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Abstract

In this paper we deal with iterative numerical methods teebthear systems arising in con-
tinuous-time Markov chain (CTMC) models. We develop an &thm to dynamically tune the
relaxation parameter of the successive over-relaxaticdhode We give a sufficient condition
for the Gauss-Seidel method to converge when computingtéaely-state probability vector
of a finite irreducible CTMC, an a suffient condition for the r@ealized Minimal Residual
projection method not to converge to the trivial solutbwhen computing that vector. Finally,
we compare several splitting-based iterative methods ariant of the Generalized Minimal
Residual projection method.
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1 Introduction

Continuous-time Markov chains (CTMCs) are widely used fepehdability and performability

modeling. For these models, several measures of interasbea@omputed from the solution of
a linear system of equations. Typically, such a system issspand may have many unknowns,
making iterative methods attractive for its solution.

Several currently available tools allow the specificatiod aolution of dependability and per-
formability CTMC models. These are, among others, SAVE [ERNP [9], UltraSAN [10] and
SURF-2 [4]. For the solution of linear systems of equatioRNB uses Successive over-relaxation
(SOR) with dynamic tuning of the relaxation parametdB]. SAVE uses SOR for the computation
of the steady-state probability vector and SOR combineH aritacceleration technigue [15] for the
computation of mean time to failurd{T'TF) like measures. UltraSAN offers a direct method with
techniques to reduce the degree of fill-in and SOR, beirsglected by the user. Finally, SURF-2
uses the conjugate gradient method (see, for instance, [24]

Several papers have compared numerical methods for salh@tinear systems of equations
which arise in CTMC models. In an early paper [13], perforaeamodels were considered and sev-
eral iterative methods were compared for the computaticihekteady-state probability vector of
finite irreducible CTMCs. The methods included Gauss-3¢@E8), SOR, block SOR, and Cheby-
shev acceleration with GS preconditioning. For SOR, anrdlgn based on the theory gfcyclic
matrices [26] was used to select a value dorin [25], failure/repair models were considered and
SOR with dynamic tuning ob, also based on the theory pfcyclic matrices, was compared with
GS and the power methods, showing that SOR was consideratnly efficient specially for the
linear systems arising iMTTF computations. In [19] a number of direct and iterative mdgho
were reviewed for CTMC performance models. Among others, givojection methods were con-
sidered: the Arnoldi's method and the Generalized MinimasiBual (GMRES) method. In [11]
GMRES and two variants of the quasi-minimal residual athomi were compared. In [14], direct
and splitting-based iterative methods were considereddbying CTMC models arising in com-
munication systems and the authors suggested using tlaebdted Jacobi method and SOR with
suitable values fow in combination with some aggregation/disaggregationsstep

We consider two measures defined over rewarded CTMC modielsteéady-state reward rate
(SSRR) and the mean cumulative reward to failubBd(RTF). We start by defining formally the
measures and establishing the linear systems which hawegolbed. LetX = {X (¢);t > 0} be
a finite irreducible CTMC.X has state spac@ and infinitesimal generatdQ = (¢; ;)i jco (¢ j»

i # j is the transition rate fromto j and—g; ; is the output rate from). Letr;, i € 2 be a reward
rate structure defined ovéf. The steady-state reward rate is defined as

SSRR == tliglo E[TX(t)]
and can be computed as

SSRR = Z TiT5
1€9)



wherer = (71;);cq is the steady-state probability vector ¥t = is the positive normalized|fr||; =
1) solution of
Q'r=o0, @

where matrixQT is singular, the superscrifit indicates transpose aiidis a null column vector of
appropriate dimension. In order to avoid divisions it is\@ment to transform (1) into the linear
system

Pp=0, )

whereP is the singular matrbxQ ™ [diag(Q)]~*, being[diag(Q)] the matrix with diagonal entries
equal tog;; and null off-diagonal entries. The solution vectorof (1) is related to the positive
normalized {[@||; = 1) solution vectow of (2) by w = [diag(Q)] '¢/|/[diag(Q)]¢|/:. We note
thatP is an M-matrix [24].

The steady-state unavailability (UA) is a particular cals8SR R obtained by defining a reward
rate structure; = 0,7 € U, r; = 1,7 € D, whereU is the subset o2 including the up (operational)
states and is the subset of) including the down states.

To define the mean cumulative reward to failure, considerGR&IC XU with state space
U U {a}, whereU includes all up states andis an absorbing state, obtained by directing to state
a the transitions to states in which the system is failed, asdmme that all states 6f are transient.
Let oV be the initial probability distribution oV restricted tol/ and assume that'V is initially
in U with probability 1, i.e.> ", oV = 1. Letr;, i € U be areward rate structure defined on the
transient states o¥V. Then, the mean cumulative reward to failure is defined as

T
MCRTF = F |:/ TXU(t)t:| , T = mm{t : XU(t) = (I},
0

and can be computed as
MCRTF = 7/,
ieU
whererV = (7Y),cp is the mean times to absorption vectorof . 7U can be obtained (see, for
instance, [6]) by solving
Qiy T’ =-a”, (3)

whereQuy is the restriction of the infinitesimal generator &t to the subset/ and matrixQ/;;
is nonsingular. Again, it is convenient to transform (3pithe linear system

PUU I/U = —aU s (4)

wherePy; is the nonsingular matriQ/;,;[diag(Quv )] ~*. The solution vectorV of (3) is related
to the solution vector? of (4) by ¥ = [diag(Quy )]~ 'vY andPyy is an M-matrix. TheMTTF
is obtained as a particular caseMfCRTF for the reward rate structure = 1,7 € U.

The convergence of both GS and SOR may be extremely slow wiegnare used to solve
(4). In [15] an efficient technique is described which immsvthe convergence of such methods.
The technique consists in defining suitable subSets, U = S|J T and then solving eithgfl’| or



|T|+1 linear systems depending on whether the initial probatwiistribution of XV is concentrated

in a single state of” or not, whose nonsingular matrix QES, whereQgsg is the restriction of the
infinitesimal generator oV to S. Next, we briefly describe that technique in a pure algebraic
manner for the casé = U — {1}, T' = {1}, where without loss of generality we assume that state
1 is the state in which all components are unfailed. In tha¢dhe following two linear systems are
solved:

QES ATJ, = _/87 (5)
QES ?// =S (6)

whereB; = q1i/q11,i € Sand§; = qria /g1 +of, i € S. Then,r is computed as =
W' /(1= H)+ 7" witht' = (¢ 1,77), 7" = (of /a1, 7). b = YiegTiaia, andh” =

> ics Ti ¢i,1- Again, it is convenient to transform (5) and (6) into theelim systems

Pgsv' = -8, (7
Pgsv' = —¢, (8)

whereP g is the nonsingular matriQ 1 [diag(Qss)] ~!. The solution vectow’ of (7) is related to
the solution vector of (5) by’ = [diag(Qss)]~'7'. Analogously, the solution vecta’ of (8)
is related to the solution vectat’ of (6) by 7/ = [diag(Qss)]~'7”. Again, we note thaPgg is
an M-matrix. In the particular case in which state 1Xhas initial probability equal to 1, only the
linear system (7) needs to be solved arid computed as = 7//(1 — /') since in that case{ = 1,
af =0,i € S and, thereforer’ = 7. As a final remark, note that siné can be very close to 1,
straight computation of — 2’ might result in severe cancellations. It can be shown, thptiwat

1-h = Z <&+Z7—;’Qj,i>a

iea—u N1 g
sol — k' can be computed safely using only additions of nonnegativehers.

In [15] it is shown that GS usually converges much faster fithi{7) and (8) than it does for
(4). We will use the technique in combination with GS, SOR blutk Gauss-Seidel (BGS). The
resulting methods will be called AGS, ASOR and ABGS, wheegdrefix “A” stands for accelerated.

In this paper we are concerned with numerical iterative oagho solve the linear systems (2),
(4), (7) and (8). Three classes of models will be considef@tk first class include failure/repair
models like those which can be specified by the SAVE modelmgliage [12]. Basically, these
models correspond to fault-tolerant systems made up of ooengs which fail and are repaired
with exponential distributions. There is a state in whichcalmponents are unfailed having only
outgoing failure transitions. The remaining states haveasdt an outgoing repair transition. Note
that in this class of models the detection of the failure obmponent is assumed to be immediate,
i.e. all failed components are immediately scheduled fpaire In the second class of models
which we will consider, failures of spare (inactive) compats will be detected only when they are
tested. Test of spare components will be assumed to be pedboperiodically with deterministic
intertest time. To be able to use CTMCs to represent suckmgsthe deterministic intertest time



will be approximated by & -Erlang distribution, with/' large enough to obtain convergence in the
computed measure &Sis incremented. The third class of models is quite wide anldides models
with failure, repair and performance transitions.

