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1 Introduction

Continuous-time Markov chains (CTMCs) are widely used for dependability and performability

modeling. For these models, several measures of interest can be computed from the solution of

a linear system of equations. Typically, such a system is sparse and may have many unknowns,

making iterative methods attractive for its solution.

Several currently available tools allow the specification and solution of dependability and per-

formability CTMC models. These are, among others, SAVE [12], SPNP [9], UltraSAN [10] and

SURF-2 [4]. For the solution of linear systems of equations SPNP uses Successive over-relaxation

(SOR) with dynamic tuning of the relaxation parameterω [8]. SAVE uses SOR for the computation

of the steady-state probability vector and SOR combined with an acceleration technique [15] for the

computation of mean time to failure (MTTF) like measures. UltraSAN offers a direct method with

techniques to reduce the degree of fill-in and SOR, beingω selected by the user. Finally, SURF-2

uses the conjugate gradient method (see, for instance, [24]).

Several papers have compared numerical methods for solvingthe linear systems of equations

which arise in CTMC models. In an early paper [13], performance models were considered and sev-

eral iterative methods were compared for the computation ofthe steady-state probability vector of

finite irreducible CTMCs. The methods included Gauss-Seidel (GS), SOR, block SOR, and Cheby-

shev acceleration with GS preconditioning. For SOR, an algorithm based on the theory ofp-cyclic

matrices [26] was used to select a value forω. In [25], failure/repair models were considered and

SOR with dynamic tuning ofω, also based on the theory ofp-cyclic matrices, was compared with

GS and the power methods, showing that SOR was considerably more efficient specially for the

linear systems arising inMTTF computations. In [19] a number of direct and iterative methods

were reviewed for CTMC performance models. Among others, two projection methods were con-

sidered: the Arnoldi’s method and the Generalized Minimal Residual (GMRES) method. In [11]

GMRES and two variants of the quasi-minimal residual algorithm were compared. In [14], direct

and splitting-based iterative methods were considered forsolving CTMC models arising in com-

munication systems and the authors suggested using the extrapolated Jacobi method and SOR with

suitable values forω in combination with some aggregation/disaggregation steps.

We consider two measures defined over rewarded CTMC models: the steady-state reward rate

(SSRR) and the mean cumulative reward to failure (MCRTF). We start by defining formally the

measures and establishing the linear systems which have to be solved. LetX = {X(t); t ≥ 0} be

a finite irreducible CTMC.X has state spaceΩ and infinitesimal generatorQ = (qi,j)i,j∈Ω (qi,j,

i 6= j is the transition rate fromi to j and−qi,i is the output rate fromi). Let ri, i ∈ Ω be a reward

rate structure defined overX. The steady-state reward rate is defined as

SSRR = lim
t→∞

E[rX(t)]

and can be computed as

SSRR =
∑

i∈Ω

riπi ,
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whereπππ = (πi)i∈Ω is the steady-state probability vector ofX. πππ is the positive normalized (‖πππ‖1 =
1) solution of

QTπππ = 0 , (1)

where matrixQT is singular, the superscriptT indicates transpose and0 is a null column vector of

appropriate dimension. In order to avoid divisions it is convenient to transform (1) into the linear

system

Pφφφ = 0 , (2)

whereP is the singular matrixQT[diag(Q)]−1, being[diag(Q)] the matrix with diagonal entries

equal toqii and null off-diagonal entries. The solution vectorπππ of (1) is related to the positive

normalized (‖φφφ‖1 = 1) solution vectorφφφ of (2) byπππ = [diag(Q)]−1φφφ/‖[diag(Q)]−1φφφ‖1. We note

thatP is an M-matrix [24].

The steady-state unavailability (UA) is a particular case of SSRR obtained by defining a reward

rate structureri = 0, i ∈ U , ri = 1, i ∈ D, whereU is the subset ofΩ including the up (operational)

states andD is the subset ofΩ including the down states.

To define the mean cumulative reward to failure, consider theCTMC XU with state space

U ∪ {a}, whereU includes all up states anda is an absorbing state, obtained by directing to state

a the transitions to states in which the system is failed, and assume that all states ofU are transient.

LetαααU be the initial probability distribution ofXU restricted toU and assume thatXU is initially

in U with probability 1, i.e.
∑

i∈U α
U
i = 1. Let ri, i ∈ U be a reward rate structure defined on the

transient states ofXU . Then, the mean cumulative reward to failure is defined as

MCRTF = E

[∫ T

0
rXU (t)t.

]
, T = min{t : XU (t) = a} ,

and can be computed as

MCRTF =
∑

i∈U

riτ
U
i ,

whereτττU = (τUi )i∈U is the mean times to absorption vector ofXU . τττU can be obtained (see, for

instance, [6]) by solving

QT
UU τττ

U = −αααU , (3)

whereQUU is the restriction of the infinitesimal generator ofXU to the subsetU and matrixQT
UU

is nonsingular. Again, it is convenient to transform (3) into the linear system

PUU ννν
U = −αααU , (4)

wherePUU is the nonsingular matrixQT
UU [diag(QUU )]

−1. The solution vectorτττU of (3) is related

to the solution vectorνννU of (4) byτττU = [diag(QUU )]
−1νννU andPUU is an M-matrix. TheMTTF

is obtained as a particular case ofMCRTF for the reward rate structureri = 1, i ∈ U .

The convergence of both GS and SOR may be extremely slow when they are used to solve

(4). In [15] an efficient technique is described which improves the convergence of such methods.

