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Abstract

We propose an algorithm to obtain bounds for the steade-stedilability using Markov
models in which only a small portion of the state space is ggad. The algorithm is applicable
to models with group repair and phase type repair distidimgtand involves the solution of only
four linear systems of the size of the generated state spadependently on the number of
“return” states. Numerical examples are presented totifites the algorithm and compare it
with a previous bounding algorithm.
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1 Introduction

A major drawback of continuous-time Markov chain (CTMC) reteis that they usually have
state space cardinalities which are far beyond the availetanputational resources. An approach
which has been developed in the last few years is the use ofdirogi algorithms which require the
generation of only a portion of the state space [2, 3, 5, 6, 80912, 17, 18]. Those algorithms
perform well when, as in the case of availability models, phebability mass is concentrated in
a small portion of the state space. The first of such algosthvas developed by Muntz et al.
[12] using results from Courtois and Semal [5, 6] concerriognds for conditional steady-state
distributions in subsets of Markov chains. L&t be the number of components of the system.
Denoting byCy, 0 < k < N, the subset of states with exactiyfailed components, bg the subset
of generated states, and bythe subset of non-generated states, the basic algorithmoged in [12]
takesG' = Up<k<xC), and bounds the behavior A using a submodel with states, X < £ < N
associated to the subseis. This basic algorithm requires the solution|6fx| linear systems of
size |G| + N — K, which is typically very costly. In order to reduce the corgtional cost of
the algorithm a state cloning technique is developed in {#ich introduces some looseness in
the bounds but reduces the number of linear system to bedstvg'r|, where0 < F < K.

Lui and Muntz [8] have proposed a refinement of the algorittamthe particular casé’” = 0
including a reuse technigue which, at the price of an adtilidooseness in the bounds, avoids a
complete reapplication of the algorithm each tifdeis incremented in the search for the desired
accuracy. The additional looseness has been reduced ineaper from the same authors [9].
Souza e Silva and Ochoa [18] have developed state spaceraiguotechniques in whicld: is
generated incrementally following heuristics which tryotatain the tightest possible bounds for a
given number of generated states. Semal has developedlygdén a bounding algorithm which
refines iteratively the bounds using detailed knowledgeuatiee model in/ in the proximities of
G. In [2] a bounding algorithm is developed which exploits fagure distance concept to bound
the behavior i/ more tightly than in [12]. State space exploration techegspecifically targeted
to that bounding algorithm have also been developed [3]alFinthe algorithm described in [12]
has been extended in [10] to models with infinite state spandssubset€’y, & > K in which no
every state has a transition to the left (subiSgt). Performance models were considered in [10]
and the bounding part of the model was found using specialdpments for the models under
consideration.

All previous algorithms to bound the steady-state avditgfassume that repair actions involve
just one component and assume exponential repair timébditstms (the only exception being the
machine repair model considered in [11], an extended vwersid10], but the developments were
specific for the considered model). In this paper we develbpvabounding algorithm for a larger
class of models of repairable fault-tolerant systems wihilbdbw group repair (the simultaneous
repair of several components) and phase type repair tinibdisons. The algorithm generates the
subset of state§& = Up<;<xC), and computes the bounds without using state cloning teabsiq
by solving only four linear systems of sizé&|. The rest of the paper is organized as follows.
Section 2 describes the type of models considered. Sectigs&ibes the bounding algorithm.



Section 4 compares the efficiency of the algorithm with ttighe algorithm proposed in [12] using
an example without group repair and with exponential refiaie distributions and illustrates the
extended range of applicability of the proposed algorittsmg an example with group repair and
phase type repair time distributions. Section 5 concludegpaper.

2 Typeof modelsand assumed knowledge

We consider fault-tolerant systems made up of componentshwiil and are repaired. Failure
processes have exponential distributions; repair presdsave phase type distributions [13]. Com-
ponents are grouped into types, the components of the sgadging indistinguishable, and thus
collections of components will be bags of component types,(for instance [14] for a brief sum-
mary of bag theory). Any bag of component types which candailultaneously will be called
failure bag. Let E' be the set of failure bags of the model. In general, we williassthat for each
component type there is a collection of failed modes in wiitighcomponents of the type may fail.
Failed modes differ in how the failed components are regaif&ilure bags may occur with rates
which depend on the bag of failed component types and thedfalodes of the failed components.
We will assume knowrE and, for eacte € E, an upper bound\(e)],, for its rate. Repair actions
can involve any bag of failed component types. We will defigt@ the maximum cardinality of the
bags of component types involved in repair actions. Eachir@gtion: has a repair time phase type
distribution P;. Each phase type distributidp is defined by a transient CTMZ; = {Z;(t),t > 0}
with finite state spacd.; U {a}, where all states irl; are transientg is an absorbing state and
P[Z;(0) € L;] = 1: the repair time is the time to absorption 8f. We allow repair interruption.
Thus, the failure of a component of higher repair priorityynpgeempt an undergoing repair pro-
cess; the repair process may be resumed later from the pouaisi stopped (preemptive-resume)
or retaken as it had just started (preemptive-restart). stéte of the system can be completely de-
scribed by giving the number of unfailed components of egph,tthe number of failed components
of each type in each failed mode, the set of scheduled reptiima, which of them are active (in
progress), and for each scheduled repair actithe statex € L; of the corresponding phase type
repair distributionP;.

We will denote byX = {X(¢),t > 0} the resulting CTMC model and Ky its state space. Let
N be the number of components of the system an@jdie the subset d® including the states with
k failed components. As in [12] we will také = Uyp<,<x Cy, and, accordinglyl/ = Ug << n'Ch,
whereK < N’ < N. According to the assumed type of state description, wehaile|Cy| = 1 and
will denote byo the only state belonging 6. We will assume that some repair process is active
in every state with failed components. Thusyill be the only state without active repair processes
and X will be irreducible.