We will describe an efficient and robust algorithm to dynafijctune w in SOR with the
objective of reducing the number of iterations requireddbieve convergence. Moreover, we will
give a sufficient condition for GS to converge when solvinggaad a sufficient condition for GMRES
not to converge to the trivial solutiod when solving (2). The condition for GS encompasses the
very common situation in which the CTMC is generated from gegistart state using a set of
generation rules and states are numbered increasinglgaath generated. Finally, we will analyze
and compare the splitting-based methods GS, SOR and BGStsviflccelerated versions, and a
variant [23] of GMRES [22] which we will call GMR. The rest di¢ paper is organized as follows.
Section 2 describes the iterative methods and the algotithdyinamically tunev in SOR. Section 3
analyzes convergence issues. Section 4 presents examglasraerical results. Section 5 includes
the conclusions. Appendix A gives a formal description @& ftimoposed algorithm to dynamically
tunew in SOR.

2 Numerical methods

We are interested in solving a linear system of the form
Ax = Db, 9

whereA = P andb = 0 (2), A = Pyy andb = —a¥ (4), A = Pgg andb = —f3 (7), or

A = Pgg andb = —£ (8). In the following we will letn be the dimension oA. We next describe
iterative numerical methods which can be used to solve (@)statt by splitting-based methods and
next will consider a variant of GMRES.

2.1 Gauss-Seidel, SOR and block Gauss-Seidel

Splitting-based methods are based on the decompositidreohatrixA in the formA = M — N,
whereM is nonsingular. The iterative method is then

x*+t) = Hx®) + M~ b, (10)
wherex(*) is thek-th iterate forx andH = M !N is the iteration matrix.

Both GS and SOR are easily derived by considering the decsiimoA = D — E — F,
whereD = [diag(A)] and—E and—F are, respectively, the strict lower and upper parfofGS
is obtained by takindI = D — E andN = F. The iterative step of GS can then be described as

«(F+1) — (D — E)‘lFx(k) + (D - E)—lb,



or in terms of the elements & as

i—1
1
xyﬁi>:.__<_.§: gt }: a;ja! 4-@), i=1,2,....n. (11)

i
bt j=1 j=i+1

SOR is obtained by takinyI = (D — wE)/w andN = ((1 — w)D + wF)/w. The iterative step of
SOR can then be described as

X(k:-i—l) — (D - wE)_l((l _ w)D + wF)X(k) + (D — wE)_lwba

or in terms of the elements & as

2P = wrfS+ (1

( ®) i =1,2,...n,

—w)z,

wherez®Sis the right-hand side of (11).

BGS is the straightforward generalization of GS when makixthe right-hand side and the
solution vectors of (9) are partitioned jrblocks as follows:

A171 A17p X1 b1
A= ], x=:1, b=
Ap71 . Ap7p Xp bp

The iterative step of BGS is:

p
x| = ( Z Aijx §k+1) - AzijE'k) + bi)7 i=12,...,p. (12)
j=i+1
Hence, each iteration of BGS requires to sghsystems of linear equations of the forn ;x; = z;.
Depending on the sizes and non-null structure of matrikgs such systems may be solved using
either direct or iterative methods.

2.2 Analgorithm for the tuning of w in SOR

In this section we describe an algorithm for dynamicallyingrthe relaxation parameterof SOR
with the objective of reducing the number of iterations lieegito achieve convergence.

The algorithm is based on estimations of the convergenderfagspectral radius of the itera-
tion matrixH, p(H), whenA is nonsingular, largest modulus of the eigenvalueH afifferent from
1, v(H), whenA is singular) as well as on detecting when SOR diverges. Rnzdla necessary
(and sufficient wher\ is nonsingular) condition for SOR to converge is that 1 [5].

After each iteratiork for which the last two iterations have been performed withdhme value

of w, n is estimated as
[x®) — x*=1)||
= [xE=D — xE-2)||




Stabilization of7 is monitored and it is assumed to be stabilized when theiveldifference in
1/|log 17| between two consecutive iterations is smaller than or equabiven tolerance TOETA
three consecutive times. The rationale for uslriglog 77| instead ofy is that the number of iter-
ations required to achieve convergence is proportiondl/téogn|. The estimator of) may take
many iterations to stabilize or simply not to stabilize &{falr instance, ifp corresponds to complex
conjugate eigenvalues #f). In order not to waste iterations for values.ofor which SOR diverges
or 7 does not stabilize because it corresponds to complex eages/ofH, for anyw, exceptv = 1,
for which no limit is imposed, a maximum dff = max{IT_ETA, it,;/FACT_ETA} iterations are
allocated for the stabilization of, where it is the number of iterations required for the stabiliza-
tion of 7 for w = 1, IT_ETAIs an integer value- 1 which prevents)M from being too small and
FACT_ETA > 1.

We have found convenient to introduce a divergence testhwikialso applicable whemdoes
not stabilize. LetolV) = (\(ml(.j) - xl(j_l))/wl(-j)\)lgign. The divergence test is based on monitoring
the progress oftol) ... Let: be the iteration index associated with the current value (fe. i
is set to 0 whem is changed into a new value). Every TEST iterations performed with the same

w the algorithm computes
kxIT TEST

Ay = > [[tol @ | o -

i=(k—1)xIT_TEST+1
SOR is assumed to diverge and the iterations to estimtethe currentv are stopped as soon as it
is found thaty";_, . i1 tesT[[101 ]l > DIV_FACT x Ay, k > 1,i < (k+1) x IT_-TEST, where
DIV _FACT > 1. The divergence test is not used wher< 1, since in that case SOR is guaranteed
to converge (see Section 3.1).

The algorithm tries to find a minimizing n in the interval(0, 2) for the linear system (2) and
in the interval[l, 2) for the linear systems (4), (7) and (8) (see Section 3.1 fostfication). For
the linear system (2), the algorithm gives priority to sdagrto the right the intervall, 2) because
after performing many numerical experiments we have fotatl tiypically the minimum of; is in
that case on the right of = 1. The algorithm only considers valueswffor which 7 stabilizes to
a value< 1 and it assumes thatis either a monotone function af or has a single local minimum
in the subset of values of considered. If evidence is found thatas a function oftv does not
satisfy any of those conditions, the tuning process is €d@nd the method continues using the
best exploredv (see next for details).

The algorithm performs scans to the right and scans to thenehtervals ofw. Scans to

the right are performed at step and scans to the left are performed at st&ps Initially, both

5% and ¢ are set to a given constant INOELTA, but they are divided, if necessary, by factors
FACT_DELTA so that the scanning can continue within the intenaal under exploration. The
algorithm is called with a limit number of iterations andtexwvith failure if such a limit is exhausted
and the linear system did not converge. The algorithm sitargting withw = 1 until the estimate
for n, 7,4, stabilizes to a value 1. If 7, stabilizes to a value> 1, the algorithm reverts to Gauss-
Seidel. Next, while the estimate fgrdoes not increase, the intenfdl, 2) is scanned to the right.
If for a givenw it is found thatry does not stabilize or the method does not converge, thelnigit



r, of the search interval (initially; = 2) is set to thatv and the scan continues to the right starting
from the lastw for which 7 stabilized to a valuec 1. The scan to the right of the intervél, 2) is
stopped as soon as one of the following conditions holds:

(a) it is not possible to further redudg without falling below the desired accuraey,, for the
location of the optimuna,

(b) 7is found to increase.

In case (a), two situations are possible:

(a.1) i has only stabilized to a value 1 for w = 1,

(a.2) i has already stabilized to a valyge1 for more than one value of; the last two values ab
for which it has happened atg, andw,, w,, < w;, and the corresponding estimatesare

T @1}y, T 2 T

In case (a.1), the algorithm reverts to Gauss-Seidel ifitheat system being solved is (4), (7) or
(8); otherwise, the search continues in the intefvall) as will be explained later. In case (a.2), if
wr — wm > €, the algorithm scans to the left the interal,,, w;) beginning atv,; otherwise, the
algorithm stops tuning and continues using the best exploted.e. the one corresponding to the
smallest]). Next, we discuss case (b). Three cases are possible degeghin on for how many
values of the relaxation parametghas stabilized to a value 1:

(b.1) i has only stabilized to a value 1 for two values ofw; the two values ofu for which it
has happened ate = 1 andw,, w, > 1; the corresponding estimates fpraren,s and;,

ﬁr > ﬁgSl
(b.2) 17 has already stabilized to a valgel for more than two values af; the last three values af

for which it has happened atg, w,,, andw;, w; < wy, < wy, and the corresponding estimates
for n aremn;, nm andmn,, 71 > m < 71,

(b.3) as (b.2) but With = 7.