The technique consists in defining suitable subsetsS, T , U = S
⋃
T and then solving either|T | or
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|T |+1 linear systems depending on whether the initial probability distribution ofXU is concentrated

in a single state ofT or not, whose nonsingular matrix isQT
SS, whereQSS is the restriction of the

infinitesimal generator ofXU to S. Next, we briefly describe that technique in a pure algebraic

manner for the caseS = U − {1}, T = {1}, where without loss of generality we assume that state

1 is the state in which all components are unfailed. In that case the following two linear systems are

solved:

QT
SS τ̃ττ

′ = −β , (5)

QT
SS τ̃ττ

′′ = −ξ , (6)

whereβi = q1,i/q1,1, i ∈ S and ξi = q1,iα
U
1 /q1,1 + αS

i , i ∈ S. Then,τττ is computed asτττ =

h′′τττ ′/(1 − h′) + τττ ′′, with τττ ′ = (q−1
1,1, τ̃ττ

′T ), τττ ′′ = (αU
1 /q1,1, τ̃ττ

′′T ), h′ =
∑

i∈S τ̃
′
iqi,1, andh′′ =

∑
i∈S τ̃

′′
i qi,1. Again, it is convenient to transform (5) and (6) into the linear systems

PSS ν̃νν
′ = −β , (7)

PSS ν̃νν
′′ = −ξ , (8)

wherePSS is the nonsingular matrixQT
SS[diag(QSS)]

−1. The solution vector̃ννν ′ of (7) is related to

the solution vector̃τττ ′ of (5) by τττ ′ = [diag(QSS)]
−1ν̃νν′. Analogously, the solution vector̃ννν ′′ of (8)

is related to the solution vector̃τττ ′′ of (6) by τττ ′′ = [diag(QSS)]
−1ν̃νν ′′. Again, we note thatPSS is

an M-matrix. In the particular case in which state 1 ofX has initial probability equal to 1, only the

linear system (7) needs to be solved andτττ is computed asτττ = τττ ′/(1−h′) since in that caseαU
1 = 1,

αS
i = 0, i ∈ S and, therefore,τττ ′ = τττ ′′. As a final remark, note that sinceh′ can be very close to 1,

straight computation of1− h′ might result in severe cancellations. It can be shown, though, that

1− h′ =
∑

i∈Ω−U

(
q1,i
q1,1

+
∑

j∈S

τ ′jqj,i

)
,

so1− h′ can be computed safely using only additions of nonnegative numbers.

In [15] it is shown that GS usually converges much faster for both (7) and (8) than it does for

(4). We will use the technique in combination with GS, SOR andblock Gauss-Seidel (BGS). The

resulting methods will be called AGS, ASOR and ABGS, where the prefix “A” stands for accelerated.

In this paper we are concerned with numerical iterative methods to solve the linear systems (2),

(4), (7) and (8). Three classes of models will be considered.The first class include failure/repair

models like those which can be specified by the SAVE modeling language [12]. Basically, these

models correspond to fault-tolerant systems made up of components which fail and are repaired

with exponential distributions. There is a state in which all components are unfailed having only

outgoing failure transitions. The remaining states have atleast an outgoing repair transition. Note

that in this class of models the detection of the failure of a component is assumed to be immediate,

i.e. all failed components are immediately scheduled for repair. In the second class of models

which we will consider, failures of spare (inactive) components will be detected only when they are

tested. Test of spare components will be assumed to be performed periodically with deterministic

intertest time. To be able to use CTMCs to represent such systems the deterministic intertest time
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will be approximated by aK-Erlang distribution, withK large enough to obtain convergence in the

computed measure asK is incremented. The third class of models is quite wide and includes models

with failure, repair and performance transitions.

We will describe an efficient and robust algorithm to dynamically tuneω in SOR with the

objective of reducing the number of iterations required to achieve convergence. Moreover, we will

give a sufficient condition for GS to converge when solving (2) and a sufficient condition for GMRES

not to converge to the trivial solution0 when solving (2). The condition for GS encompasses the

very common situation in which the CTMC is generated from a given start state using a set of

generation rules and states are numbered increasingly as they are generated. Finally, we will analyze

and compare the splitting-based methods GS, SOR and BGS withits accelerated versions, and a

variant [23] of GMRES [22] which we will call GMR. The rest of the paper is organized as follows.

Section 2 describes the iterative methods and the algorithmto dynamically tuneω in SOR. Section 3

analyzes convergence issues. Section 4 presents examples and numerical results. Section 5 includes

the conclusions. Appendix A gives a formal description of the proposed algorithm to dynamically

tuneω in SOR.

2 Numerical methods

We are interested in solving a linear system of the form

Ax = b, (9)

whereA = P andb = 0 (2), A = PUU andb = −αααU (4), A = PSS andb = −β (7), or

A = PSS andb = −ξ (8). In the following we will letn be the dimension ofA. We next describe

iterative numerical methods which can be used to solve (9). We start by splitting-based methods and

next will consider a variant of GMRES.

2.1 Gauss-Seidel, SOR and block Gauss-Seidel

Splitting-based methods are based on the decomposition of the matrixA in the formA = M−N,

whereM is nonsingular. The iterative method is then

x(k+1) = Hx(k) +M−1b , (10)

wherex(k) is thek-th iterate forx andH = M−1N is the iteration matrix.

Both GS and SOR are easily derived by considering the decomposition A = D − E − F,

whereD = [diag(A)] and−E and−F are, respectively, the strict lower and upper part ofA. GS

is obtained by takingM = D−E andN = F. The iterative step of GS can then be described as

x(k+1) = (D−E)−1Fx(k) + (D−E)−1b ,
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or in terms of the elements ofA as

x
(k+1)
i =

1

ai,i

(
−

i−1∑

j=1

ai,jx
(k+1)
j −

n∑

j=i+1

ai,jx
(k)
j + bi

)
, i = 1, 2, . . . , n . (11)

SOR is obtained by takingM = (D− ωE)/ω andN = ((1− ω)D+ ωF)/ω. The iterative step of

SOR can then be described as

x(k+1) = (D− ωE)−1
(
(1− ω)D+ ωF

)
x(k) + (D− ωE)−1ωb ,

or in terms of the elements ofA as

x
(k+1)
i = ω xGS

i + (1− ω)x
(k)
i , i = 1, 2, . . . , n,

wherexGS
i is the right-hand side of (11).