3 Bounding algorithm

3.1 Préiminaries

Although our bounding algorithm is mainly addressed to @ gutation of bounds for the steady-
state availability, it can, in fact, be used to bound anydstesiate reward rate measure. kgti € Q
be an arbitrary reward rate structure defined a¥eMe are interested in bounding the steady-state
reward rate

R= lim Elrxw] = Zn‘pi ;

i€Q

wherep; = lim;_,~, P[X(t) = i]. The steady-state availability is a particular caséwdh which
r; = 1 for the up (operational) states and= 0 for the down (non-operational) states. Let=
Umax{o,k+1-8y<k<k Ck b€ the subset of states @ which may have some transition frob (the
so-called “return” subset), and for eagte S consider the CTMCX; = {X,(t),t > 0} obtained
from X by redirecting tos all transitions fromlU to S. Consider the regenerative behaviorof
with X,(0) = s (Xs may be in general non-irreducible) defined by the times atiwii; hits s
from U. In this section we obtain lower and upper bounds Rrexpressed in terms of metrics
related toX, s € S. Our bounding algorithm is based on these bounds. The banedslentical
to those obtained in [12], but are expressed in a way from kvbior bounding algorithm follows
naturally. Also, the bounds are justified using semi-reggthve and regenerative Markov process
theory instead of results from Courtois and Semal [5, 6]t as6 done in [12]. Lef; andC; be,
respectively, the mean time and mean reward gpbetween regenerations. Using semi-regenerative
Markov process theory [4, Section 10.6] we have:

Theorem 1. There exist 3, s € S with g > 0, > g8 = 1 such that R =
(Zses ﬁSCS)/(zseS BSTS)-

Let R, the steady-state reward rateXf with X,(0) = s, i.e.
Ry = tlggo E[TXs(t)|XS(0) = s,
we have:

Corollary 1. minges{Rs} < R < maxgcs{Rs}.

Proof. From regenerative process theory (see, for instance, {ibhaveR, = Cs/Ts. Letn = |S|
and assume the statesfmumbered from 1 ta. The proof is by induction on. The caser = 1
is trivial. Consider the case = 2. Using3; + 52 = 1 we have

B0+ B2Cy Oy + B1(C1 — Co)

BT+ BTy T+ Bi(Th —To)

R

We havedR/dfpy = (C1Ty — CoTh) /[T + B1(Th — Tg)]2. Note thatls + 81 (171 — 1») = 5111 +
BTy > 0. It follows thatdR/dB; > 0 if and only if C1T, — CoTy > 0. This implies thatR



is either monotonically increasing or monotonically desiag ong; and that either its maximum
is R(1) = C1/Ty and its minimum isR(0) = Ca/T» or its maximum isR(0) = Cs/T and its
minimum isR(1) = C, /7). This completes the case= 2.

We proceed with the induction step f& < max,cs{Rs}. Without loss of generality assume
maxi<s<n{Cs/Ts} = C1/T1. Assume that there exigh, ..., 3, with 35 > 0, >, B, = 1 for
which R > C/T;. We can write

BICy+ (1= B1) Y q.Cs
R= =, (1)
BTy + (1= 51) gsTs

s=2

with ¢s > 0, > ,¢s = 1. Using the induction hypothesis for = 2, R > C;/T; implies
Yo 04sCs/ >0 5qsTs > Cy/T1. Using the induction hypothesis for — 1, there must exist
i, 2 < i < n, such thatC;/T; > >0 5 q:Cs/> 5 qsTs, which impliesC;/T; > C1/Th, a

contradiction. Therefore, we have < C; /T; = maxj<s<n{Cs/T5}.

Similarly, for the induction step foR > minscs{R;}, let mini<s<,{Cs/7Ts} = C;/T: and
assume that there exist, . .., 5, with 35 > 0, > "7, 8, = 1 for which R < C;/T}. Considering
again (1) withg; > 0, >, ¢s = 1 and using the induction hypothesis for= 2, R < C;/T}
implies>"" , q,Cs/> o _5qsTs < C1/T1. Using the induction hypothesis fer — 1, there must
existi, 2 < ¢ < n, such thatC;/T; < >0, q:Cs/ >, qsTs, which impliesC;/T; < Cy/Th, a
contradiction. Therefore, we have> C; /T; = minj<s<,{Cs/T5}. O

Corollary 1 allows us to compute lowefH];;,) and upper [R],.») bounds forR from lower
([Rs]ib) and upper [Rs]up) bounds forR,, s € S:

(Rl = f;leig{[Rs]lb}7 )
[R]ub = Isneag({[Rs]ub} . (3)

LetTg s andTy s (Ca,s andCy,s) be the contributions of, respectively, the stateg/iandU
to T, (Cs). We have Rs = C, /T, from regenerative process theory)

o CG,s + CU,s

R = .
3 TG,S + TU,S

Assume thaC¢ 5, T¢ s, an upper bountly; s]..1, for 7y s, and lower and upper bounfsy, and|r],p
for r;, i € Q are known (for the steady-state availability we would take, = 0 and[r],, = 1).
We have:

Theorem 2.

~ Cas + [rlwlTu,slub

[R ]lb = CG73 + [T]ub[TU,s]ub o
’ TG78 + [TU,s]ub

TG,s n [TU,s]ub - [Rs]ub . (4)

<R <



Proof. Consider the functiorf;(z) = (Cgs + [rlwz)/(Tc,s + x). Sincelr],, upper bounds
the reward rate from any state &f;, we haveCq s < [rlwIg,s anddfi/dz = ([rlwTlc,s —
Ce.s)/(Tas +x)* > 0. Also,Cy s < [rlunTy,s. Then

- Ca,s + [rlwTv,s

R Ca.s + [rlun T slub
° = TG,S + TU,S .

TG,S + [TU,s]ub

= fl(TU,s) < fl([TU,s]ub) =

Similarly, consider the functioffz(z) = (Cg,s +[rlz)/(Te,s +). Sincer]y, lower bounds the re-
ward rate from any state of;, we haveCq ; > [r|i,1q,s anddfs/dz = ([rlwTa,s—Ca.s)/(Ta,s +
l’)2 < 0. Also, CU,s > [T]leU,s- Then

S Cas+[rinTus

R Ca.s + [r)w[Tv,s)ub
° = TG,S + TU,s ‘

]
TG73 + [TU,s]ub

= f2(TU,s) > f2([TU,s]ub) =

3.2 Derivation of [Ty |ub

In the rest of the paper we will denote by;, i,7 € Q the transition rate from stateto state
3y by Ai = > ieqNij, @ € Q the output rate of statg and byAic = > ;.o Aij, i € Q,C C