In case (b.1), the search continues in the intef@all ) if the linear system being solved is (2). When
the linear system being solved is (4), (7) or (8)wif— 1 > ¢, the algorithm scans to the right the
interval (1, w;) beginning at 1; otherwise, the algorithm reverts to Gaweded In case (b.2), a
minimum ofn has been bracketed. df, — w; > €, or w, — wy, > €, the golden section search
method (see, for instance, [20]) is used in the intefugl w;) to find such a minimum; otherwise,
the algorithm stops tuning and continues with the best exploredIn case (b.3), ifv,, —w; > €,
the interval(w), wy,) is scanned to the left beginningat,; otherwise, the algorithm stops tuning
and continues with the best explored



To solve (2), the search in the interv@l 1) is performed in a similar way. Whilg decreases,
the algorithm makes a scan to the left. If for a giveiit is found that; does not stabilize or the
method does not converge, the left limditpf the search interval (initially, = 0) is set to thatv and
the scan continues to the left starting from the lagbr which 7 stabilized to a value: 1. The scan
to the left of the interval0, 1) is stopped as soon as one of the following conditions holds:

(c) ¢, cannot be reduced without falling belayy,

(d) nis found not to decrease.
In case (c), two cases are possible:

(c.1) i has only stabilized to a value 1 forw =1,

(c.2) i has already stabilized to a valge1 for more than one value of; the last two values ab
for which it has happened asg andw,,, w; < wy,, and the corresponding estimates faare
mandny,, m < M.

In case (c.1), the algorithm reverts to Gauss-Seidel. Ie af), ifwm — w; > €, the algorithm
scans to the right the intervél,, w,,) beginning atv;; otherwise, the algorithm stops tuningand
continues with the best explored Finally, in case (d) three cases are possible:

(d.1) n has only stabilized to a value 1 for w = 1 andw; < 1; the corresponding estimates fipr
are'ﬁgs andﬁh 771 > ﬁg&

(d.2) the same as (b.2),

(d.3) the same as (b.3).

In case (d.1), ifl —w; > ¢, the algorithm scans to the left the interval, 1) beginning at 1;
otherwise, the algorithm reverts to Gauss-Seidel. Cas2sddd (d.3) are dealt with as cases (b.2)
and (b.3), respectively. The previous description of tige@aihm for tuningw is rather informal. An
automaton-based formal description is given in Appendix A.

Selection of appropriate values for the parameters on whigkalgorithm to dynamically tune
w depends is not trivial, being from our experience TETA, IT_ETA and FACTETA the most
delicate ones. If TOLETA is chosen too large an erroneous estimate of the conveggactor may
result and the tuning process may become confused. If EDA is chosen too small ang takes
a large number of iterations to stabilize the algorithm may explore all values ofs of interest.
Selection of values for IIETA and FACT.ETA also involves a tradeoff. If the resultiny is too
small, the algorithm may not explore all valueswofof interest. If the resulting\/ is too large,
iterations may be wasted for anfor which 7; does not stabilize (if, for instance,corresponds to
complex conjugate eigenvalues of the iteration matrix)teAperforming many experiments, we
have found ITETA = 150, FACT_ETA = 2, TOL_ETA = 0.001, ¢, = 0.001, INI_DELTA = 0.1,
FACT_DELTA = 10, IT_TEST= 30, and DIV_.FACT = 1.5 to be appropriate choices.



2.3 Generalized Minimal Residual

The GMRES method begins with an initial approximate sotut¢®) and an initial residue(® =

b — Ax(® and generates an approximate solution at $t@ax?) = x(©) + zU). The vectorz¥) is

the vector inkC; which minimizes||b — Ax) ||y = [[r(®) — Az0)||5, wherek; is thej-dimensional
Krylov subspace generated Byandr(®)

K; =spadr® Ar©® . AT O}

The least-squares problem is solved in such a way that for géwe norm of the residugr)||,
is available and convergence is achieved whew ||, < §,, whered, is a predefined small enough
value.

The memory and time requirements of GMRES grow agreases because the method needs
the j vectorsr®), Ar(® ... AJ=1r(©) to construct an orthonormal basis/6f. Thus, in practice a
restartedversion, GMRESY), is used: after everk iterations (assuming convergence has not been
achieved) the algorithm is restarted, takici§) as the next initial solution guess for the next cycle
of k iterations. For details about GMRES and GMRES6ee [22].

Convergence of GMRES is monotonic, ija:0* ||y < |[r0)|,. Furthermore, in exact arith-
metic it reaches the exact solution in at massteps if A is nonsingular [22]. However, i is
not large enough, GMRES) can converge very slowly or evestagnatei.e. the reduction in the
residual norm after each step tends to zero and the algodtia® not reach the solution. The conver-
gence rate of the method typically increases vkithut so does the memory and time requirements
per iteration. Thus, the issue of selecting an appropriataevfor k& arises. In [23] an adaptive
variant of GMRESk) is proposed in whiclk is enlarged or maintained depending on how fast the
residual norm decreases. The algorithm starts Wwith ky. After each cycle, if the 2-norm of the
current residue?) is larger thary,., an estimate of the number of iterations still needed tolreac
convergence is computed using the residue at the beginhihg cecently completed cyclel/—*),
as¢ = k log(6,/||rD]2)/ log(|[r@|o/[r=*)||5). Being jmayx the iterations limit andsv a small
number, the algorithm is assumed torear-stagnatedf £ > sv X (jmax — Jj). In that case, ik
has not reached yet its maximum valkig.., k is incremented by some value and the cycle is
continued till complete the new numbkeof iterations or achieve convergenceklfs not enlarged,
first the 2-norm ofr?) is checked to be non greater than thatr6f*) (it could be greater due to
numerical instability of the method), aborting the proaedotherwise. Next, if > bv X (jmax — ),
wherebw is typically much larger thanv, stagnation is assumed and the whole algorithm aborted
because it is unlikely that the algorithm will achieve cagence within the remainingy,.x — j
iterations. Notice that this last test subsumes the caséichvihe maximum number of iterations
Jmax 1S reached. Our algorithm (GMR), which is described in Figclbsely follows that of [23].
The main difference is that the Krylov subspace basis isoadimalized using the modified Gram-
Schmidt method with double orthogonalization (MGO) [213tead of the Householder reflection
procedure (HO). MGO performs as the modified Gram-Schmiltgxture (see, for instance, [24])
but the norm of the new basis vecter;, which is being computed is monitored to reduce the impact
of cancellations: at each stelp,; = WlTvi andw; = w; — h; ;v; are computed; sincgv;|j> = 1,

10



s = |lwi]|3 will be reduced byn?,. If h?, is greater than, sa§.99 x s, cancellations might be
important and a second orthogonalization step is perfornt#@d is numerically more stable than
MGO but it is about twice as expensive as MGO when the numbegarthogonalizations is small
[21, 23]. Also, MGO is known to be appropriate for most apgicns [21].

Preconditioning techniques can significantly speed up GBRE[21, 23, 24]. We use right-
preconditioning with preconditione&, i.e. we transform the original problem (9) into the new
one

AGlu=b, u=Gx.

This implies that the vectow; which the MGO procedure starts with in Fig. 1 is now =
AG~lv;, and that the solution after each restart cyslgis computed ags = x + G~'V;y. We
use the symmetric Gauss-Seidel preconditioe= (D — E)D~!(D —F), whereD = [diag(A)]
and—E and—F are, respectively, the strict lower and upper parfofin practice, the matriG —*

is not actually computed (this would be too expensive dudltmjiand the requireds; = G~ 'z,
computations are carried out by solving first the lower gidar linear systenil — ED 1)z, = z,
and then the upper triangular linear systéh — F)z, = z;. Although there are more elaborate
preconditioners which usually work better [19], we havenwuhat the improvement achieved by
symmetric Gauss-Seidel is enough. Moreover, it does nat agg extra storage sind@ is “con-
tained” into the coefficient matriA of (9).

The most critical parameters of our GMR algorithm &geand knax.  The larger they are,
the more likely the algorithm will achieve convergence witthe maximum number of allowed
iterations. On the other hand, GMR requires as many exteyswof sizen as the dimension of the
Krylov subspacé: € {ko, ..., kmax} the algorithm chooses, so neithigrnor kmnax can be too large
if memory is a concern. After some experimentation we havadd:, = 20, knax = 30, m = 2,
sv = 0.005, andbv = 1 to be appropriate choices.