BGS is the straightforward generalization of GS when matrixA, the right-hand side and the

solution vectors of (9) are partitioned inp blocks as follows:

A =




A1,1 . . . A1,p

...
. . .

...

Ap,1 . . . Ap,p


 , x =




x1

...

xp


 , b =




b1

...

bp


 .

The iterative step of BGS is:

x
(k+1)
i = A−1

i,i

(
−

i−1∑

j=1

Ai,jx
(k+1)
j −

p∑

j=i+1

Ai,jx
(k)
j + bi

)
, i = 1, 2, . . . , p . (12)

Hence, each iteration of BGS requires to solvep systems of linear equations of the formAi,ixi = zi.

Depending on the sizes and non-null structure of matricesAi,i, such systems may be solved using

either direct or iterative methods.

2.2 An algorithm for the tuning of ω in SOR

In this section we describe an algorithm for dynamically tuning the relaxation parameterω of SOR

with the objective of reducing the number of iterations required to achieve convergence.

The algorithm is based on estimations of the convergence factor η (spectral radius of the itera-

tion matrixH, ρ(H), whenA is nonsingular, largest modulus of the eigenvalues ofH different from

1, γ(H), whenA is singular) as well as on detecting when SOR diverges. Recall that a necessary

(and sufficient whenA is nonsingular) condition for SOR to converge is thatη < 1 [5].

After each iterationk for which the last two iterations have been performed with the same value

of ω, η is estimated as

η̃ =
‖x(k) − x(k−1)‖∞
‖x(k−1) − x(k−2)‖∞

.
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Stabilization ofη̃ is monitored and it is assumed to be stabilized when the relative difference in

1/| log η̃| between two consecutive iterations is smaller than or equalto a given tolerance TOLETA

three consecutive times. The rationale for using1/| log η̃| instead ofη̃ is that the number of iter-

ations required to achieve convergence is proportional to1/| log η|. The estimator ofη may take

many iterations to stabilize or simply not to stabilize at all (for instance, ifη corresponds to complex

conjugate eigenvalues ofH). In order not to waste iterations for values ofω for which SOR diverges

or η̃ does not stabilize because it corresponds to complex eigenvalues ofH, for anyω, exceptω = 1,

for which no limit is imposed, a maximum ofM = max{IT ETA, itgs/FACT ETA} iterations are

allocated for the stabilization of̃η, where itgs is the number of iterations required for the stabiliza-

tion of η̃ for ω = 1, IT ETAis an integer value> 1 which preventsM from being too small and

FACT ETA > 1.

We have found convenient to introduce a divergence test which is also applicable wheñη does

not stabilize. Lettol(j) = (|(x(j)i −x(j−1)
i )/x

(j)
i |)1≤i≤n. The divergence test is based on monitoring

the progress of‖tol(j)‖∞. Let i be the iteration index associated with the current value ofω (i.e. i

is set to 0 whenω is changed into a new value). Every ITTEST iterations performed with the same

ω the algorithm computes

∆k =
k×IT TEST∑

i=(k−1)×IT TEST+1

‖tol(i)‖∞ .

SOR is assumed to diverge and the iterations to estimateη for the currentω are stopped as soon as it

is found that
∑i

l=k×IT TEST+1‖tol(l)‖∞ > DIV FACT×∆k, k ≥ 1, i ≤ (k+1)× IT TEST, where

DIV FACT > 1. The divergence test is not used whenω ≤ 1, since in that case SOR is guaranteed

to converge (see Section 3.1).

The algorithm tries to find anω minimizingη in the interval(0, 2) for the linear system (2) and

in the interval[1, 2) for the linear systems (4), (7) and (8) (see Section 3.1 for a justification). For

the linear system (2), the algorithm gives priority to scanning to the right the interval[1, 2) because

after performing many numerical experiments we have found that typically the minimum ofη is in

that case on the right ofω = 1. The algorithm only considers values ofω for which η̃ stabilizes to

a value< 1 and it assumes thatη is either a monotone function ofω or has a single local minimum

in the subset of values ofω considered. If evidence is found thatη as a function ofω does not

satisfy any of those conditions, the tuning process is stopped and the method continues using the

best exploredω (see next for details).

The algorithm performs scans to the right and scans to the left in intervals ofω. Scans to

the right are performed at stepsδ+ω and scans to the left are performed at stepsδ−ω . Initially, both

δ+ω and δ−ω are set to a given constant INIDELTA, but they are divided, if necessary, by factors

FACT DELTA so that the scanning can continue within the interval for ω under exploration. The

algorithm is called with a limit number of iterations and exits with failure if such a limit is exhausted

and the linear system did not converge. The algorithm startsiterating withω = 1 until the estimate

for η, η̃gs, stabilizes to a value< 1. If η̃gs stabilizes to a value≥ 1, the algorithm reverts to Gauss-

Seidel. Next, while the estimate forη does not increase, the interval(1, 2) is scanned to the right.

If for a givenω it is found thatη̃ does not stabilize or the method does not converge, the rightlimit,
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r, of the search interval (initially,r = 2) is set to thatω and the scan continues to the right starting

from the lastω for which η̃ stabilized to a value< 1. The scan to the right of the interval(1, 2) is

stopped as soon as one of the following conditions holds:

(a) it is not possible to further reduceδ+ω without falling below the desired accuracy,ǫω, for the

location of the optimumω,

(b) η̃ is found to increase.