Q2 the transition rate from to subsetC, all of them referred taX, unless otherwise stated. We
will also consider a number of transient CTM®s Each CTMCY has a state space of the form
B U {a}, where all states irB are transient and is an absorbing state, and has a well-defined
initial probability distribution withP[Y (0) € B] = 1. We will denote byr(i,Y), i € B the
mean time spent by in i before absorptionr{((i,Y) = [;° P[Y (t) = i]dt). We will also use the
notation7(C,Y') = > ..~ 7(i,Y). Itis well-known (see, for instance, [1]) that the mean tne
absorption vectot = (7(4,Y));ep is the solution of the linear system? Agp = —q”, whereAp

is the restriction of the transition rate matrix ¥fto B andq = (P[Y (0) = i]);ep. The expected
number of times that a transitiafi, j) with rate \;; is followed isy;; = 7(,Y)A;;. The result
follows easily: pu;; = [;° P[Y (t) = i]Ajdt = Nij [, P[Y(t) = d]dt = \ij7(i,Y). It can be
similarly shown that, given a partitioB U B¢ of the state space of and assumind((0) € B, the
probability thatX entersB¢ through a statg € B°is ), 7(i, Y5)\;, whereYp is the transient
CTMC tracking X till exit of B (Y has state spacB’ U {a}, wherea is an absorbing state and
B’ is the subset o including the states reachable before exitifdrom the states with non-null
initial probability, same initial probability distribudn in B’ and transition rates among statesdh
asX, and transition rates’ , = \; e, i € B’, so thatYz entersa wheneverX exits B). Note that
7(i,Yp) > 0fori € B'.

In this section we derive an upper bound %0r s, [Tt/ s]un, Which can be obtained by solving
a “bounding” transient CTMQ” with failure and repair transitions. The hardcore of thisties is
Lemma 1, which generalizes the related mean holding timenamf Muntz et al. [12] by allowing
group repair.

LetY', m € U be the transient CTMC with initial state tracking X from m till exit from
U and letT};" be the mean time to absorption G5f". Let o ,,, be the probability thak with initial



states € S will enter U through staten. We have

Tus= Y asmTi. (5)
meU
Invoking Eq. (5), we can easily upper bouftgt; from upper bounds fof /', m € U. To obtain
these bounds we will invoke the exact aggregation theoremngnsient CTMCs and a lemma, which
generalizes the mean holding time lemma proved in [12]. Eaggregation results for irreducible
CTMCs are given in [5]. These results extend easily to temisCTMCs. We have:

Theorem 3 (Exact aggregation for transient CTMCd)et Y = {Y' (¢);¢ > 0} beatransient CTMC
with state space B U {a}, where all statesin B are transient and « is an absorbing state, transition
rates \;;, i € B, j € BU {a}, i # j, and initial probability distribution P[Y (0) = i] = m;,
i€ B,Y ,cpmi = 1. Assume(i,Y) > Oforall i € B. Let By U By U...U B, bea partition
of B. Then, there exists a transient CTMC Y’ = {Y”(¢);¢t > 0} (the exact aggregation of Y') with
state space {b1,by ..., b,} U {a}, trandition rates \, , = >, whNip, 1 < kil <nk#I
and \, , = Yicp, WiAia, 1 < k < n,withwf > 0,3, 5 wi = 1, and initial probability

bg,a %

distribution P[Y'(0) = by] = 7}, = >, g i, suchthat 7(b, Y') = 7(By,Y).

Proof. See Appendix A. O

Note The conditionr(i,Y) > 0,7 € B of Theorem 3 is verified if and only if each statec B is
reachable from some state with non-null initial probaypilit

Consider the exact aggregatior,/” of Y/, m € Cy, K < k < N’ under the partition
Ung 1 Cr', whereCy is the subset of’y; including the states reachable frambefore exitingl/
andK +1 < N/, < N'. Y}V has a transition state diagram like the one given in Fig. &) N’
substituted byV;,. The following lemma shows how the times to absorption weefd?/” can be
upper bounded.

Lemmal. Assume N’ < N.LetY’' = {Y'(t);t > 0} beatransient CTMC with the state transition
diagram of Fig. 1(a) and initial probability distribution P[Y’(0) = ¢;] = m;, K+ 1 < i < N/,
ZZKH m = 1. LetY = {Y(¢);t > 0} bethetransent CTMC with the state transition diagram
of Fig. 1(b) and initial probability distribution P[Y (0) = ¢;] = m;, K +1 < i < N/, P[Y(0) =
] =0, N <i<N.Assume f;; < fand Y 1 gi; > g7 >0, K+1<i< N. Then,

7(c;,Y) > 7(c;,Y'), K+1<i< N

Proof. For notational conciseness lgt= 7(¢;,Y), 7/ = 7(c;,Y'). We will use as a basic tool
the balance equation for a subset of states of a transient@ Tich establishes that the initial
probability of the subset plus the expected number of eniniest be equal to the final probability of
the subset plus the expected number of exits. The statdsy” andY”’ are transient and, therefore,
have final probabilities equal to 0.



The proof is by induction ok, k = K + 1,..., N’. The balance equation applied¥d and
the subse{ck 1, cxy2,...,cn ) gives

N’

1= > 7 Z G (6)

i=K+1 j=i—K

N’

Z Z Yi.j

zK+2 j=i—K

T}<+1 (7)
Z 9K+1,5
The balance equation appliedYoand the subse{th+1, CK+2,--.,CN} QiVES
1= TK+1g]_(+1 ) (8)
1
TK+1= —. 9)
IK+1

Sincegye,; < 327, gi+1,. using (9) and (7), we have

/
TK+1 2 - > TRl

E 9K+1,5
Jj=1

showing the base case.

For the induction step, considéf + 1 < k¥ < N’ and assume; > 7/, K +1 < i < k. The

balance equation applied 10 and the subsecy 11, cx 12, .., cr_1} gives
k—1 N i—K-1 N'—i
Z i+ ZTi Z 9i.j = Z Z 9ij + Z Z fz,j >
i=K+1 i=k  j=i—k+1 i=K+1 j=i—K i=K+1 j=k—i

which, using (6) and — >F% K1 i = SN i gives

k—K—1
T Z ki =
i=1
N k-1 N'—i N B N i—K—1
Domit DTy fui—h Z ki = DT DL G DT D G
i=k i=K+1  j=k—i j=k—K i=k+1 j=i—K =kl ikl
N N'—i N’ B i—K—1
/
> it Z D fui= 2T D G- Z > G
i=k K+1  j=k— k+1  j=i—K k+1 k-+1
T]é:Z =K+ j=k—1 2;— Jj=t i=k+ j=i—k+ (10)
ng,z'
i=1
The balance equation appliedYoand the subsetcy 1, cx12,...,ck—1} gives
Z Ti T TGy = TR 41K T Z Ti Z i
i=K+1 i=K+1 j=k—i
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Figure 1: State transition diagrams of CTMCs of Lemma 1.