3 Convergence

3.1 Convergenceresults

First we analyze convergence for the splitting-based nasth& matrixC is said to be semiconver-
gent iflim;_,., C* exists. In particularC is called convergent if that limit equals The splitting

A =M — N, M nonsingular, on which the iterative method defined by (10psed is semiconver-
gent if H = M~'IN is semiconvergent. If the linear system (9) is consistéa,iterative method
defined by (10) converges to a solution of (9) for ea¢h if and only if the splitting from which
(10) has been derived is semiconvergent [5, Chapter 7, Lei®. Obviously, whemA is sin-
gular the solution obtained by the iterative method will elegh onx(?). A necessary and sufficient
condition for the nonsingular matri& to be convergent is(C) < 1, while in the singular cas€

is semiconvergent (see, for instance, [18]) if and only1) 4(C) < 1, and, ifp(C) = 1, then (2) 1

is an eigenvalue of and~(C) < 1, and (3)C has only linear elementary divisors corresponding
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Setz, jmax, k0, Fmax, M, Or, SU, bV;
r=b—-Ax;k=ky j=0;
while||r||2 > ¢, do
roId =r
vi =r1/|rll;
for [ = 1 until k do
j=ji+1
w; = Avy;

s = ||lwill3;
for i =1 untilldo /* MGO algorithm */
hip = wiv;;
w; =w; — hivi;
if b2, > 0.99s then  /* second orthogonalization */
W= W Vi hig = hig+ W w=w; — B'vg;
end if
s =8 — h?l;
end for 7
hivig = [[wil2;
if hl+1,l = 0 then goto Belse Vig1 = Wl/hl—i-l,l end if
update||r||2 as in [21];
if |r|l2 < &, then go to Bend if
end for
¢ = klog(6:/|lr]l2) / log([lrl2/[x2);
if £ > sv(Jmax — J) and k < kpax — m then

k=k+m,
goto A;
end if
solvemin ||[|r||2 e; — Hy||,, wheree; = (1,0,...,0)" andH is

an(l+ 1) x I matrix described in [21];
x =x+ Vyy,whereV; = [v;...vj];r =b — Ax;
if ||r||2 < 6, then exiteseif |[r%95 < ||r||2 then abortend if
¢ = klog(8,/|rllz) / log (|[xl2/1Ix®);
if £ > bu(jmax — j) then abortend if
end while

Figure 1: Algorithm GMR.
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to the eigenvalue 1 (i.e. all the Jordan blocks associatéd in the Jordan canonical form &f
have dimension 1)P is a singular M-matrix and botRy;; andPgg are nonsingular M-matrices
[24] having all them nonvanishing diagonal elements. Weelthe following well-known results:

1. The SOR method can only converge for the linear systemof2) f< w < 2 [27, Ch. 4,
Theorem 1.2]. Moreover, the splitting on which SOR is baseskimiconvergent fdr < w <
1[2, Corollary 3].

2. For the linear systems systems (4), (7) and (8) SOR canaamiyerge ford < w < 2 [5,
Ch. 7, Theorem 4.5]. The splittings from which GS and SOR Wwith w < 1 are derived
are convergent [24, Theorems 3.6, 3.7]. In additipis a nonincreasing function af in the
range0 < w < 1[5, Ch. 7, Theorem 5.23]

Using the fact thatlet(Hgor) = (1 — w)", whereHgog is the iteration matrix for the SOR
method andh is the dimension of the linear system being solved, it idfjestin [27, Ch. 4, The-
orem 1.2] that SOR diverges for the singular system (2) & 0 or w > 2. Here, we discuss the
divergence of the method for the cases= 0 andw = 2. The casev = 0 is immediate since the
splitting which gives place to the SOR method is not definadhé casev = 2, | det(Hgor)| = 1,
which does not prevent 1 from being the only eigenvaluklgfr, thus fulfilling convergence con-
ditions (1) and (2). Note that Hisor has an unique eigenvalue, condition (2) states that thexdord
canonical form oHgor must have: Jordan blocks. The number of Jordan blocks having the eigen-
value X in the Jordan canonical form of anx n matrix C is equal todim(Ker(C — AI)) (see, for
instance, [1]), wher&er(C — AI) is the null space o — AL, and, trivially,dim(Ker(C —\I)) < n
unlessC — AT = 0. It is easy to verify that the (1, 1)-element Hisor — I is equal to—2 when
w = 2. ThereforeHgor —I # 0 and, thendim(Ker(Hgor —I)) < n, implying that the canonical
Jordan form ofHgor has at mosti — 1 Jordan blocks. Thus, condition (3) above is violated and
the SOR method diverges far= 2.

Let Hgg be the iteration matrix of GS. Sind has “property ¢” [24, Theorem 3.16], it follows
[18, Theorem 5] thaHag is semiconvergent if and only if 1 is the only eigenvalueHfs on
the unit circle, i.e.v(Hgs) < 1. The directed grapl'(C) = (V, E) associated with the x n
matrix C = (¢ j)1<ij<n iS defined by the set of verticds = {1,...,n} and the set of edges
E = {(i,j) € V|c¢,; # 0}. A sequence of vertice§y,...,7_1,%) such that(iy,ix41) € E,
0 < k < lis called a path. Ifiy = iy andig,...,4,_; are distinct, the sequence is called a
cycle. A path(ig,...,7;) is monotone increasing i, < --- < ¢; and monotone decreasing if
ip > --- > 4;. Similarly, a cycle(ig, . ..,4_1,%) IS monotone increasing if the pathy, ..., ;1)
is monotone increasing and monotone decreasing if the(path . , ;1) is monotone decreasing
[2]. A necessary and sufficient condition 6iP) = I'(Q™) for v(Hggs) to be< 1 is given in [2,
Theorem 1]. Unfortunately, the result requires the knogéedf all the cycles i’ (P). Several,
more practical sufficient conditions dnP) or I'(Q) for v(Hgs) to be < 1 have been derived
[2, 17]. The result derived in [2, Corollary 1] states thaF'{f?) has a monotone decreasing cycle,
then forward Gauss-Seidetonverges for each initial guess. Lt be the highest index in the

The method we have called Gauss-Seidel should be more prapdled forward Gauss-Seidel.
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ordering of the states of the CTMC. The result proven in [1ifedrem 5.2] states that if for each

ip € V there exists a monotone increasing p@ath...,is), then forward Gauss-Seidel converges
for each initial guess. Next, we give another sufficient ¢omal for Gauss-Seidel to converge for

each initial guess.

Theorem 1. LetQ be the infinitesimal generator of a finite and irreducible CTMnd letl'(Q) =

(V, E) be the directed graph associated with If the ordering of the states of the CTMC is such
that for any state with index > 1 there exists another state with indgx ¢ such that(j, i) € E,
then forward Gauss-Seidel converges for the linear sy&tem= 0 for each initial guess©).

Proof. Let igp # 1 be the index of any state such tha$, 1) € E. Because of irreducibility of
Q, some state with indek, exists. Leti; < ig be the index of some state such tat ig) € E.
By assumption, some state with indéxsatisfying the condition existsi; may be 1 or have a
value> 1. If iy = 1, we have finished. If; > 1, we can consider a state with indéx < 7
such that(is, i1) € E, which by assumption must exist. Iterating the reasoning dear that a
cycle (ig, 1, ig, ..., 12, i1, 99), k > 0 with 4 < i;_1, 1 < 1 < k can be formed iT(Q). That
cycle becomesig, i1, io, ..., ir, 1, i) in T(QT) and, since(P) = I'(Q™), in T'(P), which is
monotone decreasing. Then [2, Corollary 1], forward Gatsislel converges to soliRg = 0 for
eachy®. O

The assumption on the ordering of the states of Theorem 1tigamp restrictive in practice,
since it encompasses the very common situation in which THdCis generated from a given start
state using a set of generation rules and states are numheredsingly as they are generated.

Two issues must be considered for the algorithm GMR: comrerg and breakdown. As it
has been stated in Section 2.3, convergence of GMRESn be very slow or even the algorithm
can stagnate and never reach the solution, and the samesafaptiur variant, GMR. Breakdown is
related to the least-squares problem which has to be sotvibeé &nd of each cycle. That problem
can be formulated as the minimization of the functional

J(y) = Ir'Y — AV, |2, (13)

where V; = [v;...v;] (see Fig. 1) contains an orthonormal basiskof Breakdown occurs
whenrank(AV;) < [ and, consequently, (13) has not an unique solution. At sdemelsGM-
RES (and GMR) can either (a) break down through rank defigiefiche least-squares problem
(rank(AV;) < rank(V;)) without determining a solution, or (b) determine a solutiwithout
breakdown and then break down at the next step through degsmef ;1 (rank(V; 1) < 1)

[7, Theorem 2.2]. Matrice®y andPgg of the linear systems (4), (7) and (8) are nonsingular.
A = P of the linear system (2) is singular, the system is condigienause the CTM is finite
and irreducible, and, sindadex(P) = 12 [24], Ker(P) (" Im(P) = 0 (see, for instance, [11]).
Therefore, for the linear systems (2), (4), (7), and (8) ardge (b) above is possible. Note that

The index of a square matriX is defined as the lowest nonnegative intelgsuch thatA* and A*™' have the same
rank [5].
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rank(V;,1) < [ is equivalent tov;,; to be linearly dependent of;, i = 1,...,l, i.e. to have
hi1+1 = 0 at stepl of GMR. Therefore, for the linear systems being considenedatgorithm GMR

is safe in the sense that it can only break dowfy jf,; = 0 and in that case the solution reached is
exact.

