(;
is the column vector whose ith entry is 1 and the others 0, its dimension being given by the
context (|B,| in this relation).

The jump at point 0 is not so easy to obtain since the process X can eventually visit all the
subsets B; before that the buffer becomes empty at time ¢.

Irisa



Transient Analysis of Stochastic Fluid Models 5

Let Fi(t,z) = Pr{X; = i,@Q; > x}. We then have the following partial differential equation,
see for instance [14],

OF(t,x) aFta:
— = +ZF (t, x)A(r,1). (1)

resS

We denote by P the transition probability matrix of the uniformized Markov chain with
respect to the uniformization rate A\ which verifies A\ > max(—A(i,4),7 € S). The matrix P is
then related to A by P = I + A/\, where I denotes the identity matrix. In the following, to
simplify notation, we will consider X as the uniformized process. For every i,j =0,...,m, we
denote by Pp,p, the submatrix of P containing the transition probabilities from states of B; to
states of B;.

The main result of this paper, which is the distribution of the pair (X;, Q;) is given by the
following theorem.

Theorem 2.1 For every: € S, we have

o~ )
e
= e

n

Z (7 )k —a) " (n, k), (2)

k=0

+
x - T]*lt

(rj — 7“]+ )t

rjtl =1;_1 for j > u. The coefficients bz(j)(n, k) are given by the following recursive expressions
on the row vectors bgl)(n, k) = (bl(-])(n, /{:)).eB for0<Ii<mandu<j<m.
1€B

where x; = if v € [T;-th,Tjt), for j=wu,u+1,...,m, with r =0 for j =u and

for 3 <l <m:

forn>0: b(l;fl)(n, 0) = (aP™)p, and bgl)(n, 0) = bgfl)(n,n) forj>u

) " G) TS G)

for1<k<mn: bg(nk) = ﬁb (,k—1)+ﬁ2b3i(n—1,k—1)PBiBl
for0<I<j—1:

forn>0: bg;)(n, n) = 0p, and bgl)(n,n) = bgl+1)(n, 0) forj <m

() i T G) T
for0<k<n—1: bgl(nk) = Z“irb (n,k+1) ] Zb (n—1,k)Pg,p,.
T
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6 B. Sericola

Proof. See Appendix A.

Formula (2) is particularly interesting from a computational point of view. Indeed, for every

j=u,...,mand x € [T;th,rjt) we have z; € [0, 1],
+
T T T
OS%ZIf%SIfbrl:j,...,m,
7“1*7“];1 Tl*T] 1
and . .
ri—r Ty — T
o< Lt oo c oy =0,...,5— L

Ty —T Ty — T
It is then easy to check that for every i € S, j = u,...,m, n > 0 and k = 0,...,n we have
bl(])(n,k) € [0,1]. Moreover the error truncation of the series in (2) can be determined in
advance. These properties are very important for what concerns the numerical stability of the
computation.
For a given error tolerance £, we define integer N as

ot )

1=0

N:min{nGIN

We then get, for every i € S,

Fi(t,x) =) e

where the rest of the series e(V) satisfies e(N) < e.

The main computational effort is due to the computation of the bgl)(n, k) given in Theo-
rem 2.1. To illustrate the recurrence relation, we proceed as done in [15] for the performability
computation. For each j = u,...,m, we define a partition of the state space S as

Uj:BmU"'UB]'aIldD]‘: ]‘,1U"'UB0,
and denoting by T the transpose operator, we also define the following column vectors
. ) T . : T
by, (n. k) = (%) (n, k), .05 (n. k) and by, (n.k) = (b5)  (n. k). ..., %) (n, k))

With this notation, Fig. 1 illustrates the sequence of computations (drawn only for n = 0,1, 2, 3)

that have to be done in order to evaluate the b (n, k)’s. The upper (resp. lower) part of cell
(n, k) in triangle j contains the vector by, (n, k) (resp. bp,(n,k)). The computation is done in

Irisa
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Figure 1: In cell (n, k) the vectors by, (n, k) and bp, (n, k).