©

which, using (8) and — >+ K1 i = SN i gives

N
Zﬂ'z Z Ti Z f
= i=k i=K+1 j=k—i . (11)
9

Finally, using (11), (10)N > N/, f” > fij ZZ 1 9k = g, » and the induction hypothesis

N’ N'—i N’
> it Z T Ly dmit Z Z i
i=k i=K+1 =k—i i=k = K+1 j=k—1i
Tk 2> 3 = = ’ >, O

Z 9k, Z 9k,
i=1 i=1

Let as(k) = ZmECk asm, be the probability thatX with initial states € S will enter U
through subseCj. Let fJr be upper bounds for the transition ragﬁ{g of Y7 from ¢; t0 ¢y
associated with the failure gfcomponents. Ley,” be lower bounds foE 1 gw, Wheregm’ is
the transition rate of ;7" from¢; toc;_; if j <i— K —1, E] —i_x 91y is the transition rate of 7
from ¢; to a, andggﬁj’ is associated with the repair gfcomponents. Lef'(k) be the mean time to
absorption of the transient CTME of Fig. 1(b) with initial statec;,. We have

Theorem 4. Tys < S0 ey as (k)T (k) = [Tv,s)ub

Proof. Let Y* be the transient CTMC with the state transition diagram of. Hi(b) and initial

statecy. YV, m € Cj and Y* satisfy the conditions of Lemma 1 and, therefor(acz,Y[’]”’)
7(c;, Y*). By Theorem 3 we havé); = Zﬁvz";{ﬂ (ci, Y7). Then, Ty < SO "k+1 (e, YF) <



SN g1 (e, Y*) = T(k). It follows (5):

Nl Nl N/
Tys= Y amTiF= > D anTf < Y. Y agnT(k)= Y as(k)T(k). O
meU k=K+1meC} k=K+1meC} k=K+1

Upper boundstr for the transition rateg]”” can be easily derived. Ldf; be the subset of
FE including the failure bags of cardinality. It is clear thath,, ¢, ;, n € C; is upper bounded by
ZeeEj [A(e)]ub- Using Theorem 3:

ml/ __ 7
ij = Z wn)‘mcz‘ﬂ"
neCm

with w?, > 0, 3", com wi, = 1. Then, it follows

< wh Y MOl = Y [ME)]un = £ (12)

neC™ eck; ecE;

In [12] the lowest repair rate of the model is used as lowendsy, . Unfortunately, a similar
approach cannot be taken for the models considered in thierpsince depending on the character-
istics of the phase type distributions the lowest rate tdefidrom the states of a subs€t may be
0. A more sophisticated approach is needed. That approal&vétoped in the next section.

3.3 Computation of g,

In this section we derive lower boungs > 0 using easy to compute characteristics of the phase
type repair distributions?; of the model. To derive the bounds we need results from [10, 16]
which are obtained for irreducible CTMCs. To establish & livith these results we define irre-
ducible CTMCsX{}, m € U as follows: X7/ has state spadé™ U {a}, whereU™ is the subset

of U including the states reachable frambefore exitingU, transition rates fronb/™ to U™ U {a}
asY;y and a transition rate 1 from to m. Let X7 be the exact aggregation &f;; under the
partition (UngHCIZ”) U {a}. Given the connection between Theorem 3 and the exact ajgneg
theorem for irreducible CTMCs [5] and the relationshipswestn the involved CTMCs, it is easy
to prove that the transition rates & from {cx1,...,cnz, } 0 {ck41,...,cn ,a} are equal to
the corresponding transition rates}f”. Thus, we will consider the CTMCE " instead oft}}”.

Letq;" 7,1 € C}" be the probability thai ;" will jump from C}™" to Uf k1CT U {a} (ie. to
the left) given entry inC;" through state and Ieth”"ji, i € C}" be the mean holding time of} in
Ci™ given entry inC}" through state. Letq,” " be the probability thaf ;7" will jump from ¢ to
ck—i, letg,"* be the probability thak ;7 will jump from ¢ to a, letq; +q"
be the probability thaf ;7 will jump from ¢;, to u’C Tx41Ci U{a} (i.e. to the left), an Iehm’ be the
mean holding time oX [} in ¢;,. We have

m,al m, L/ Zk K-1 mz/

hm/ _ 1
k N/ —k ?

ZgZ




q" =R, 1<i<k-K-1,

g
o =h Y g

i=k—K
Combining them we obtain
k—K-1
8 qZW’ + Z%a’ m, Lt
Do = = (13)
i=1 k k

Denote byA™ the transition rate matrix ok, by A¢ the restriction ofA™ to the subset of
statesC, by Af; - the subblock oA™ including the transition rates from states(irto states irC”,
and letLy* = UFTL 1 C" U {a}. Letvy® denote the steady-state entry distributiongf in C",
and denote byy”; the component of;" associated with statec C}". Denote byl a column vector
of all ones of the appropriate dimension andwythe transpose of vectar. From [16, Corollary
4.6] we have:

Lemma 2.
ml __ mT am —1
hp' = —vj AC;Z" 1.