We conclude this section with two remarks regarding the GMJ@rahm. The first one has
to do with the initial approximatiox(?) used. If the coefficient matriA is nonsingular (4), (7),
(8), it does not matter which initial iteration vector is ¢k However, ifindex(A) = 1 andb = 0
(2), x(© must not belong tdm(A), since otherwise the iterates will converge to the triviution
x = 0 [11, Corollary 3.2]. The following theorem gives a critaritio choose an appropriaté®) .

Theorem 2. Let Q be the infinitesimal generator of a finite and irreducible QThnd letP =
QT [diag(Q)]~". A sufficient condition for the solution of the linear syst@nusing GMRES or
GMR not to converge to the trivial solutian = 0 is to take an initial iteration vectox(®) with

sl #o.

Proof. Assume a vectok € Im(P). This implies the existence of a vectgrsuch thatPy = x.
Since the rows o€ add up 0, we have

sz Zzpw% Z%ZPU—Z%Z% Zy] Zqﬂ—o

=1 j=1

Therefore Zl<2<n ;é 0 is a sufficient condition fox(®) ¢ Im(P). Since (2) is consistent, this
implies [11, Corollary 3.2] that neither GMRES nor GMR corgeto the trivial solutior0. O

Our last remark has to do with the preconditioner. If theesys(9) is transformed into the new
one
L'AU 'lu=L""'b, x=U"lu,

by means of a nonsingular preconditioner mat@ix= LU, index(A) = 1 implies index(L~!
AU = 1, so the above results still apply.

3.2 Test of convergence

As convergence test we require the relative variation orcdimeputed measur€$RR or MCRTF)

to be smaller than or equal to a specified tolerantteee consecutive times. The rationale for this
test is that it takes into account only “important” compatsesf the solution vector and avoids false
convergence if the iteration vectors oscillate.

The convergence test described above is easily impleménitedtie Gauss-Seidel, SOR and
block Gauss-Seidel methods. Implementation of the coever test for GMR requires some dis-
cussion. The natural criterion for checking convergend8MR is to use the 2-norm of the residue.
If x is the computed solution of the linear system (9), wheis nonsingular anth ## 0 the 2-norm
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of the residuer = b — AX is related to the 2-norm of the error vectArx = X — x through the
condition number ofA, x(A) = ||A]|2]|A~!2, by

[Ax]l2 [l
< k(A) .
1|2 b2

WhenA is a singulam x n M-matrix of rankn — 1, as it isP [24], one possible bound fdfAx ||,
is [3, Theorem 2.1]
(L + v/n)lIrll2

On_1 ’
wheree = || Ax||; — 1 ando,,—; is the smallest positive singular value Af However, neither(A)
nor o, are known, so, in practice, from the knowledgel|ef» we cannot estimate the accuracy
of the solution. Moreover, if(A) or 1/0,_; are large, the actual error can be large even though
|||z is small. Therefore, we proceed as follows. Giveand a reduction factar, for the residual
norm, we run GMR withy, = ¢,||r(®||, until it reaches convergence. Then, three more iterations
are performed computing the explicit solution for each afnth(i.e. withky = kn.x = 1) and
we check the relative variation on the computed measureheltbnvergence test is satisfied, the
algorithm finishes. Otherwise, is divided by a given factof > 1 and adaptive GMR starts again
taking the last computed solution vector as initial itematvector. We have found = eandf = 10
to be appropriate choices.

[Ax(l2 < e +

4 Numerical results

In this section we compare the performance of the numeriedhaous described in Section 2 using
examples representing five scenarios:

1. solution of (2) for a model with failure and repair traiwits and immediate detection of
component failures,

2. solution of (4) and (7) for a model with failure and repaarisitions and immediate detection
of component failures,

3. solution of (2) for a model with failure and repair trafmits andK -Erlang intertest time of
spare components,

4. solution of (4) and (7) for a model with failure and repaansitions and<’-Erlang intertest
time of spare components,

5. solution of (2) for a model with failure, repair and perfance transitions and immediate

detection of component failures.

For all methods, the relative tolerance for convergencakisrte = 10~® and a maximum of
100 000 iterations is allowed. As initial guess®) we takex(®) = (1/n,...,1/n) to solve (2) and
x( = (1,...,1) to solve both (4) and (7). CPU times have been all measuredl@8 &1B, 167
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P processors

C controllers

-

Figure 2: Distributed fault-tolerant database system.

MHz ULTRA 1 SPARC workstation. Main memory usage was in afleasmaller than the available
one.

The first example (corresponding to scenario 1) is the Higied fault-tolerant database system
depicted in Fig. 2. The system includes two processors, twtrallers and three disk clusters,
each with four disks. When both processors are unfailed,obtleem is in the active state and the
other in the spare state. Similarly, when both controllees unfailed, one of them is active and
the other spare. The system is operational if at least ongepsor, one controller and three disks
of each cluster are unfailed. Processors, controllers @i dail with constant rate® x 107°,

2 x 107* and3 x 107°, respectively. The dormancy factor for the spare unit8.2s(i.e. spare
components fail with rate 0.2 times the failure rate of acttemponents). There are two failure
modes for processors: “soft” mode, which occurs with prdigh0.8, and “hard” mode, which
occurs with probability 0.2. Soft failures are recoveredamyoperator restart, while hard failures
require hardware repair. Coverage is assumed perfectlfiailates except those of the controllers,
for which the coverage probability 8. Uncovered controller failures are propagated to two faiu
free disks of a randomly chosen cluster. Processor restariserformed by an unlimited number of
repairmen. Repairs of processors in hard failure moderaiterts and disks are performed by one
repairman who gives preemptive priority first to disks, nextontrollers and last to processors in
hard failure mode. Failed components with the same priarig/taken at random for repair. Repair
rates for processors in soft and hard failure mode are, cégply, 0.5 and 0.2. Controllers and
disks are repaired with rates 0.5 and 1, respectively. Coents continue to fail when the system is
down. The measure of interest is the steady-state unailgyldlhA, a particular case of th8SRR
generic measure. The generated CTMC 2@a850 states and 9 290 transitions. Four values for
the coverage probability are considered:= 0.9, 0.99, 0.999, and0.9999. For this example we
only experimented with GS, SOR and GMR. The CPU time reqdethe generation of the model
was 0.242 s. We give in Table 1 the number of iterations, Chi# tin seconds and UA for the
first example. The GS method is the fastest one. SOR reqtieesame number of iterations to
achieve convergence as GS because the convergence is gwfasis achieved before any tuning
onw can be done. The time per iteration for SOR is slightly gretitan it is for GS. GMR requires
the smallest number of iterations but is the most expensitirie. This is because the number of
floating-point operations per iteration of GMR is substalhtigreater than the number of floating-
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Table 1: Number of iterations (top), CPU time in s (bottomd &t for the first example and several
values of the coverage probabilify.

method
C GS SOR GMR UA

0.9 20 20 10  4.054 x 107°
(0.104) (0.116) (0.193)

0.99 19 19 12 4.461 x 1076
(0.103) (0.121) (0.236)

0.999 19 19 14 8537 x 1077
(9.66 x 1072) (0.122) (0.281)

0.9999 20 20 14 4.929 x 1077

(0.109) (0.133) (0.287)

point operations per iteration of both GS and SOR.

The second example, corresponding to scenario 2, is idéntiche first one except that the
number of disk clusters is increased to six. The measuretafast is theMI TTF, a particular case
of theMCRTF measure. The state in which all components are unfaileditésd probability equal
to 1. The number of transient states of the CTME is 384 and the number of transitions among
the states ot/ is 2884. The generation time ak? was5.82 x 1072 s. We consider the numerical
methods GS, SOR, GMR, AGS, and ASOR. We give in Table 2 the eurnbiterations, CPU
time in seconds anMITTF for the second example. We consider the same values for teeage
probability C' as we did for the first example. If the acceleration technidggcribed in Section 1 is
not used, the GMR method requires by far the smaller CPU tifsigo, its performance is almost
independent of the coverage probability. The GS and SORadsttio not perform satisfactorily, as
it was expected [15]. Naotice that the largér the greater the number of iterations required by GS
and SOR. This is because the rate associated to the uncdaduoeds of the controllers approaches
zero and system failure becomes a rarer event. The behavioatcordance with the theory given
in [15]. SOR performs substantially better than GS, anddtfgpmance does not degrade so sharply
asC increases. When the acceleration technique is used, thend€i®d is the fastest. Both AGS
and ASOR appear to be insensitive to the value of the covgragemeteilC'. ASOR requires the
same number of iterations than AGS because the convergesoefast that ASOR has not left the
valuew = 1. However, ASOR is slightly slower than AGS because eachtitar step of SOR is
slightly more expensive than each iteration step of GS.