a line by line manner over all the triangles following the arrows in Fig. 1. Note that the upper
part of the diagonal of each triangle of cells is reported in the upper part of the first column
of the next one and the lower part of the first column each triangle of cells is reported in the
lower part of the diagonal of the previous triangle of cells. The starting points are given, for
j=u,...,m and for every n > 0, by

ij(0,0) = (OéBm,...,Osz)T, bD].(0,0) = (Oijl,...,OBO)T,

and
T

b, (n,0) = ((aP")p,,. ... (@P")5,) . bp,, (n,n) = (Og, ,.....08,)
The way in which the computation of each cell (n,k) is performed is shown in Fig. 2. It
is now easy to evaluate the complexity of this method. The computation of one cell consists
essentially in a vector matrix product. If d denotes the maximum number of nonzero entries
in each column of the matrix P, the computational complexity of a cell is O(d|S]|). There are
m — u + 1 triangles each containing (N + 1)(N + 2)/2 cells. The computational complexity of
our method is then O(d|S|(m —u+1)N?/2). We see from Fig. 2 and Fig. 1 that it is sufficient
to store 2 rows of cells in order to compute the bz(-j)(n, k). Thus the storage complexity of our
method is O((m — u + 1)N|S]).
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8 B. Sericola

OO O
"0 { j ()
U

Figure 2: Computation of cell (n, k).

3 Stationarity Detection

We empirically show in this section that the algorithm described above can be stopped when
the stationary behavior of the model is detected.
Let us denote by 7 the stationary distribution of the Markov process X. We suppose that
the stability condition is satisfied, that is
Z PiT;
__i€S

p_
ZCﬂTi

€S

<1,

where p is the traffic intensity, so that the limiting behavior exists. We also suppose for sake
of simplicity that for every i € S, we have p; # ¢;.
With these assumptions, we have for every j =u,...,m,

thi)llm Pr{@Q; > 0} = p and tgnm Pr{Q; > r;t} = 0.

From Relation (2), we have for every j =u,...,m, and x € [r] t.r;t)
o0 B )\t n n " )
Pr(Qu> ah = 3 e ST ()b - a0 ),
n=0 k=0

where z; is as in Theorem 2.1 and

0 (n, k) =S 09 (n, k).

1€S

The following theorem gives an upper bound of the bz(-j)(n, k). If v and w are two vectors
having the same dimension, the notation v < w means that the inequality stands for each of
their entry, that is, v; < w; for every 1.

Irisa



Transient Analysis of Stochastic Fluid Models 9

Theorem 3.1 For every n > 0, for every j = u,...,m, for every 0 < k < n and for every
0 <!l <m, we have ‘
b (n, k) < (aP™)g,. (3)
Proof. See Appendix B.
Using this theorem, we easily verify that b (n, k) < 1.

Theorem 3.2 For every n > 1, for every j = u,...,m and for every 1 < k < n, we have
bgl)(n, 0) < bglfl)(n, n) forj >u (4)
bD (0. k) < b (. k — 1) 5)

Proof. See Appendix C. '

This theorem shows that for fixed n and i € S, the sequences b (n, k) and b9 (n, k) are
wide-sense decreasing in both j and k. It follows that ) (n,k) can be interpreted as the
complementary distribution function of a discrete random variable which is the discrete version
of Q;. For this discrete random variable, the integer n represents the number of transitions over
the interval (0,¢) for the uniformized Markov chain of X. Thus the limits lim, b(j)(n, k)
exist and in this case we must have necessarily

i (w) — i (w) — i () — -
lim b (n,O)—p,nh-I{loob (n,n) =0 and lim b (n,0)=0for j=u-+1,...,m.

The stationarity detection consists in stopping the computation of the bl(j)(n, k) when the
values |6 (n,0) — p|, b (n,n) and b9 (n,0), j > u, are sufficiently small. This can be done as
follows

Consider the integer N defined in the previous section. We define the integer N, as

N, =min{n |1 <n < N and [0 (n,0) — p| < /3 and b (n,n) < =/3}
and for j =u+1,...,m, we define the integers NN, as
Nj =min{n |1 <n < N and b¥(n,0) < £}.

When N; does not exist, we set N; = N. If all the N; are equal to N, we obtain the exact
solution described in the previous section.