Lemma 2 says thdi}"” is equal to the mean holding time &f7" in C}* whenC7" is entered
with probability distributionv;. Then, it follows that

R = > ki (14)
ieCr
Also, by analogy with Lemma 2 of [10], we have:

Lemma 3.
Lt _
g = ~VITAGT AL el

Lemma 3 says thaj,T’L’ is equal to the probability thaX77" will jump from C7* to Lj* when
O} is entered with probability distributiow*. Then, it follows that

m, L/ m _m,L
4, = Vk,ide; - (15)
ieCy

Combining the results obtained so far it can be proved:

Theorem 5.
B8 qm,L
m .
> gl = min .
] ieCy hk,i

10



Proof. Combining (13)—(15) we have

m M,
8 Uk, ik,i

oy iECT
P
i=1 Z Uk,ilbk i
iec
Note thatvy’; > 0and)_;c . vi’; = 1 and we are in a position similar to provig> minses {1}
of Corollary 1. Then, the result follows. O

Assume that a lower bound;, for q,’;”ZZL, K+1<k<N], i€ C}' and an upper bound,™,
forh’,, K +1 <k < N/ .,i€ C} are available. Using Theorem 5 we have

m q -
ng,z( > 7T =9k (16)

In the following we show how;~ andh™* can be derived. To that end we first introduce some
notation. Let a staté € C}", K +1 < k < N,,. We will denote by\; c_, the transition rate
from i to U,JCV//;,CHC,Q? (note that); ¢, is the same for all stateswhich are visited inC}"* from
a given entry state, since all these states have the same bag of failed comptype® and same
failed modes of the failed components), By the number of active repair processes,iby a; (i),

1 < j < A, the phase type distribution of thigh active repair process in stat¢l < a;(i) < L),
and bys; (i) the state of the phase type distributip, ;) in statei. Let W7 be the random variable
time to absorption ofZ; with initial states. Let Ay, = > cp[A(e)]ub and let EXRA) denote an
exponential random variable with parameterSince); c., < Ay, and the random variablé&/f,
EXP(\i c.,) and EXR\,,) are independent we have:

o= P[lgi& Wl < EXP(/\i,C>k)} > P[lgLnA Wt < EXP(A, )}
> min P[W i@ EXP(Aub)] > min min P[5 < EXP(Aup)] -
1<j<A; a; (i) 1<j<LseL;
Also
m . 5;5(1) ()
ki = [mm{EXP(AZ,CM) 2[]1134 Wa](z) }] <EL£IJ11<IIA Waj(l)}

IN

max E[W J(Z)} max max E[W?].
1<j<A; (@) 1<j<L sel, J

Let us denoteP[W; < EXP(A\yp)] by Q; and E[W?] by H?. We use

N .
= e 0
h* = max max HS . (18)

1<j<LseL; 7

Let B; be the transition rate matrix ¢f; restricted to the transient statés and letb; be the
vector whose entries are the transition rateg'pfrom L; to the absorbing state LetQ,; andH;
be the vectors with entrieg; and H?, respectivelys € L;. Q; andH; can be obtained as:

Q; = —(Bj — Awl) by, (19)
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Hj =—B;'1. (20)

Eq. (20) is trivial since the component in revand column of —Bj‘1 is the mean time to absorption
spent byZ; in state: given that the initial state is. Eq. (19) follows considering transient CTMCs
Z; with state spacd ; U {a, b}, wherea andb are absorbing states, same transition rates figm
to a asZ; and transition rates; , = Aub, s € L;. The transition rate matrix of? restricted toL

is B; — Aupl @nd@; is the probability of being absorbed in statgjiven that the initial state is.
These comments justify the equation.

3.4 Computation of T'(k)

Let M be the set of indices associated to the subse&ts, K < £ < N with \; ¢, # 0 for some

i € G. Remember thal'(k) is the mean time to absorption of the transient CTM®f Fig. 1(b)
with initial statec,. In order to obtain the bound8y 5], given by Theorem 4 we have to compute
T(k), k € M. A direct computation of each(k) solvingY with initial statec; would require the
solution of| M| linear systems. In this section, we derive a more efficieatgdure, specially for
large |M|. The procedure is based on the following equations, where- g,” + >, f,;fz. denotes
the output rate oY from ¢, (see Fig. 1(b)):

T(k)—iJr% k—1) +Zf’” T(k+i), K+2<k<N, (21)
T(N) = — + T(N —1). (22)
IN

These equations are obtained as follows. First, considgr {2(k), mean time to absorption &f
with initial statecy, is equal to the mean sojourn timedgp, 1/, plus the mean time to absorption
from the next visited state, which i_; with probability g," /¢, andcy.; with probability f,j’i/m.
Eq. (22) is obtained similarly; in this cas¢y = g, and statecy_ is the next visited state with
probability 1. Egs. (21) and (22) can be solved recursivelerms ofT'( V), yielding

T(N - 1) = T(N) - —, (23)
IN
T(k) = — g1 T(k +1) — 1 — kam (k—|—1+z)] k=N-2... K+1. (24)

It

It remains to discuss the computationofN). Let 7 denote the mean time to absorption in
statec; of Y with initial statecy. Then

N
T(N)= > 7V (25)
1=K+1
The row vectorr ¥ = (7Y, ... 7{)) is the solution of the linear system
VTA = —(0...01), (26)

12



whereA is the restriction of the transition rate matrix Bfto the transient states. A direct solution
of (26) is possible exploiting the upper Hessenberg stractiA and the fact that all components
except the last one of the right-hand vector of (26) are ddfiningr; = TjV/T}}fH vr+1 = 1),

all the equations except the last one give a triangular fisgatem ony;, K + 2 < ¢ < N which
can be solved easily. Substituting thel by v;77, ;, K +2 < i < N, in the last equation of (26)
and using the solution far;, K +2 < i < N found in the previous step gives an equationrfﬁfq1
Solving that equation and using' = ;7% ,, K +2 < i < N we obtaint}¥, K +2 < i < N.
The solution procedure can be described as follows:

VK+1—1
) 27
[(]52 1Vi—1 — Z 3231 ] i=K+2,...,N, ( )
=K 41
1
leg-l-l )
ONVUN — Z zN Vi (28)
i=K+1
TZ,N:I/iT}{V+1v i=K+2,...,N.

3.5 Computation of the bounds

Tc.s, Cas andag(k), k € M could be computed from the mean times to absorption vector of
the transient CTMCS7 tracking X from states till exit from G. This however would involve
the solution of|S| linear systems of sizg7|, which is very expensive. In this section we develop a
computational procedure which obtains the boutlg, and[R],;, solving only four linear systems.

Let:
Ts/ = TG,S + [TU,s]ub 5

Ci = Cas + [rlv[Tvslub »
Cé/ - CG,S + [T]ub [TU,s]ub
Using (4), the bounds (2), (3) fdk can be expressed in terms®f, C’ andC?, s € S as

!