In case (a), two situations are possible:

(a.1) η̃ has only stabilized to a value< 1 for ω = 1,

(a.2) η̃ has already stabilized to a value< 1 for more than one value ofω; the last two values ofω

for which it has happened areωm andωr, ωm < ωr, and the corresponding estimates forη are

η̃m andη̃r, η̃m ≥ η̃r.

In case (a.1), the algorithm reverts to Gauss-Seidel if the linear system being solved is (4), (7) or

(8); otherwise, the search continues in the interval(0, 1) as will be explained later. In case (a.2), if

ωr − ωm > ǫω the algorithm scans to the left the interval(ωm, ωr) beginning atωr; otherwise, the

algorithm stops tuningω and continues using the best exploredω (i.e. the one corresponding to the

smallest̃η). Next, we discuss case (b). Three cases are possible depending again on for how many

values of the relaxation parameterη̃ has stabilized to a value< 1:

(b.1) η̃ has only stabilized to a value< 1 for two values ofω; the two values ofω for which it

has happened areω = 1 andωr, ωr > 1; the corresponding estimates forη are η̃gs and η̃r,

η̃r > η̃gs,

(b.2) η̃ has already stabilized to a value< 1 for more than two values ofω; the last three values ofω

for which it has happened areωl, ωm andωr, ωl < ωm < ωr, and the corresponding estimates

for η areη̃l, η̃m andη̃r, η̃l > η̃m < η̃r,

(b.3) as (b.2) but with̃ηl = η̃m.

In case (b.1), the search continues in the interval(0, 1) if the linear system being solved is (2). When

the linear system being solved is (4), (7) or (8), ifωr − 1 > ǫω the algorithm scans to the right the

interval (1, ωr) beginning at 1; otherwise, the algorithm reverts to Gauss-Seidel. In case (b.2), a

minimum ofη has been bracketed. Ifωm − ωl > ǫω or ωr − ωm > ǫω, the golden section search

method (see, for instance, [20]) is used in the interval(ωl, ωr) to find such a minimum; otherwise,

the algorithm stops tuningω and continues with the best exploredω. In case (b.3), ifωm − ωl > ǫω

the interval(ωl, ωm) is scanned to the left beginning atωm; otherwise, the algorithm stops tuningω

and continues with the best exploredω.
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To solve (2), the search in the interval(0, 1) is performed in a similar way. Whilẽη decreases,

the algorithm makes a scan to the left. If for a givenω it is found thatη̃ does not stabilize or the

method does not converge, the left limit,l, of the search interval (initially,l = 0) is set to thatω and

the scan continues to the left starting from the lastω for which η̃ stabilized to a value< 1. The scan

to the left of the interval(0, 1) is stopped as soon as one of the following conditions holds:

(c) δ−ω cannot be reduced without falling belowǫω,

(d) η̃ is found not to decrease.

In case (c), two cases are possible:

(c.1) η̃ has only stabilized to a value< 1 for ω = 1,

(c.2) η̃ has already stabilized to a value< 1 for more than one value ofω; the last two values ofω

for which it has happened areωl andωm, ωl < ωm, and the corresponding estimates forη are

η̃l andη̃m, η̃l < η̃m.

In case (c.1), the algorithm reverts to Gauss-Seidel. In case (c.2), ifωm − ωl > ǫω the algorithm

scans to the right the interval(ωl, ωm) beginning atωl; otherwise, the algorithm stops tuningω and

continues with the best exploredω. Finally, in case (d) three cases are possible:

(d.1) η̃ has only stabilized to a value< 1 for ω = 1 andωl < 1; the corresponding estimates forη

areη̃gs andη̃l, η̃l ≥ η̃gs,

(d.2) the same as (b.2),

(d.3) the same as (b.3).

In case (d.1), if1 − ωl > ǫω the algorithm scans to the left the interval(ωl, 1) beginning at 1;

otherwise, the algorithm reverts to Gauss-Seidel. Cases (d.2) and (d.3) are dealt with as cases (b.2)

and (b.3), respectively. The previous description of the algorithm for tuningω is rather informal. An

automaton-based formal description is given in Appendix A.

Selection of appropriate values for the parameters on whichthe algorithm to dynamically tune

ω depends is not trivial, being from our experience TOLETA, IT ETA and FACTETA the most

delicate ones. If TOLETA is chosen too large an erroneous estimate of the convergence factor may

result and the tuning process may become confused. If TOLETA is chosen too small and̃η takes

a large number of iterations to stabilize the algorithm may not explore all values ofω of interest.

Selection of values for ITETA and FACTETA also involves a tradeoff. If the resultingM is too

small, the algorithm may not explore all values ofω of interest. If the resultingM is too large,

iterations may be wasted for anω for which η̃ does not stabilize (if, for instance,η corresponds to

complex conjugate eigenvalues of the iteration matrix). After performing many experiments, we

have found ITETA = 150, FACT ETA = 2, TOL ETA = 0.001, ǫω = 0.001, INI DELTA = 0.1,

FACT DELTA = 10, IT TEST= 30, and DIV FACT = 1.5 to be appropriate choices.
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2.3 Generalized Minimal Residual

The GMRES method begins with an initial approximate solution x(0) and an initial residuer(0) =

b−Ax(0), and generates an approximate solution at stepj asx(j) = x(0) + z(j). The vectorz(j) is

the vector inKj which minimizes‖b−Ax(j)‖2 = ‖r(0) −Az(j)‖2, whereKj is thej-dimensional

Krylov subspace generated byA andr(0)

Kj = span{r(0), Ar(0), . . . ,Aj−1r(0)} .