The approximation made here consists in considering that for n > N, and for every k =
0,...,n, we have [0 (n, k) —1lim, b (n, k)| < /3 and that for every j = u+1,...,m and
for n > N;, we have bU)(n,0) < &.

PIn"1099



10 B. Sericola

In practise, we often observe that for n > N, the sequence bW (n, k) are wide-sense monotone,
so the approximation is justified.
From theorem 3.2, we can easily check that we have

NmSNmflggNua

so, when, for j > u+ 1, the integer N; is reached, we stop the computation over triangle j (see
Fig. 1) and we set bp, ,(N; + 1, N; + 1) = 0. The computation then continues over triangles
u,u+1,...,7—1.

We then have for j > u+ 1 and = € [r;_1t,7,t),

()"

n!

Nj n
Pr{Q >} =Y e M3 () af(t =) "0 (n, k) + e(N;),
n=0 k=0

where the rest of series e(/N;) satisfies under the approximation hypothesis

o0 a (At)n n n . )
e(N;) = 3 e My (g )k a9 (k)
n=N;+1 k=0
< Y e”‘t( n') > ( Z ):1:?(1 — ;)" ) (n,0)
n=N;+1 © k=0
S c Z e*At ()\t')
n:N]-+1 n.
< e

N )" &
PriQ> e} = 5 e PSR ) ki
n=0 k=0
°° ()\t)n Nu n
+ 0> e M S () Ak a)" BNy k) + e(V).
n=Ny+1 LA —

The second sum which is infinite can be easily expressed as a finite one; we then obtain

Pr{@Q, >z} = > e o > ( L )ru(l — 2,)" 0 (n, k)
n=0 T k=0
N k Ny —k n
5 e M) ) | R any M ) ]

Irisa
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where the rest of series e(NN,) verifies

n:Nu+1 k=0
T T SR B PR G CIrS
n=Ny,+1 ! k=Nyu+1

Under our approximation hypothesis, we get for n > N, : [b®)(n, k) — b (N,, k)| < 22/3 for
k < N, and b™ (n, k) < /3 for k > N, + 1, so finally we obtain ¢(N,) < =.

The complexity of this approximation is now a function of the truncation integers N;. The
number of cells that must be computed in triangles i is equal to (N;+1)(N;+2)/2. So as for the
exact algorithm, we easily obtain the computational complexity of the approximation which is

O(d|S| Y™ »t1 N2/2). By comparing the computational complexities of the exact and of the
approximation method, we see that, the approximation, if sufficiently accurate, must be used
for large values of m. We will see in the next section that the values of the N; can be very small
with respect to N with a very high accuracy for the results obtained by the approximation.

4 Numerical Examples

We present here some numerical results to illustrate our new solution technique and the ap-
proximation based on the stationarity detection.

We consider m statistically independent and identical on-off sources. For each source, we
assume that the on periods and the off periods form an alternating renewal process and their
durations are exponentially distributed with mean 5! and v~ ! respectively. When a source is
in the state on, it generates packets (or cells in the ATM terminology) at rate . We denote
by C the multiplexer’s output link capacity. Let X, be the number of sources in the state on
at time s. The process X = {Xj, s > 0} is then a homogeneous Markov process over the state
space S = {0,1,...,m}. Its infinitesimal generator A is a tridiagonal matrix whose entries
are A(i,i — 1) =if fori = 1,...,m, A(i,i+ 1) = (m — i)y fori = 0,....,m — 1, and so
A(i,i) = —iff — (m — i)y for i = 0,...,m. For each i € S, we have p; = i and ¢; = C. The
traffic intensity p is then

mo-y

C(B+7)
We fix § =1, f =1 and C = 0.8. This gives v = 1 and so the number of triangles that we

have to consider is equal to m. We consider various values of the number m of sources and of
the off rate v or of the traffic intensity p. The error tolerance is fixed to £ = 10>, The figures

p:
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12 B. Sericola

3 to 6 have been obtained using the exact algorithm and figure 7 has been obtained using the
approximation method detecting the stationary behavior of the model.