(Rl = mln{ T } (29)

i

[Rlub = max{ Ti } (30)

The key of the new computational procedure is the derivatibforward equations foff?,
ClandC!, i € G. To that end we first write these variables in termsxgfk) and T'(k) using
Theorem 4:

T/ =Tgi+ Y, a(k)T(k), i€G,
keM

C/=Cai+ Il Y ai(k)T(k), i€G,
keM

13



C!' = Caqi+ [r]ub Z a;(k)T'(k), hspacex lemi € G .
keM
Each of these variables can be expressed as the sum of datatriassociated with the visit to state
i plus the corresponding variable for the next visited stat€'.i This gives the forward equations
(note thatl /), is the mean time in state \; ¢, /; is the jump probability from stateto subset’y,,
and\;;/\; is the jump probability from stateto statey):

1 ’l ’l .
Z.:A—Jrz “C (g +Z JT’ i€, (31)
keM JJiC:‘

) /\2 z .

Cl= o+ 3 SR TR + 52 C), ied, (32)
keM ]]iCj
Aic .
nm_ "t 40k ZJ //

C! P i [rlunT (k ; cl, ieG. (33)

J#i

Letp;; = Ai;j/Ai. The sets of equations (31)—(33) can be formulated as IBystems introduc-
ing the matrixB = | — (p;;); jec,i»; and the vector’ = (T7);cq, C' = (C))ica, C" = (Cica,
K= ((1/2) + 2 kem (oo /AT (k))iea, © = ((ri/Xi) + 2 kenr (Moo /M) [T (k))ie, and
¢ = ((ri/ M) + Xrer Vi, /Al T (k))ice:

BT =/, (34)
BC =, (35)
BC” =¢". (36)

Matrix B can be large and iterative methods should be used to sohaése systems (34)—
(36). From the properties @ it is easy to prove [19] that Gauss-Seidel will converge. ‘bt
though that the convergence under Gauss-Seidel was tiypgodtemely slow. However, a decom-
position technique can be used to speed up the convergeheegprite is to solve one more linear
system, but we have found that then Gauss-Seidel conveeggsast. See [7] for an analysis of the
convergence properties of the linear systems obtainedthéthlecomposition technique.

To describe the decomposition technique let us considegéneric problem of computing
for i € G the expected accumulated reward up to absorptionf the transient CTMCY, with
initial state: tracking X till exit from G for the generic reward rate structurg, j € G. Note
that7;, C; andC;’ can be formulated a&; with v; equal to, respectively, + >, -, Aj.c, T(k),
75+ Y okem NPT (k) andr; 4+ 3, 0 Ao [rlunT'(K). Let the vectorsy = (V)ieq and
b = (vi/A\i)ieq. Then,V is the solution of the linear system

BV =bh.
Without loss of generality let us assume that the statewhich all components are up has index

1. LetV; denote the expected accumulated reward to absorption of kiate 1. Lety; denote

14



the probability that’, will exit G without hitting state 1. Decomposirig in its two contributions
delimited by the time at whiclr, gets absorbed or hits state 1, we obtain

The set of equations (37) can be solved/jni € G, yielding:

= l=vs
V=V, + va,zeG. (38)
1

Note thatV is the expected accumulated reward to absorption of theiHahCTMC}Nf(g obtained
from Y/, by directing to the absorbing state the entries in state &nTH, i € G can be computed
asV;, i € G, using the matriB:

I —pi2 - —pyg
_ 0 1 e —paic
5 _ P
0 —pgl2 1

~I

instead ofB. Let the vectors” = (T)ic, C = ((1)ice, € = (C")icc. Applying the previous

(2

result we have that these vectors are the solutions of tharlisystems

BT =/, (39)
BC =¢, (40)
BC =" . (41)

The probabilitiesy; can be formulated as the expected accumulated reward ugdopion of

Y, with reward rate\; ;. Then, letting the vectory = (v:)icc andw = (A /\i)ica, 7 is the
solution of the linear system

By=w. (42)

Finally, using (38)I7, C’ andC"”, s € S can be computed from’, C’, andC”, s € S using

~ 1=y ~
T =T +>—271, (43)
Y1
~ 1= ~
ol =C +—Js ¢, (44)
Y1
~ 11— ~
ol =04 ——Json, (45)
Y1

The complete algorithm to compute the bounds can be sumedsaiz follows:
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Algorithm

1. Computef;fj using (12) andy;” solving (19) and (20), and using Egs. (17), (18) and (16).
2. Computel'(N) using (27), (28) and (25).

3. ComputeT'(k), K + 1 < k < N using (23), (24).

4. Solve the linear systems (39)—(42).

5. Computel?, CL andC?, s € S using (43)-45).

6. ComputgR], [R].b using (29), (30).

4 Numerical results

In this section we illustrate the bounding algorithm and pare it with that proposed in [12] using
two examples. The first example is an availability model witihgroup repair and with exponentially
distributed repair times. The model falls within the scopapplication of the algorithm proposed
in [12]. We use this first example to compare our algorithmhuliie algorithm proposed in [12]. For
our algorithm we take ag_ a lower bound for the repair rate from any state with faileshponents,
as done in the algorithm described in [12]. The example isr@mnaof the large example used
in [12]. Fig. 2 shows the block diagram of the system. Theeysis operational (up) if at least
one processor PA or PB is unfailed, at least one controllexach set (C1, C2) is unfailed, and
at least three disks of each disk cluster (set of disks D1,[@®,D4, D5, and D6) are unfailed.
Only one processor of each set is active. Non-active proces not fail. A fault in the active
processor PA is propagated to the active processor PB withapility 0.1. Active processors and
controllers C1 fail with ratd /2000 ht. Controllers C2 fail with ratd /4000 h!. Disks fail with

a different rate for each cluster. The disk failure ratesia@00 h! for disks D1,1/8000 ht
for disks D2,1/10 000 h! for disks D3,1/12 000 h! for disks D4,1/14 000 h! for disks D5
and1/16 000 h'! for disks D6. Components can fail in two modes with equal philities. There

is only one repairman which selects the component to beragpai random from the set of failed
components. The repair rate of a component depends on ted fabde of the component and on
the operational/down state of the system. When the systepeisitional repair rates afel h=! in
one failed mode and.05 h=! in the other failed mode. The repair rates are 10 times laxgen
the system is down. The difference in repair rates betweemperational and down states of the
system can be due to more careful repair procedures in thhatap®l state to avoid system crashes
as a consequence of erroneous maintenance operationsystam dias a moderate complexity (36
components of 10 different types) but a very large stateespaicthe order ofi0'? states. The size
of the state space precludes an exact numerical solutidmedftarkov model. Thus, the example
illustrates the type of models for which bounding algorithane an attractive approach.