The system considered in the third example, correspondirsgenario 3, is exactly the same
as the system of the first example, with the only differene fhilures in spare processors and
controllers are not immediately detected. These compsremettested with deterministic intertest
time T approximated by d(-Erlang distribution with expected valdE and K large enough to
make the approximation error small. The measure of intésddf\, a particular case 3SRR. It
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Table 2: Number of iterations (top) and CPU time in s (bottéonkhe second example and several

values of the coverage probabilify.

method
C GS SOR GMR AGS ASOR  4.964 x 10*
0.9 804 153 8 13 13
(0.488) (0.132) 1.95x1072) (8.26 x 1073) (1.16 x 1072)
0.99 4743 385 8 13 13 4.629 x 10°
(2.88) (0.330) 2.02 x 1072) (8.41 x 1073) (1.16 x 1072?)
0.999 28163 1340 8 13 13 2.763 x 10°
(17.1)  (1.13) 2.04x1072) (8.21 x 1073) (1.16 x 1072?)
0.9999 52694 3905 9 13 13 5.492 x 106
(32.1) (3.18) 2.22x1072) (8.24x1073) (1.16 x 1072)

Table 3: Number of required Erlang stagks number of states, number of transitions and CPU
generation time (s) for the third exampteé,= 0.99 and several values of the intertest tiffie

T 100 10 1 0.1 0.01
K 25 9 6 3 3
states 100000 36000 24000 12000 12000
transitions 1048 050 377298 251532 125766 125,766
generation time 16.9 5.70 3.73 1.80 1.79

is clear that the greatéf is, the greater UA is. Intuitively, the fact that failed spartomponents
are not immediately scheduled for repair “increases” thpairetime of these components and so
increases UA. We consider the following five valuesTor100, 10, 1, 0.1, and 0.01. For the sake
of conciseness, we only give results for a coverage prabaldil equal t00.99. The value ofK is
chosen as the minimum value which makes the relative differdetween UA fors and K — 1
smaller than or equal t& x 10~. We show in Table 3 the number of required Erlang stdgethe
number of states and transitions of the CTMC and the CPU generation time in seconds for each
value ofT.

The state descriptions of the third example have a compgnen p < K used to indicate
the phase of thé-Erlang distribution. For BGS, the blocks are chosen toudelall states which
only differ in the value of the state variable In addition, states within each block are sorted
following increasing values gf (from 1 to K). With that ordering, the diagonal matricds; of
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BGS have the form

Qm,m 0 cee 0 QTL,m
m,m+1  Im+1,m+1 0 . 0
dm+1,m+2 dm+2,m+2 - 0
0 v dn—2n—1 Adn—1n-1 0

0 ce 0 Gn—1n dn.n

Taking advantage of this form, we solve efficiently the linegstems (12) of BGS using Gaussian
elimination with fill-in only in the last column.

The iterative methods considered for the third example &eS®R, BGS and GMR. We show
in Table 4 the number of iterations, CPU time in seconds andddhe third example. Notice first
that asI” becomes smaller UA tends to the value corresponding toritesstaous detection of failed
spare componentd.¢61 x 10-%). The performance of the numerical methods is affecte@ biyor
large values off’, the GS method performs very well, but its performance déggayjuickly asl’
decreases. The same type of comments can be made for the §@&hal. Note, however, that as
the number of iterations required by GS increases, thavelegduction in the number of iterations
achieved by SOR is greater. This indicates that the alguoritised for selecting the relaxation
parametew is efficient. BGS is the method which requires fewer iteraioFor7” = 100 it requires
significantly more CPU time than GS and SOR. This is due toithe tequired to sort the states as
explained before. Fof' = 10, BGS is slightly slower than GS and SOR, and for lower values o
T it should be clearly considered as the method of choice. &lly&@GS seems to be the method
of choice for scenario 3. GMR performs significantly worseéedms of CPU time than BGS and,
for T' > 0.1, than GS and SOR. However, it is clearly faster than SOR orde$ f= 0.01. It can
be observed that for GMR the number of required iterationgsedeses fromi” = 0.1 to 7" = 0.01,
which is in contrast with the behavior observed for greatdues of7’. We analyzed the behavior
of GMR in these two cases and found the following explanatiéor 7' = 0.1 the problem is less
harder than fofl" = 0.01 and GMR is happy with a smaller value b{k = 22 for 7" = 0.1; k = 28
for T'= 0.01). This smaller value of makes the convergence slower in the long term.

The fourth example, corresponding to scenario 4, is idahtiicthe second one but now failures
of spare components are detected only where they are teStieel.test of spare components is
performed periodically with deterministic intertest tifhieapproximated by & -Erlang distribution
with K large enough. The measure of interest isNHETF, a particular case &fICRTF. The state
in which all components are unfailed has initial probapiétjual to 1. We consider the same values
for C andT as we did for the third example. Once agalf,is chosen as the minimum value for
which the relative variation in theITTF computed with’X’ andiK — 1is < 5 x 10~%. We show in
Table 5 the requireds’, the number of transient states®f’, the number of transitions of the chain
XU within the subset/, and the CPU generation time in seconds for several valu&s of

For this fourth example we consider the methods GS, SOR, BGS, ASOR, ABGS, and
GMR. Diagonal blocks for BGS and ABGS are chosen and thessteithin each block sorted as in
the previous example. We show in Table 6 the number of iteratiCPU time in seconds required
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Table 4: Number of iterations (top), CPU time (s) (bottomdl &tA for the third example’ = 0.99
and several values of the intertest tiffie

method
T GS SOR BGS GMR UA
100 21 21 10 25 6.129 x 1076
(9.42) (9.46) (15.6) (39.0)
10 31 31 11 36  4.641 x 1076
(4.81) (4.83) (4.92) (18.8)
1 162 114 12 100 4.480 x 1076
(15.6) (11.5) (3.15) (30.8)
0.1 1391 651 12 237 4.463 x 1076
(64.0) (32.4) (1.43) (33.7)
0.01 12632 2254 12 207 4.461 x 1076
(584) (109) (1.45) (30.2)

Table 5: Number of required Erlang stag&s number of transient states &, number of tran-
sitions of XV within U, and CPU generation time (s) for the fourth example with= 0.99 and
several values of the intertest tirfie

T 100 10 1 0.1 0.01
K 20 7 3 3 3
states 19200 6720 2880 2880 2880

transitions 166 540 58289 24981 24981 24981
generation time 3.75 1.27 0.528 0.528 0.541
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Table 6: Number of iterations (top), CPU time (s) (bottomyl &AdTTF for the fourth example,
C = 0.99 and several values of the intertest tiffi€an asterisk denotes that the method was unable

to converge within 100,000 iterations).

method
T GS SOR BGS AGS ASOR ABGS GMR MTTF

100 47 267 1623 4896 21 22 12 16 3.882 x 10°
(2.60 x 10%)  (106) (733) (1.26) (1.43) (2.93) (3.31)

10 * 10976 5614 25 28 10 19 4.533 x 10°
* (243) (179) (0.504) (0.633) (0.653) (1.27)

1 * * 5629 133 84 10 53  4.618 x 10°
* * (58.2) (0.879) (0.679) (0.273) (1.15)

0.1 * * 5572 1092 490 11 87 4.628 x 10°
* * (57.7) (7.11) (3.90) (0.248) (1.93)

0.01 * * 5563 9,41 2307 12 127 4.629 x 10°
* * (57.9) (62.7) (17.9) (0.267) (3.45)

by each method anMITTF. GS performs badly. It is able to reach convergence witlfit 000
iterations only forl” = 100. SOR also fails for values &f smaller than 10, but significantly out-
performs GS. The BGS algorithm does not perform very wellallrtases it reaches convergence
but the number of iterations and CPU time are large. AGS an@Rperform well for large and
moderate values df, but they degrade sharply wh&hdecreases. Note that while ASOR is faster
than AGS for medium and small values’®f it requires a few more iterations f@r > 10. We ana-
lyzed the behavior of ASOR in these two cases and found thenfitlg explanation. The tuning
algorithm changes to 1.1 when the algorithm has almost reached convergenteont 1. This

is a sensible decision singgl.1) < 7(1) but the change iy produces a “transient” perturbation
in the progress of the measure which finally results in a nurabigerations slightly greater. ABGS
is the best of the seven methods in number of iterations.oltli slightly outperformed in terms of
CPU time by AGS and ASOR fdr' > 10. As for example 3, the reason for the behavior for these
values of7" is the time consumed in sorting the states. If a single metime to be chosen, ABGS
would be the reasonable choice. GMR, though being slower &GS, performs reasonably well
and its performance degrades les§ asecomes smaller than any other method except ABGS.