The least-squares problem is solved in such a way that for each j the norm of the residue‖r(j)‖2
is available and convergence is achieved when‖r(j)‖2 ≤ δr, whereδr is a predefined small enough

value.

The memory and time requirements of GMRES grow asj increases because the method needs

thej vectorsr(0), Ar(0), . . . ,Aj−1r(0) to construct an orthonormal basis ofKj. Thus, in practice a

restartedversion, GMRES(k), is used: after everyk iterations (assuming convergence has not been

achieved) the algorithm is restarted, takingx(k) as the next initial solution guess for the next cycle

of k iterations. For details about GMRES and GMRES(k), see [22].

Convergence of GMRES is monotonic, i.e.‖r(j+1)‖2 ≤ ‖r(j)‖2. Furthermore, in exact arith-

metic it reaches the exact solution in at mostn steps ifA is nonsingular [22]. However, ifk is

not large enough, GMRES(k) can converge very slowly or evenstagnate, i.e. the reduction in the

residual norm after each step tends to zero and the algorithmdoes not reach the solution. The conver-

gence rate of the method typically increases withk but so does the memory and time requirements

per iteration. Thus, the issue of selecting an appropriate value fork arises. In [23] an adaptive

variant of GMRES(k) is proposed in whichk is enlarged or maintained depending on how fast the

residual norm decreases. The algorithm starts withk = k0. After each cycle, if the 2-norm of the

current residuer(j) is larger thanδr, an estimate of the number of iterations still needed to reach

convergence is computed using the residue at the beginning of the recently completed cycle,r(j−k),

asξ = k log(δr/‖r(j)‖2)/ log(‖r(j)‖2/‖r(j−k)‖2). Beingjmax the iterations limit andsv a small

number, the algorithm is assumed to benear-stagnatedif ξ ≥ sv × (jmax − j). In that case, ifk

has not reached yet its maximum valuekmax, k is incremented by some valuem and the cycle is

continued till complete the new numberk of iterations or achieve convergence. Ifk is not enlarged,

first the 2-norm ofr(j) is checked to be non greater than that ofr(j−k) (it could be greater due to

numerical instability of the method), aborting the procedure otherwise. Next, ifξ ≥ bv×(jmax−j),
wherebv is typically much larger thansv , stagnation is assumed and the whole algorithm aborted

because it is unlikely that the algorithm will achieve convergence within the remainingjmax − j

iterations. Notice that this last test subsumes the case in which the maximum number of iterations

jmax is reached. Our algorithm (GMR), which is described in Fig. 1, closely follows that of [23].

The main difference is that the Krylov subspace basis is orthonormalized using the modified Gram-

Schmidt method with double orthogonalization (MGO) [21] instead of the Householder reflection

procedure (HO). MGO performs as the modified Gram-Schmidt procedure (see, for instance, [24])

but the norm of the new basis vector,wl, which is being computed is monitored to reduce the impact

of cancellations: at each step,hi,l = wT
l vi andwl = wl − hi,lvi are computed; since‖vi‖2 = 1,
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s = ‖wl‖22 will be reduced byh2i,l. If h2i,l is greater than, say0.99 × s, cancellations might be

important and a second orthogonalization step is performed. HO is numerically more stable than

MGO but it is about twice as expensive as MGO when the number ofreorthogonalizations is small

[21, 23]. Also, MGO is known to be appropriate for most applications [21].

Preconditioning techniques can significantly speed up GMRES(k) [21, 23, 24]. We use right-

preconditioning with preconditionerG, i.e. we transform the original problem (9) into the new

one

AG−1u = b , u = Gx .

This implies that the vectorwl which the MGO procedure starts with in Fig. 1 is nowwl =

AG−1vl, and that the solution after each restart cycle,x, is computed asx = x + G−1Vly. We

use the symmetric Gauss-Seidel preconditioner:G = (D−E)D−1(D−F), whereD = [diag(A)]

and−E and−F are, respectively, the strict lower and upper part ofA. In practice, the matrixG−1

is not actually computed (this would be too expensive due to fill-in) and the requiredz2 = G−1z0

computations are carried out by solving first the lower triangular linear system(I−ED−1)z1 = z0

and then the upper triangular linear system(D − F)z2 = z1. Although there are more elaborate

preconditioners which usually work better [19], we have found that the improvement achieved by

symmetric Gauss-Seidel is enough. Moreover, it does not need any extra storage sinceG is “con-

tained” into the coefficient matrixA of (9).

The most critical parameters of our GMR algorithm arek0 and kmax. The larger they are,

the more likely the algorithm will achieve convergence within the maximum number of allowed

iterations. On the other hand, GMR requires as many extra arrays of sizen as the dimension of the

Krylov subspacek ∈ {k0, . . . , kmax} the algorithm chooses, so neitherk0 norkmax can be too large

if memory is a concern. After some experimentation we have foundk0 = 20, kmax = 30, m = 2,

sv = 0.005, andbv = 1 to be appropriate choices.