Table 1 gives the failure bags of the example and for eaalréablage the corresponding upper
bound for its ratg\(e)] .. We use the notation[n] to indicaten instances of component type
The upper boundg;’; are f;; = 4.93571 x 10~® h~" and f;, = 5 x 107 h~'. Forg;” we take
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Figure 2: Block diagram of the first example.

Table 1: Failure bagsand[X(e)],s in h™" for the first example.

€ [A(e)]ub
PA[1] 5x 1074
PA[1] PB[1] 5x 107°
PB[1] 5x 1074
C1[1] 1073
C2[1] 5x 1074
D1[1] 6.66667 x 10~4
D2[1] 5x 1074
D3[1] 4x107*
DA4[1] 3.33333 x 1074
D5[1] 2.85714 x 1074
D6[1] 2.5 x 1074

0.05 h~!. The measure of interest is the steady-state unavaijghilttich can be formulated a8
with r; = 1 for down states angd;, = 0 for up states. We then hayey, = 0, [r]q, = 1.

Table 2 gives the results obtained for the first example wighltounding algorithm described
in [12] and the algorithm proposed in this paper. We give lsurCPU times (measured in a 167
MHz UltraSPARC 1 workstation) and total number of GaussiSeiterations (asking a relative
tolerance in the solution afo—?) for the algorithm described in [12] for several paifs F' and the
CPU time and total number of Gauss-Seidel iterations coesdusy our algorithm for several values
of K. We also show the number of generated st&tg$) @nd the number of “return” statesS().
Our algorithm obtains the same bounds as the algorithm peapn [12] forF = K. The CPU
times of the algorithm of [12] fo' = K are large because of the high number of linear systems
(|S| = |Ck|) which have to be solved. The CPU times of the algorithm cambde reasonable
selecting a small value df' (for instance,F' = 1) but then the bounds become looser and, as the
example shows, they can be significantly looser that the dowibtained with our algorithm. The
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Table 2. Steady-state unavailability bounds, CPU timeseitbads and number of Gauss-Seidel
iterations ) for the algorithm described in [12] and the proposed atgorifor the first example.

CPUtime 1)

K ‘ F |G| ‘ |S| | lower bound ‘ upper bound [12] ‘ proposed
2 |0 265 129965 x 107° | 1.7579 x 1072 | 0.165 (79)

1 55| 2.9972 x 107° | 1.1930 x 1073 | 0.595 (496)

2 209 | 2.9972 x 1075 | 6.7213 x 10~* | 4.73(5001) | 0.118 (41)
3|0 | 1796 1] 3.5522 x 1075 | 1.9900 x 10~4 1.28 (77)

1 55 | 3.5524 x 1075 | 1.5832 x 1074 | 4.43 (439)

2 209 | 3.5526 x 1075 | 1.2123 x 10~% | 40.2 (4485)

3 1531 3.5526 x 1075 | 8.4473 x 10> | 296 (35276) | 0.920 (54)
4 | 0 | 10496 1] 3.6233 x 107° | 4.9960 x 10° 10.3 (76)

1 55| 3.6233 x 107° | 4.7222 x 107° | 35.1 (379)

2 209 | 3.6233 x 107> | 4.4729 x 10~° | 308 (3876)

3 1531 | 3.6233 x 107> | 4.2237 x 107> | 2478 (31042)

4 8700 3.6233 x 107° | 3.9768 x 107 > 10000 | 7.26 (62)
5 |0 | 51391 1| 3.6306 x 1072 | 3.7359 x 10~° 57.8 (75)

1 55| 3.6306 x 107° | 3.7184 x 1075 | 167 (305)

2 209 | 3.6306 x 1075 | 3.7024 x 107> | 1492 (3148)

5 40895 | 3.6306 x 107° | 3.6542 x 10~° > 10000 44.7 (67)

decomposition technique used by our algorithm is extrerafflgient and makes the total number
of Gauss-Seidel iterations required to solve the four lisyatems even smaller than the number of
iterations required to solve the single linear system obtgerithm proposed in [12] foF' = 0. The
CPU times of our algorithm are accordingly smaller than tR&JGimes of the algorithm described
in [12] for F = 0. In summary, our algorithm compares favorably with the dtm proposed in
[12], when the latter is applicable.

The second example illustrates the broader applicabifiouobounding algorithm. It has both
group repair and phase type repair time distributions. Thekbdiagram of the example is given
in Fig. 3. The system is made up of two processing subsysteats) including one processor P
and two memories M, two sets of controllers C1 and C2, each wib controllers, and four sets
of disks D1, D2, D3 and D4, each with three disks. The systenpis at least one processor
and one memory connected to it are operational, one camtrolleach set is operational, and two
disks of each set are operational. Processors fail withifaté h—!; a processor failure is soft with
probability 0.8 and hard with probability.2. In addition, either being soft or hard, a processor
failure contaminates (fails) the operational memorieshictvit is connected with probabilit§.05.
Memories fail with ratés x 10~° h™!, controllers fail with rate x 10~° h~!. Disks D1 fail with rate
10-6 h=!, disks D2 fail with ratel.5 x 10~% h=!, disks D3 fail with rate2 x 10~6 h=!, and disks

18



M1 M2
P1 P2
M1 M2

/
czj

@)

Figure 3: Block diagram of the second example.

D4 fail with rate3 x 10~% h=!. There are two repairmen. One performs restarts of processo
soft failure and the other performs all the other mainteraations with first priority given to disks,
next to controllers, next to processors, and last to mem.oFiailed memories of the same processing
subsystem are repaired simultaneously (in a single reptorg; thus the model has group repair.
Components with the same repair priority are chosen at randde policy is preemptive-resume.
Fig. 4 gives the phase type distributions for all repairatdi with the initial probabilities shown
inside the circles denoting the statesffand all transition rates intt. The state of the system can
be described by giving the number of components of each typehvware operational and for each
component type, failed mode pair the number of failed coreptof the type in the failed mode
in each state of the phase type distribution associatedetodmponent type, failed mode pair. The
complete model has aboti9 x 10? states, clearly outside of current computing capabilities

The second example has 10 component typesing 22 components. Table 3 gives the
failure bags of the model and for each failure leathe upper bound\(e)],, for its rate. The upper
boundsf;"; are f;", = 5.225 x 107* h™", ff, = 10 h=' and f;; = 1075 h~". The upper bound
Aub IS Aup = 5.245 x 1074 h™!. We also havé:t = 5 h, ¢~ = 0.997384 andg; = 0.199477 h™'.