The fifth example, corresponding to scenario 5, is the quesystem depicted in Fig. 3. The
system, which has been adapted from [16], consists of 3imdrgervers with associated finite
queues of lengti” being fed by tasks which arrive following a Poisson procegh arrival rate
6. Service time is exponential with average valtie'. Servers (but not queues) are subjected to
exponentially distributed failures and repairs with rateand ., respectively. A scheduler routes
arriving tasks to servers following the join-the-shortggeue routing algorithm. To simplify the
model, we assume that if a server breaks down, the custorirey ®erved is kept in the queue and
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Figure 3: Example queuing system.

Table 7: Sets of model parameter values considered for thesfibmple.

Set a b
C 15 15
9 1.60 160
0 0.60 60
A 1x107*% 1x1074
L 60 12

its service is resumed after the server has been repairaeim€asure of interest is the probability
of a customer being rejecteg,,ss, Which can be computed as the probability of the system being
in the states in which all queues are full and, therefore, padicular case of the generiSRR
measure. We use the two sets of model parameter values givEable 7. Since the number of
states and transitions depends only on the queue lafigthe generated CTMC is the same for
both sets and ha¥ 768 states and 77 144 transitions. The CPU generation time was 4.26 s. In
this example we only experimented with GS, SOR and GMR. We givTable 8 the number of
iterations, CPU time in seconds apgd.;. The GMR method requires the least number of iterations.
For model parameters set a, SOR works much better than GSrddasing the number of iterations
by a factor approximately equal to 5. For these paramete® 8@performs GMR as well in
terms of CPU time. For set b, however, the improvement of SORpared to GS is small and
GMR outperforms SOR both in number of iterations and CPU tildete however that GMR has

a memory consumption significantly larger than that of SO&the latter could be preferred when
the model is very large.

In order to assess the efficiency of the proposed algorithntufing w in SOR, we will com-
pare the performance of the proposed SOR algorithm withmjom#uning ofw with that of SOR
with w set to its optimum valuey,.. The comparison will be made for example 2 with= 0.999
when the linear system to be solved is (4) (i.e. without theelsration technique) and example 5
for both model parameter sets. The optimum value of the adéitarxx parameter was found scanning
the interval[l, 2) for example 2 and0, 2) for example 5. We show in Figs. 4 and 5 the number
of iterations required by SOR with fixed as a function ofv. The optimum value of the relaxation

23



Table 8: Number of iterations (top), CPU time (s) (bottom}l émss probabilityp.ss for the fifth
example and fro model parameter sets a and b.

method
Set GS SOR GMR Ploss
a 1545 308 115 6.929 x 1074
(104) (24.9) (33.1)
b 1614 719 95 6.932 x 1074
(109) (57.9) (27.7)

100000

10000 -

iterations

1000 ¢

100 L L L L
1.0 1.2 14 1.6 1.8 2.0

Figure 4: Number of iterations required by SOR with fixedo achieve convergence solving the
linear system (4) for the second example with= 0.999 as a function ofv.

parameter for example 2 withh = 0.999 is 1.956. SOR withw fixed at this optimum value takes
779 iterations and 0.487 s while the proposed algorithmpgdmtw = 1.934 and took (see Ta-
ble 2) 1340 iterations and 1.13 s. Therefore, the propoggatiim performs satisfactorily for this
example. Note thah has a second minimum at = 1.856. Hence, this example also illustrates
how the proposed algorithm can perform well even iias more than one local minimum in the
interval wherey is estimated. The optimum values of the relaxation paranieteexample 5 are
1.610 and 1.461 for sets a and b, respectively. SOR wiiitted at those optimum values requires
96 iterations and 6.94 s for set a and 418 iterations and 2fi7 set b. The proposed algorithm
stopped atv = 1.600 and required (see Table 8) 308 iterations and 24.9 s for sed stapped at
w = 1.496 and required 719 iterations and 57.9 s for set b. Therefbeeptoposed algorithm also
performs reasonably well for example 5.
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Figure 5: Number of iterations required by SOR with fixedo achieve convergence to compute
Ploss TOr the fifth example for model parameter sets a and b as aifumet w.

5 Conclusions

In this paper we have proposed an efficient and robust atgorid dynamically tune the relaxation
parametetw of SOR. We also have given a sufficient condition for the G&tmislel method to con-
verge for the solution of the linear system which results mtine steady-state probability vector of
an irreducible CTMC has to be computed. The condition eneasgs the very common situation
in which the CTMC is generated from a given start state usiegtaf generation rules and states
are numbered increasingly as they are generated. We hagldet a variant, called GMR, of the
GMRES algorithm in which convergence is monitored basecherrelative difference of the com-
puted measure between successive iterates. Also, we hareasufficient condition on the initial
iteration vector for GMRES and GMR not to converge to theiatigolution 0 when solving the
linear system which arises when the steady-state protyabflian irreducible CTMC is computed.
We have analyzed and compared several iterative numeriedlaas in the context of CTMC de-
pendability and performability modeling. We have consgdithree classes of models: failure/repair
models with immediate detection of failed componentsyfairepair models with deterministic pre-
ventive test of spare components approximated by Erlarghiions, and models without special
structure including failure, repair and performance titgoss. Two measures have been considered:
the steady-state reward ratéSRR) and the mean cumulative reward to failubdRTF). The
measureéSSRR has been considered for all model classes and the meRBURSTF for the first
two classes, giving five scenarios. Experimental resule lshown that the method of choice is a
splitting-based method for four scenarios and either tuB@& or GMR for one scenario. In all five
scenarios the SOR method with the proposed algorithm tordigadly tunew clearly outperforms
the Gauss-Seidel method when this method does not work arell performs slightly worse than
GS in terms of CPU time when GS is so fast that no tuninguotan be done before achieving
convergence. The performance of GMR is reasonable for afiesstos. However, it takes signif-
icantly more memory than splitting-based methods. Both Giid SOR methods do not require
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any special structure on the CTMC being solved and both ghioeiloffered in a general purpose
dependability/performability modeling tool.

Appendix A

Here we give a formal description of the algorithm to dynaatijctune the relaxation parameter

in SOR. The algorithm assumes thghas stabilized to a value 1 for w = 1. The algorithm has
been implemented as an automaton with seven states. Thaatoto keeps and updates: (1) the
left, I, and right,r, limits of the interval where the optimum is searched for, (2) the step to the
right, 6., and the step to the lefi,;, for w, (3) a set of three relaxation parametess,w,, andw;,

w; < wp < wy for which 77 has stabilized to a value 1, as well as the corresponding estimates
of n, m, 7w anda,, (4) the last iteration vectox;,s:, for the lastw for which SOR did not diverge,
and (5) a list of values ab, W, for which 1 stabilized to a valuec 1, sorted from smaller to larger
7. Initially, I = 1 to solve (4), (7) or (8) and = 0 to solve (2),r = 2, 65 = ¢, = INI_DELTA,
wm = 1, 7y, IS set to the estimate of for w = 1, x5 IS the iteration vector which resulted from
estimatingy for w = 1, andW = {1}. The initial state is 1.

In each state except state 7 which implements the goldeiosesgarch method, the automa-
ton selects a new value for the relaxation parameigt,, using the proceduresic_ome(w, a),
anddec_ome(w, a). The procedurénc_ome(w, a) is called only ifa — w > ¢,. The procedure
returnsw + 8} if w + 6 < a; otherwise, it computes the minimum integer, for which w+
6.5 JFACT_DELTA™ < a, setsd = max{e,,d, /FACT_DELTA™} and returnsv + 6,}. The pro-
ceduredec_ome(w, a) is called only ifw — a > ¢,. The procedure returns — §; if w — o, > q;
otherwise, it computes the minimum integem, for which w—¢, /FACT_.DELTA™ > a, sets
0, = max{e,,0, /FACT_DELTA™} and returnsv — ¢,,. Next, iterations are performed to find
an estimatey,evw, of 1 for wyew-. Letx(® be the last iteration vector resulting from these iteration
If Tnew Stabilized to a values 1, wyey is added taV andx,g is set tox(?). If 7, did not stabilize,
but wpew < 1 (for w < 1 SOR is guaranteed to converge) or SOR was not found to diverge
is also set tax(). If n as a function ofv is found to violate the assumptions on monotonicity or
existence of a single local minimum, or the room to tunis exhausted, of,.., does not stabilize
but wye lies between two already explored valueswofor which 7 stabilized to a value< 1, or,
finally, mew > 1 beinguwyeyw < 1, the algorithm stops tuning and iterates until convergence or the
limit number of iterations is exhausted using the procedimish described below. Otherwise, the
automaton updates the 8-tudlg r, wy, M1, wm, Tm, Wr, 7} @nd enters a new state. The procedure
finishsimply performs SOR iterations using the values of the adlar parameter kept in begin-
ning with the first value (that with smalleg). During these iterations the progress||odl /) || is
monitored as it was done to estimatand if SOR is found to diverge for the current the relax-
ation parameter is changed into the next value kepViand the process continues. The fact that the
values ofw for which 77 stabilized to a value< 1 are kept makes the algorithm more reliable since
we have observed thgtmay stabilize to a value: 1 when indeed SOR diverges for that
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Table 9: State 1 of the automaton.