3 Convergence

3.1 Convergence results

First we analyze convergence for the splitting-based methods. A matrixC is said to be semiconver-

gent if limk→∞Ck exists. In particular,C is called convergent if that limit equals0. The splitting

A = M−N, M nonsingular, on which the iterative method defined by (10) isbased is semiconver-

gent ifH = M−1N is semiconvergent. If the linear system (9) is consistent, the iterative method

defined by (10) converges to a solution of (9) for eachx(0) if and only if the splitting from which

(10) has been derived is semiconvergent [5, Chapter 7, Lemma6.13]. Obviously, whenA is sin-

gular the solution obtained by the iterative method will depend onx(0). A necessary and sufficient

condition for the nonsingular matrixC to be convergent isρ(C) < 1, while in the singular caseC

is semiconvergent (see, for instance, [18]) if and only if: (1) ρ(C) ≤ 1, and, ifρ(C) = 1, then (2) 1

is an eigenvalue ofC andγ(C) < 1, and (3)C has only linear elementary divisors corresponding

11



setx, jmax, k0, kmax,m, δr, sv , bv ;
r = b−Ax; k = k0; j = 0;
while ‖r‖2 > δr do

rold = r;
v1 = r/‖r‖2;
for l = 1 until k do

A: j = j + 1;
wl = Avl;
s = ‖wl‖22;
for i = 1 until l do /* MGO algorithm */
hi,l = wT

l vi;
wl = wl − hi,lvi;
if h2i,l > 0.99s then /* second orthogonalization */
h′ = wT

l vi; hi,l = hi,l + h′; wl = wl − h′vi;
end if
s = s− h2i,l;

end for
hl+1,l = ‖wl‖2;
if hl+1,l = 0 then go to Belse vl+1 = wl/hl+1,l end if
update‖r‖2 as in [21];
if ‖r‖2 ≤ δr then go to Bend if

end for
ξ = k log

(
δr/‖r‖2

)
/ log

(
‖r‖2/‖rold‖2

)
;

if ξ ≥ sv(jmax − j) and k ≤ kmax −m then
k = k +m;
go to A;

end if
B: solveminy

∥∥‖r‖2 e1 −Hy
∥∥
2
, wheree1 = (1, 0, . . . , 0)T andH is

an(l + 1)× l matrix described in [21];
x = x+Vly, whereVl = [v1 . . .vl]; r = b−Ax;
if ‖r‖2 ≤ δr then exit else if ‖rold‖2 < ‖r‖2 then abortend if
ξ = k log

(
δr/‖r‖2

)
/ log

(
‖r‖2/‖rold‖2

)
;

if ξ ≥ bv(jmax − j) then abortend if
end while

Figure 1: Algorithm GMR.
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to the eigenvalue 1 (i.e. all the Jordan blocks associated with 1 in the Jordan canonical form ofC

have dimension 1).P is a singular M-matrix and bothPUU andPSS are nonsingular M-matrices

[24] having all them nonvanishing diagonal elements. We have the following well-known results:

1. The SOR method can only converge for the linear system (2) for 0 < ω < 2 [27, Ch. 4,

Theorem 1.2]. Moreover, the splitting on which SOR is based is semiconvergent for0 < ω <

1 [2, Corollary 3].

2. For the linear systems systems (4), (7) and (8) SOR can onlyconverge for0 < ω < 2 [5,

Ch. 7, Theorem 4.5]. The splittings from which GS and SOR with0 < ω ≤ 1 are derived

are convergent [24, Theorems 3.6, 3.7]. In addition,η is a nonincreasing function ofω in the

range0 < ω ≤ 1 [5, Ch. 7, Theorem 5.23]

Using the fact thatdet(HSOR) = (1 − ω)n, whereHSOR is the iteration matrix for the SOR

method andn is the dimension of the linear system being solved, it is justified in [27, Ch. 4, The-

orem 1.2] that SOR diverges for the singular system (2) ifω < 0 or ω > 2. Here, we discuss the

divergence of the method for the casesω = 0 andω = 2. The caseω = 0 is immediate since the

splitting which gives place to the SOR method is not defined. In the caseω = 2, |det(HSOR)| = 1,

which does not prevent 1 from being the only eigenvalue ofHSOR, thus fulfilling convergence con-

ditions (1) and (2). Note that ifHSOR has an unique eigenvalue, condition (2) states that the Jordan

canonical form ofHSOR must haven Jordan blocks. The number of Jordan blocks having the eigen-

valueλ in the Jordan canonical form of ann× n matrixC is equal todim(Ker(C− λI)) (see, for

instance, [1]), whereKer(C−λI) is the null space ofC−λI, and, trivially,dim(Ker(C−λI)) < n

unlessC − λI = 0. It is easy to verify that the (1, 1)-element ofHSOR − I is equal to−2 when

ω = 2. Therefore,HSOR−I 6= 0 and, then,dim(Ker(HSOR−I)) < n, implying that the canonical

Jordan form ofHSOR has at mostn − 1 Jordan blocks. Thus, condition (3) above is violated and

the SOR method diverges forω = 2.

LetHGS be the iteration matrix of GS. SinceP has “property c” [24, Theorem 3.16], it follows

[18, Theorem 5] thatHGS is semiconvergent if and only if 1 is the only eigenvalue ofHGS on

the unit circle, i.e.γ(HGS) < 1. The directed graphΓ(C) = (V,E) associated with then × n

matrix C = (ci,j)1≤i,j≤n is defined by the set of verticesV = {1, . . . , n} and the set of edges

E = {(i, j) ∈ V | ci,j 6= 0}. A sequence of vertices(i0, . . . , il−1, il) such that(ik, ik+1) ∈ E,

0 ≤ k < l is called a path. Ifil = i0 and i0, . . . , il−1 are distinct, the sequence is called a

cycle. A path(i0, . . . , il) is monotone increasing ifi0 < · · · < il and monotone decreasing if

i0 > · · · > il. Similarly, a cycle(i0, . . . , il−1, i0) is monotone increasing if the path(i0, . . . , il−1)

is monotone increasing and monotone decreasing if the path(i0, . . . , il−1) is monotone decreasing

[2]. A necessary and sufficient condition onΓ(P) = Γ(QT) for γ(HGS) to be< 1 is given in [2,

Theorem 1]. Unfortunately, the result requires the knowledge of all the cycles inΓ(P). Several,

more practical sufficient conditions onΓ(P) or Γ(Q) for γ(HGS) to be< 1 have been derived

[2, 17]. The result derived in [2, Corollary 1] states that ifΓ(P) has a monotone decreasing cycle,

then forward Gauss-Seidel1 converges for each initial guess. Letif be the highest index in the

1The method we have called Gauss-Seidel should be more properly called forward Gauss-Seidel.
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ordering of the states of the CTMC. The result proven in [17, Theorem 5.2] states that if for each

i0 ∈ V there exists a monotone increasing path(i0, . . . , if ), then forward Gauss-Seidel converges

for each initial guess. Next, we give another sufficient condition for Gauss-Seidel to converge for

each initial guess.