Figure 3 shows the complementary distribution of the buffer content at time ¢ for various
values of ¢t. There are 2 input sources, the traffic intensity is p = 5/6 and both sources are
initially in the off state. It can be noted that both distributions for ¢ = 100 and ¢ = 200 are
very near from each other, which means that the stationary regime seems to be reached.

Figure 4 shows the complementary emptiness function Pr(Q; > 0) for 2, 5 and 10 sources
when the traffic intensity is p = 5/6 and all the input sources are initially in the off state. It
can also be noted the convergence of the curves to the traffic intensity p.

Figure 5 is particularly interesting from a numerical point of view. The value of the time is
fixed to ¢t = 1, the number of input sources is m = 2 and the traffic intensity is p = 5/6. This
figure shows the complementary distribution of ); for different initial probability distributions,
which correspond to the case where all the input sources are off, i.e. Xy = 0, the case where
the input sources are in stationary regime, i.e. the distribution of Xy is 7, and the case where
all the input sources are on, i.e. Xg = 2. When Xy = 0, the distribution has only one jump
at point 0 and it is not differentiable at point x = rit = 0.2. When the distribution of X|
is m, we observe the three discontinuities at points x = 0, x = it = 0.2 and x = rot = 1.2.
These two last discontinuities are easy to determine. For instance, we have Pr{@Q;, = 0.2} =
me W = 4e715 /9. The computation of Pr{@Q; > 0.2 — 101} — Pr{Q; > 0.2} using our
algorithm, gives exactly this result, the precision obtained is greater than 107!°. The same
observation holds at point = 1.2. Finally when Xy = 2, we observe the two jumps at points
x =0 and x = rot = 1.2. As before, it is easy to check that, at point x = rot = 1.2, the result
obtained using our algorithm is highly accurate. We also observe that the distribution is not
differentiable at point x = rit = 0.2.

Figure 6 shows the complementary distribution of Qg9 for various values of the traffic inten-
sity p, including values greater than 1. The number of input sources is m = 2 and both sources
are initially off. For instance, we have Pr{Q1o0 > 45} = 0.0001 for p = 1.25.

Figure 7 shows the complementary distribution of @; for various values of . The traffic
intensity is p = 5/6, the number of input sources is m = 50 and all the sources are initially off.
This figure has been obtained by using the approximation method based on the stationarity
detection. For t = 10, we obtained for the different truncation steps N = 598, N; = 51 — i
for i = 5,...,50, Ny = 374 and N3 = Ny, = N; = N. This shows the important gain in
computational complexity obtained by the approximation method. To evaluate the accuracy
of the approximation method, we have executed the exact algorithm with the same input
parameters. We have observed that the greatest difference between the results of the two
algorithms is equal to 2.2 x 1076, This shows that our approximation method is highly accurate
even for small values of £. For ¢ > 10 we obtain, as expected, an accuracy still higher than for
t = 10.

Irisa
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Figure 3: From bottom to the top, Pr{Q, > =} versus x for ¢t = 10, 20, 30, 50, 100, 200, X, = 0,
m=2and p=>5/6
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t

Figure 4: From bottom to the top, Pr{@Q; > 0} versus ¢ for m =2,5,10, Xo = m and p = 5/6
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0] 0.2 0.4 0.6 0.8 1 1.2

Figure 5: From bottom to the top, Pr{Q; > x} versus x for Xg =0, X, ~ 7 and xg = 2 when
m=2and p=>5/6

1

0.8

0.6
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0.2

Figure 6: From bottom to the top, Pr{Qigp > =} versus x for p = 0.75,1,1.25,1.5, m = 2 and
XO =0

Irisa



Transient Analysis of Stochastic Fluid Models 15

1 f f f f

0] 5 10 15 20 25
X

Figure 7: From bottom to the top, Pr{@Q; > x} versus « for t = 10, 20, 50, 80, 100, 150, 200 when
Xo=0,m=50and p=5/6

5 Conclusion

We developed a new transient solution of a fluid model with an input and output controlled
by a homogeneous Markov chain. Our solution do not make use of any transform, as done in
previous works. It is based on simple recurrence relations which are particularly interesting
for their numerical properties. The algorithm implementing this solution is very accurate since
it uses essentially non negative numbers bounded by one and it gives results with an error
tolerance that can be specified in advance. We also develop an approximation method based
on the detection of the stationary regime of the model. It has been shown though numerical
examples that, as the exact method, this approximation method is highly accurate. Moreover
its computational time can be very low with respect to the exact method.
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Appendix A. Proof of Theorem 2.1