m
Description 77 has only stabilized to a value
Mm < 1for w, = 1. There is room on the
> right of wp, i.e.7 — wm > €,. Compute the
I I new value of the relaxation parametef,.,
I W = 1 r ASWpew = Inc_ome(wy,, r).
conditions next
Thnew Whnew — Wm  Wm — ! T — Wnew actions state
SNC or NS > €, T = Whew 1
SNC or NS <e, > €, T = Wnew, Wr = W, 2
ﬁr = ﬁm
SNC or NS <e, <e, finish
> T > €y Wr = Wnew, Tr = Thew 4
> Tm > €, < e, Wl = Wm, T = T, 6
Wm = Wnew, m = Tnew
> T < éw < e finish
< Nm > €y Wr = Wnew, Tk = Thew 3
< m > €y < e Wr = Wnew, Tk = Thew 5
< m < e < ey, finish

We give in Tables 9-15 a graphical description of each sththeoautomaton, the actions
taken (updates performed on the variables, wi, M, Wm, Tm, wr, @andn,, or invocation of the
procedurefinish) and, in the casdinish is not invoked, the next state chosen. For the purposes
of the descriptionSNC (stabilized and nonconvergent) stands s, Stabilized to a value> 1
andNS (nonstabilized) stands fof,.., not stabilized withind\/ = max{IT_ETA, it,,/FACT_ETA}
iterations (¢4 is the number of iterations required for the stabilizatién) éor «w = 1) or SOR was
detected to diverge fav,.,. FOr conciseness, the updatingxgf;; andW is not shown.
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Table 10: State 2 of the automaton.

i Description 77 has only stabilized to a value
7 < 1forw, = 1. There is no room on the
> €, <e, right of w, and there is room on the left, i.e.
| r—wy < ¢, andw, — [ > ¢,. Compute the
' new value of the relaxation parametef,.,
! wr =1 " aSwnew = dec_ome(wy, 1).
conditions next
Thew  Wr — Wnew  Wnew — | actions state
SNC finish
NS > €, | = wnew 2
NS < e, finish
> 1 > € Wm = Wnews Tm = Tnew 5
> < €, finish
<M > €y Wm = Wnews Mm = Tnew 4
<M > €y <ew W1 = Wnews T = Tnew: 6
Wm = Wry Tm = T
<M < e, < e, finish
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Table 11: State 3 of the automaton.

Thn Description 77 has stabilized to a value 1
Nr for two values ofw > 1, w,, andw;, wy <
- wy. The corresponding estimates of 7,
andn,,, satisfyn, < n,. There is room on
I | the right ofw,, i.e. r — w, > €,. Compute
I Wi, Wy r the new value of the relaxation parameter,
Whew @SWnew = inc_ome(wy, 7).
conditions next
Thew Whew — Wy Wy — Wm T — Wnew M actions state
SNC or NS > €, T = Wnew 3
SNC or NS < ey > €y, T = Whew 5
SNC or NS < ey < ey finish
>y > €, < Mm Wl = Wm, N = Tm, 7

Wm = Wry, Nlm = Ty

Wr = Wnew, Th = Thnew

>ﬁr < €y > €w <ﬁm wlzwmaﬁl:ﬁmv 7
Wm = Wr, ﬁm = 771"1

Wr = Wnew, Th = Thnew

> 1 < e, < e, < U finish

> 771" > €y = ﬁm 5

> T < e, = T finish

< > €, Wm = Wy, Tm = Ty 3
Wr = Wnew, T = Tnew

< > €, < ey W = Wry T = Trs 5
Wr = Wnew, T = Thew

< < e, < e, finish
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Table 12: State 4 of the automaton.

Mr Description 7 has stabilized to a value 1
Tim for two values ofw, w, andw;,, wy < wr,
wm < 1. The corresponding estimatesmf
7 7y andny,, satisfyn,, < .. There is room
I I on the left ofw,,, i.e. wy —1 > €,. Compute
I Win Wy r the new value of the relaxation parameter,
Whew, 8SWnew = dec_ome(wn, ).
conditions next
Thew Wm — Wnew Wr — Wm  Wnew — ! actions state
SNC finish
NS > €, | = Wnew 4
NS <e, > €, [ = Wnew, WI = Wm, 6
M = T, Wm = Wr,
T = T
NS < €, < €, finish
> Tm > €y W] = Wnews M = Tnew 7
> N < éw > €, Wl = Wnew, T = Tnew 7
> Tm < e, < e, finish
= m > €, Wr = Wi, T = T, 5
Wm = Wnew, Tm = Tnew
= TIm < e, finish
< Mm > €, Wr = Wm, T = Nm, 4
Wm = Wnew, Nm = Tnew
< Tm > €y < ey W1 = Wnews T = Tnew 6
< Mm < e, < e, finish
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Table 13: State 5 of the automaton.

Description 7 has stabilized to a value 1
for two values ofw, wy,, andw;, wy, > wp.

" 7 The corresponding estimates of 77,, and
7, satisfyn, < n,. There is room between
> €y wm andwy, i.e. w, — wy > €,. There is
I either no room on the right ab,, i.e. r —
wr < €, OF 1y, = 7, andn has been found
l wm wr to increase on the right of,. Compute the
new value of the relaxation parametefe.,,
aSWpew = dec_ome(wy, wy,).
conditions next
Thew Wy — Wnew  Wnew — Wm actions state
NSor >y, finish
< Nm and > 7, > €, Wm = Wnew; TTm = Thew O
< TN and >, < e, finish
<y > €, Wl = Wi, M = Tm, 7
Wm = Wnew, Tm = Tnew
<N < ey > €, Wl = Wm, N = NTm, 7
Wm = Wnew, Tm = Tnew
<N < ey < ey finish
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Table 14: State 6 of the automaton.

Description 77 has stabilized to a value 1
- for two values ofw, w; andwy,, w; < wn.
The corresponding estimates ¢f 7 and

< € > €, Thm, Satisfyn < 7. There is room between

| | w) andwy, but there is not room on the left of
| wy, I.e.wm —w) > €, andw; — 1 < ¢,. Com-

l I Wm T pute the new value of the relaxation param-
eter,wnew, 8SWnew = inc_ome(wy, wy)-
conditions next
Tnew Whew — W] Wm — Whew actions state
NSor >y, finish
<Tmand > > €y Wm = Wnews Mm = Tnew 6
<7 and > < e, finish
= > €w Wm = W1, Tm = 11, S
Wr = Wnew, T = Tnew
=1 < e, finish
<n > €, Wr = Wi, T = T, 7
Wm = Wnew, Tm = Tnew
<n < e, > €, Wr = Wi, T = Tm, 7
Wm = Wnew, Tm = Tnew
< < e, < € finish
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Table 15: State 7 of the automaton.

Description A minimum of n has been bracketed, i.e.
m 7 has stabilized to a value: 1 for three values ofy,
T M wl, wm andwy, w; < wy, < wy, and the corresponding
estimates ofy, n, nn andn,, satisfyny > n, < ;.
There is room betweew; andw,, or betweenwv,, and
| | Wr, L. Wy — w] > €, OFw, — wm > €,. Compute the
new value of the relaxation paramet@hew, aSwnew =
wm + (1 — R) X (wy — wm) If wy — wm > wm — wy
andwyew = w) + R X (wy — wy) otherwise, wheré? =
(v/5 — 1)/2 is the golden section.

Casew, — wm > wm — wi

conditions next
Tnew Whew — Wm  Wm — Wl Wr — Whew actions state
NSor >, finish
<n-and >y, > €y Wr = Wnew, Tk = Thew 7
< ﬁr and > ﬁm < ey > €y Wy = Whew; ﬁr = 77now 7
<n-and > ny < e, < e, finish
< Mm > €, Wl = Wm, M = Tm, 7
Wm = Wnew, Tm = Tnew
< Mm < e, > €, Wl = Wm, M = Tm, 7
W = Wnew, Tm = Thnew
< Mm < e, < e, finish
Casew, — wm < wm — wy
conditions next
Tnew Wm — Wnew Wr — Wm  Whew — W1 actions state
NSor >n finish
<mand > 7y > €y W] = Wnew, T = Tnew 7
<mand > 7y < e > € W] = Wnew, T = Tnew 7
<mand > Ny < e, < e, finish
< Mm > €, Wr = Wm, T = Tm, 7
Wm = Wnew, Tm = Tnew
< Mm < e, > €, Wr = Wm, Tr = Tm, 7
Wm = Wnew, Tm = Tnew
< Mm < e, < e, finish
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