Theorem 1. LetQ be the infinitesimal generator of a finite and irreducible CTMC and letΓ(Q) =

(V,E) be the directed graph associated withQ. If the ordering of the states of the CTMC is such

that for any state with indexi > 1 there exists another state with indexj < i such that(j, i) ∈ E,

then forward Gauss-Seidel converges for the linear systemPφφφ = 0 for each initial guessφφφ(0).

Proof. Let i0 6= 1 be the index of any state such that(i0, 1) ∈ E. Because of irreducibility of

Q, some state with indexi0 exists. Leti1 < i0 be the index of some state such that(i1, i0) ∈ E.

By assumption, some state with indexi1 satisfying the condition exists.i1 may be 1 or have a

value> 1. If i1 = 1, we have finished. Ifi1 > 1, we can consider a state with indexi2 < i1

such that(i2, i1) ∈ E, which by assumption must exist. Iterating the reasoning itis clear that a

cycle (i0, 1, ik, . . . , i2, i1, i0), k ≥ 0 with il < il−1, 1 ≤ l ≤ k can be formed inΓ(Q). That

cycle becomes(i0, i1, i2, . . . , ik, 1, i0) in Γ(QT) and, sinceΓ(P) = Γ(QT), in Γ(P), which is

monotone decreasing. Then [2, Corollary 1], forward Gauss-Seidel converges to solvePφφφ = 0 for

eachφφφ(0).

The assumption on the ordering of the states of Theorem 1 is not very restrictive in practice,

since it encompasses the very common situation in which the CTMC is generated from a given start

state using a set of generation rules and states are numberedincreasingly as they are generated.

Two issues must be considered for the algorithm GMR: convergence and breakdown. As it

has been stated in Section 2.3, convergence of GMRES(k) can be very slow or even the algorithm

can stagnate and never reach the solution, and the same applies to our variant, GMR. Breakdown is

related to the least-squares problem which has to be solved at the end of each cycle. That problem

can be formulated as the minimization of the functional

J(y) = ‖r(0) −AVl y‖2 , (13)

whereVl = [v1 . . .vl] (see Fig. 1) contains an orthonormal basis ofKl. Breakdown occurs

when rank(AVl) < l and, consequently, (13) has not an unique solution. At some step l, GM-

RES (and GMR) can either (a) break down through rank deficiency of the least-squares problem

(rank(AVl) < rank(Vl)) without determining a solution, or (b) determine a solution without

breakdown and then break down at the next step through degeneracy ofKl+1 (rank(Vl+1) < l)

[7, Theorem 2.2]. MatricesPUU andPSS of the linear systems (4), (7) and (8) are nonsingular.

A = P of the linear system (2) is singular, the system is consistent because the CTMCX is finite

and irreducible, and, sinceindex(P) = 12 [24], Ker(P)
⋂

Im(P) = 0 (see, for instance, [11]).

Therefore, for the linear systems (2), (4), (7), and (8) onlycase (b) above is possible. Note that

2The index of a square matrixA is defined as the lowest nonnegative integerk such thatAk andAk+1 have the same

rank [5].

14



rank(Vl+1) < l is equivalent tovl+1 to be linearly dependent ofvi, i = 1, . . . , l, i.e. to have

hl,l+1 = 0 at stepl of GMR. Therefore, for the linear systems being considered the algorithm GMR

is safe in the sense that it can only break down ifhl,l+1 = 0 and in that case the solution reached is

exact.

We conclude this section with two remarks regarding the GMR algorithm. The first one has

to do with the initial approximationx(0) used. If the coefficient matrixA is nonsingular (4), (7),

(8), it does not matter which initial iteration vector is taken. However, ifindex(A) = 1 andb = 0

(2), x(0) must not belong toIm(A), since otherwise the iterates will converge to the trivial solution

x = 0 [11, Corollary 3.2]. The following theorem gives a criterium to choose an appropriatex(0).

Theorem 2. Let Q be the infinitesimal generator of a finite and irreducible CTMC and letP =

QT[diag(Q)]−1. A sufficient condition for the solution of the linear system(2) using GMRES or

GMR not to converge to the trivial solutionx = 0 is to take an initial iteration vectorx(0) with
∑n

i=1 x
(0)
i 6= 0.

Proof. Assume a vectorx ∈ Im(P). This implies the existence of a vectory such thatPy = x.

Since the rows ofQ add up 0, we have

n∑

i=1

xi =

n∑

i=1

n∑

j=1

pijyj =

n∑

j=1

yj

n∑

i=1

pij =

n∑

j=1

yj

n∑

i=1

qji
qjj

=

n∑

j=1

yj
1

qjj

n∑

i=1

qji = 0 .

Therefore,
∑

1≤i≤n x
(0)
i 6= 0 is a sufficient condition forx(0) 6∈ Im(P). Since (2) is consistent, this

implies [11, Corollary 3.2] that neither GMRES nor GMR converge to the trivial solution0.