Fort > 0 and x € (T;th, rit), for j =u,u+1,....m, we write the solution of equation (1) for
every 1 € S, as

Tl

=Ze*” Z( ) k(1 — 2" 0 (n, k),
n=0 k=0

and we determine the relations that must be satisfied by the coefficients bz(-j)(n, k). We have

——= = —\F(t,:
ot it )
— 6’” Z ()=o) 5 (n+ 1 k) = v 0 (n+ 1k + 1)),
i~ i1 n=0 k=0
and
oF;(t, A (A& .
( 37>: —— Ze/\t( ') Z(Z)xf(l_%)n k[b()(n—i-l k+1)— b(])(n—i—l,/{:)].
O Ty = Tj-1n=o LT —

Using the uniformization technique, we have

S F(t,x)A(ri) = —AF(t.x) + A Fo(t,2)P(r, i),

res resS

that is,

n n

N E(t 2)A(r,i) = ~AFi(t,x) + A fj o—x (A S (5 )2k =)t 0 (k) P(r ).

res n=0 o res

It follows that if the bz(j)(n, k) are such that

(di — 15 )b (n+ 1,k + 1)+ (r; — d)b (n + 1, k) = I ri)  (6)

res
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18 B. Sericola

then equation (1) is satisfied.
The recurrence relation (6) can also be written as follows, for j = u,...,m.
FOI’Z'EBOU"'UB]',M

+
‘ —p .
@”mjg:ffgngMnk+1 T441§jb (n—1,k)P(r,)
J v J Z reS

and fori € B;U---U B,

(”) di —rj () T < ‘
b (n, k) = 7%] (n bk — 1)+ 2—2=5" 60 (n — 1,k — 1)P(r,7).
di — T di — Tj-1 res
Using matrix and vector notation, we get for j = u,...,m
. T' T+ m
b3 (n, k) = ——2 b (0, k= 1) + 23S 5 (0 — 1,k — 1) Py, for 0 <1< j—1
Tl - T] 1 Tl - 7’371 i=0
B () = O 1) lemb() 1, k)P, for j <1<
B, (1, )—ﬁB,(”a + _— Z z”* B;B, for j m.
J ] i=0

To get the initial conditions for the bi (n, k), we consider the jumps of Fi(t,x).
Fort>0andi€e B,U---U B,,, we have

F()Iﬂ&—Q—Z(”m(WWU

It follows that
0" (n,0) = (aP™)(3),

)

that is
b%‘l)(n, 0) = (aP")p, for u <1 < m.

Fort>0and v <j<m—1andi¢ B, we have

Fi(t,rjt) = lm Fi(t, x),

a:iw]-t
since ¢ ¢ B; means that there is no jump at point x = r;t. It follows that
j j
0V (n,0) = 87 (n,n) if i ¢ B;,

That is, | |
bgzﬂ)(”a 0) = b(é,)(n,n) for I # ;.
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This can also be written as
bgz)(”’ 0) = bgfl)(n, n)foru<j<Il<m

b (n,n) = 0§ (1,0) for 0 <1< j—1<m—1.
Finally, for t > 0 and i ¢ B,,, we have

a:iwmt
It follows that 6™ (n,n) = 0, that is
bg?)(n,n) =0for0<I<m-— 1.

The proof is now complete.

Appendix B. Proof of Theorem 3.1

The proof is made by successive inductions using the relations described in Theorem 2.1.
Step 0. For n = 0 and for every j = u, ..., m, we have

07(0,0) = 0p for0<I1<j—1

1

bg)(0,0) = ap, for j <l <m.

1

So the relation (3) is satisfied for n = 0.

Step 1. Suppose the relation (3) is satisfied for integer n — 1 and let us prove it is true for
integer n > 1. Let u < 5 < m.