Table 4 gives the bounds for the steady-state unavailabititained fork = 2, 3, 4 and 5. We
also give the number of generated statég)( By profiling the code we have found out that about
50% of the CPU time is devoted to the generation of the modg#ise the solution of the four linear
systems accounts for the remaining 50%. The CPU timdsfor 5 was about 4 minutes in a 167
MHz UltraSPARC 1 workstation.

The 4-Erlang phase type distribution used for processtantsscan be imagined as an approx-
imation to a deterministic restart time of vallidr—'. The goodness of the approximation improves
with the number of exponential stagkesWe explored that issue and obtained results with increas-
ing k for K = 5. Table 5 gives the results. We can note that the steady+stateilability is quite
insensitive to the shape of the restart time distributioth asmall value of: is enough to obtain an
accurate approximation.

19



processor repair

processor restart 05
OO O® O
cE

memory repair controller repair
OO0,

1 0.5 K
S

Figure 4: Phase type repair distributions for the repaioastof the second example.

Table 3: Failure bags and[\(e)]us, in h™! for the second example.

€ [A(e)]ub
P1[1] 107°
P1[1] M1[1] | 5 x 1077
P1[1]M1[2] | 5 x 1077
M1[1] 1074
P2[1] 107°
P2[1] M2[1] | 5 x 1077
P2[1]M1[2] | 5 x 1077

M2[1] 1074

C1[1] 4 x107°
C2[1] 4 x107°
D1[1] 3x 1076
D2[1] 4.5 x 1076
D3[1] 6 x 1076
D4[1] 9 x 1076
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Table 4: Results for the second example and increaking

|G| lower bound upper bound
513  4.44759 x 1077 1.00362 x 107°
5079 4.47533 x 1079  1.33280 x 10~8
36385 4.53283 x 1072  4.56180 x 107*
202333 4.53383 x 107  4.54889 x 107

g b w N X

Table 5: Results for the second example with= 5 and increasing number of stages of khErlang
distribution of processor restart time.

|G| lower bound upper bound
105658 4.53468 x 1079  4.54888 x 107
134637 4.53413 x 1072 4.54886 x 10~
166862 4.53393 x 1072  4.54888 x 1079
202333 4.53383 x 1079  4.54889 x 10~?

A WODN P

5 Conclusions

An algorithm to bound the steady-state availability apgilie to models with group repair and phase
type repair distributions has been developed. Previousiding algorithms assumed that repair
actions involved a single component and assumed expoheepiair distributions. In addition,
previous bounding algorithms either had to solve many figgatems to obtain the tightest possible
bounds or introduced looseness if state cloning techniguees used to reduce the number of linear
systems to be solved, whereas our algorithm does not clatessind requires the solution of only
four linear systems of the size of the generated state spadgg the time devoted to the solution
of these linear systems comparable with the time to gen#ratmodel. Our algorithm per se is not
confined to compute bounds for the steady-state availgbitican be used to compute bounds for
the steady-state reward rate of models exhibiting simitactures.

Acknowledgements

This work was supported by the “Comisin Interministerial@encia y Tecnologa” (CICYT) under
the research grant TIC95-0707-C02-02.

21



Appendix A. Proof of Theorem 3

Without loss of generality, assume that the transient staf¢” are sorted following the subset
ordering By, Bo, ..., B,. For notational conciseness lgt= 7(i,Y) andr, = 7(By,Y). Note
that7;, > 0. Let the vectorsr = (7;)iep, ™ = (m;)icp and letA be the transition rate matrix &f
restricted toB. T satisfies the linear system

TA = —=T. (46)

Letw} = 7;/7},i € By, 1 <k < n. Note thatw} > 0and)_, 5 w} = 1. Defining the column
vectorsw(k) = (w¥)iep,, (k) = (mi)iep,, We can rewrite (46) as

Air - A
(riw() - ()" = (=" m(m)"),
Anl . Ann

whereA,; are the blocks of\ induced by the partition aB. This block decomposition gives the set
of equations

> Hwk) Ay =-w()T, 1<i<n.
k=1
Postmultiplying byl, a column vector of all ones with appropriate dimension

> Hwk) Ayl=—m()T1, 1<i<n.
k=1

Definingm, = w(k)"1 = Y;cp, i, Ny, = WK) ARl = 3icp, wihip, k # 1, and\, =
—W(k‘)TAkkl, we get

ZTI; g%J)l_Tl/ ZZZ—TFZ, 1<li<n.

k=1

kAl

Thus, ™" = (77)1<k<n, Satisfies the linear system

7_/TA/ _ _W/T
- )
with v/ = (W;g)lgkgn and
/ / /
_/\bl /\bl,bQ e )\bl,bn
/ BV Y
Al — b2,b1 ba b2,bn, . (47)
/ / /
Abby Abuby T b,

In summary, under the conditio , = A} —Z’;‘;i Nopiy 201 <k <N, 7 =7(By,Y) (< 00
since all states irB of Y are transient) is the mean time to absorption in skatef the transient
CTMCY” with state spacé€by, bs, ..., by} U{a}, transition rate matrix (47), and initial probability
distribution P[Y’(0) = b;] = m;, 1 < k < N. The transition rates;, , satisfy the conditions of
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the theorem. It remains to show that the transition ratels¢@bsorbing statg, , also satisfy those
conditions and are> 0. First, note that the output ratesBf can be written as

gk = —W(k‘)TAkkl = Z wf/\l — Z wf/\i,Bk .
1€By, 1€By,

Then, using\, , =\, — E’?;}C Abey ANAAig = X — 3710 Ai By

n

n
/ o / / _ k k ky .
o = M= D Mem = D wiN = > wihig, =Y Y wilip

=1 i€B, i€B, I=1icB
12k F F [

Y (-3 h) - S wbhez0. O
=1

= i€By
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