Step 1.1. We first consider the case where 0 <[ < j — 1.

e For 7 = m we have from Theorem 2.1,
* 05 (n,n) = 05, < (aP™)g,.
* Suppose that bgll)(n, k+1) < (aP™)p, for integer £ < n — 1. Then,

W (k) = Tmet T Tm gy T T S
B, (nv ) - B (na + ) + B; (n -5 ) B; B,
Tm — T 'm — T ;20
= O L _
< L l(apn)Bl + . Z(QP” 1)BiPBiBl
T'm — T 'm —T1 ;20
+ +
T'm—1— Tl 'm — Tm—1
— m=l L, pr I'm — Tm-1,, pn
E— (aP")p, + pa— (aP")p,
= (OéPn)Bl.
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20 B. Sericola

So the relation is satisfied for n > 0, for j =m, for 0 < k < n, and for 0 <[ < m — 1.

e Suppose now that the relation is satisfied for integer 7 + 1, j < m — 1.

Using Theorem 2.1, we have
09 (n,n) = 0% (n,0) < (aP™)p,
* Suppose that bBl (n,k+1) < (aP™)p, for integer k < n — 1. Then,

| o .
b (n, k) %rllbsgz)(” E41)+ = 1Zb (n —1,k)Pp,p,
J ]
ri - T ri—ri
< j—1 Pn + J j—1 Oépnfl Px
+ +
T 1~ T n T, — 1 n
= i o (O{P )Bl + ]T 7]” (O&P )
J
= (aP")p

So the relation is satisfied forn > 0, for j = u,...,m, for 0 < k < n,and for 0 <[ < j-—1.
Step 1.2. In the same way, we now consider the case where 7 <1 < m.
e For 7 = u we have from Theorem 2.1,
* 05 (n,0) = (aP™)g,
* Suppose that bsgnll)(n, k—1) < (aP")p, for integer k > 1. Then,

(k) = 0k - )+ Y0 (- Lk 1) P
! T T i—0 ' ¢

r —

< A (P")BNL Zapn Y6, Pp,s,

T T i—0

T — Ty n Ty n

i (P )Bl+r—l(aP )8,

= (QP">BI

So the relation is satisfied for n > 0, for j = u, for 0 < k < n, and for u <1 < m.

e Suppose now that the relation is satisfied for integer 7 — 1, j > u + 1.

Using Theorem 2.1, we have
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x 03 (n,0) = b3V (n,n) < (aP™)g,
* Suppose that bgl)(n, k—1) < (aP")p, for integer k > 1. Then,

: AT )) — T
b (n k) = ——LpD(n k—1) b (n— 1,k —1)Pp,
Bl( ) Tl*?a:] 1 ( Tl*T] 1% ) BzBl
T — T TP — T 1 — 7
= T lfr<]1(apn)Bl * TZ*T]' ;Z(QP" P
- i1 i=0
Ty —T; ri— 1T
= L7 (aP™)p, + S 1(ozP")
Ty — T Ty —T5-1
= (Oan)Bl.

So the relation is satisfied for n > 0, for j = u,...,m, for 0 < k < n, and for j <1 < m, which
completes the proof.

Appendix C. Proof of Theorem 3.2

The proof of relation (4) is immediate since, for j > u, we have
. . ;
bgl)(n, 0) — bgl )(n, n) — O‘quij,lB]-,l13]'711{121'*1}7

where 1¢; = 1 if condition c is satisfied and 0 otherwise. The proof of relation (5) is made by
successwe inductions using the relations described in Theorem 2.1. Note that from Theorem 2.1,
bBl (n, k) is a convex combination of two terms. It follows that

b (n, k) < b3 (n,k—1) <= S0 (n— 1,k —1)Pgp, < b3 (n, k) < b (n, k1) for j <1 <m

1=0

and

Ms

b9 (n, k) > 09 (n, k+1) <= b3 (n, k+1) < (n—1,k)Ppp, for 0 <1< j—1.

1=0

Step 0. We prove the relation for n = 1. Forn = 1, 7 = u and u < [ < m we have from
Theorem 3.1
bW(1,1) < (aP)g = bl (1,0).
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22 B. Sericola

Suppose that the relation is satisfied at level j — 1, j < m. Then for 7 <[ < m, we have from
Theorem 2.1 and using the equivalence above

+ m
. . Ty —Ti 4 j
p9(1,0) — b (1,1) = ﬁ [b(éf(lj 0) — Y- b0, O)PBiBz]
-1 i=

0
r. — 7“4.; . m .
2 ]711 lbgz 1)(17 1) o Zb(li 1)(0’0>P3i31] >0
So the relation is satisfied for n =1 and j <1 < m.
Forn=1,j=mand 0 <[ <m —1 we have
(m) _ (m)
b (1,1) = 0 < b5 (1,0).

Suppose that the relation is satisfied at level 7 + 1, 5 > u. Then for 0 < [ < 7 — 1, we have
from Theorem 2.1 and using the equivalence above

0.0 101 = EEEL S 0.0 P - 101
Ty — T i=0
> 1l [Zb’“ (0,0) P, b“*”(l,O)] >0
7"3_7"1 i=0

So the relation is satisfied forn =1 and 0 <[ <j — 1.
Step 1. Suppose the relation (5) is satisfied for integer n — 1 and let us prove it is true for
integer n, n > 2. Let u < j < m.

Step 1.1. We first consider the case where 0 <[ < j — 1.

e For 7 = m we have from Theorem 2.1,
* bg;l)(n, n)=0p < bg?)(n,n —1).
* Suppose that bgll)(n, k+1)> b(gll)(n, k + 2) for integer k < n — 2. Then,

rt

m m m—1 — Tl m m
1 k) = 57 (k1) = TR (k1) = b (- 2)]
Tm = T 1 sy (m) (m)
+ r , Z[bBi (n—1,k)— b, (n—1,k+1)|Pg,p,
m =0

which shows that b (n, k) — %" (n, k +1) > 0.

So the relation is satisfied for n > 1, for j =m, for 1 <k <mn, and for 0 <1 <m — 1.
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e Suppose now that the relation is satisfied at level 7 +1, j < m — 1.

* Using Theorem 2.1, we have

b (n,m — 1) = ) (n,m) = Lt [Z by (n —1,n—1) - b%?(n,n)]
=T Lizo
ry i [& (j+1) (j+1)
LB A o

* Suppose that bgl)(n, k+1) > bgl)(n, k + 2) for integer £ < n — 2. Then,

R R L (CLES L A )
J
T S G) )
+ p Jr b (n—1,k) = b (n— 1,k +1)]Pg,p,
J " =0

which shows that 6% (n, k) — b (n, k + 1) > 0.
So the relation is satisfied forn > 1, for j = u,...,m,for1 < k <n,and for 0 <1 < j-1.
Step 1.2. In the same way, we now consider the case where 7 <[ < m.
e For 7 = u we have from Theorem 3.2,
x 0% (n,0) = (aP™) g, > 0% (n, 1),
* Suppose that bsgul)(n, k—2)— bsgul)(n, k—1) >0, for integer £ > 2. Then,

u u Ty — Ty u u
0 (ke — 1) — b5 (n k) = . %) (n, &k —2) — b (n, k — 1)]
i :— B~ 1k —2) — b (n— 1.k — 1) Py,p,
L i=0

which shows that 0% (n, k — 1) — %3 (n, k) > 0.
So the relation is satisfied for n > 1, for j = u, for 1 < k < n, and for u <1 < m.

e Suppose now that the relation is satisfied for integer 7 — 1, 7 > u + 1.
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24 B. Sericola

% Using Theorem 2.1, we have

b (n,0) =5 (1) = L= — 3703 (0 —1,0) Py,

Tl*le i—0

.

m

v

T —Tj—1 i=0

* Suppose that bgl)(n, k—2)— bgl)(n, k —1) >0, for integer £ > 2. Then,

. . T, — T, ] 7
Pk =) =05 k) = ST k= 2) U5k 1)
i
+ m
Ty —Ti 4 (u) (u)
+ ﬁ;[b& (n—1,k—2)—by'(n—1,k—1)|Pgp,,

which shows that b%) (n, k — 1) — b%) (n, k) > 0

M[bgf”(n, n) =3 b8 =L Py >

0

So the relation is satisfied for n > 1, for j = u,...,m, for 1 < k < n, and for j <1 < m, which

completes the proof.
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