Our last remark has to do with the preconditioner. If the system (9) is transformed into the new

one

L−1AU−1u = L−1b , x = U−1u ,

by means of a nonsingular preconditioner matrixG = LU, index(A) = 1 implies index(L−1

AU−1) = 1, so the above results still apply.

3.2 Test of convergence

As convergence test we require the relative variation on thecomputed measure (SSRR orMCRTF)

to be smaller than or equal to a specified toleranceǫ three consecutive times. The rationale for this

test is that it takes into account only “important” components of the solution vector and avoids false

convergence if the iteration vectors oscillate.

The convergence test described above is easily implementedfor the Gauss-Seidel, SOR and

block Gauss-Seidel methods. Implementation of the convergence test for GMR requires some dis-

cussion. The natural criterion for checking convergence inGMR is to use the 2-norm of the residue.

If x̃ is the computed solution of the linear system (9), whenA is nonsingular andb 6= 0 the 2-norm
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of the residuer = b − Ax̃ is related to the 2-norm of the error vector∆x = x̃ − x through the

condition number ofA, κ(A) = ‖A‖2‖A−1‖2, by

‖∆x‖2
‖x‖2

≤ κ(A)
‖r‖2
‖b‖2

.

WhenA is a singularn× n M-matrix of rankn− 1, as it isP [24], one possible bound for‖∆x‖2
is [3, Theorem 2.1]

‖∆x‖2 ≤ |ǫ|+
(
1 +

√
n
)
‖r‖2

σn−1
,

whereǫ = ‖∆x‖1−1 andσn−1 is the smallest positive singular value ofA. However, neitherκ(A)

nor σn−1 are known, so, in practice, from the knowledge of‖r‖2 we cannot estimate the accuracy

of the solution. Moreover, ifκ(A) or 1/σn−1 are large, the actual error can be large even though

‖r‖2 is small. Therefore, we proceed as follows. Givenǫ and a reduction factorǫr for the residual

norm, we run GMR withδr = ǫr‖r(0)‖2 until it reaches convergence. Then, three more iterations

are performed computing the explicit solution for each of them (i.e. withk0 = kmax = 1) and

we check the relative variation on the computed measure. If the convergence test is satisfied, the

algorithm finishes. Otherwise,ǫr is divided by a given factorf > 1 and adaptive GMR starts again

taking the last computed solution vector as initial iteration vector. We have foundǫr = ǫ andf = 10

to be appropriate choices.

4 Numerical results

In this section we compare the performance of the numerical methods described in Section 2 using

examples representing five scenarios:

1. solution of (2) for a model with failure and repair transitions and immediate detection of

component failures,

2. solution of (4) and (7) for a model with failure and repair transitions and immediate detection

of component failures,

3. solution of (2) for a model with failure and repair transitions andK-Erlang intertest time of

spare components,

4. solution of (4) and (7) for a model with failure and repair transitions andK-Erlang intertest

time of spare components,

5. solution of (2) for a model with failure, repair and performance transitions and immediate

detection of component failures.

For all methods, the relative tolerance for convergence is takenǫ = 10−8 and a maximum of

100 000 iterations is allowed. As initial guessx(0) we takex(0) = (1/n, . . . , 1/n) to solve (2) and

x(0) = (1, . . . , 1) to solve both (4) and (7). CPU times have been all measured on a128 MB, 167
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Figure 2: Distributed fault-tolerant database system.

MHz ULTRA 1 SPARC workstation. Main memory usage was in all cases smaller than the available

one.

The first example (corresponding to scenario 1) is the distributed fault-tolerant database system

depicted in Fig. 2. The system includes two processors, two controllers and three disk clusters,

each with four disks. When both processors are unfailed, oneof them is in the active state and the

other in the spare state. Similarly, when both controllers are unfailed, one of them is active and

the other spare. The system is operational if at least one processor, one controller and three disks

of each cluster are unfailed. Processors, controllers and disks fail with constant rates2 × 10−5,

2 × 10−4 and3 × 10−5, respectively. The dormancy factor for the spare units is0.2 (i.e. spare

components fail with rate 0.2 times the failure rate of active components). There are two failure

modes for processors: “soft” mode, which occurs with probability 0.8, and “hard” mode, which

occurs with probability 0.2. Soft failures are recovered byan operator restart, while hard failures

require hardware repair. Coverage is assumed perfect for all failures except those of the controllers,

for which the coverage probability isC. Uncovered controller failures are propagated to two failure-

free disks of a randomly chosen cluster. Processor restartsare performed by an unlimited number of

repairmen. Repairs of processors in hard failure mode, controllers and disks are performed by one

repairman who gives preemptive priority first to disks, nextto controllers and last to processors in

hard failure mode. Failed components with the same priorityare taken at random for repair. Repair

rates for processors in soft and hard failure mode are, respectively, 0.5 and 0.2. Controllers and

disks are repaired with rates 0.5 and 1, respectively. Components continue to fail when the system is

down. The measure of interest is the steady-state unavailability UA, a particular case of theSSRR

generic measure. The generated CTMC has25 250 states and19 290 transitions. Four values for

the coverage probability are considered:C = 0.9, 0.99, 0.999, and0.9999. For this example we

only experimented with GS, SOR and GMR. The CPU time requiredfor the generation of the model

was 0.242 s. We give in Table 1 the number of iterations, CPU time in seconds and UA for the

first example. The GS method is the fastest one. SOR requires the same number of iterations to

achieve convergence as GS because the convergence is so fastthat it is achieved before any tuning

onω can be done. The time per iteration for SOR is slightly greater than it is for GS. GMR requires

the smallest number of iterations but is the most expensive in time. This is because the number of

floating-point operations per iteration of GMR is substantially greater than the number of floating-
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Table 1: Number of iterations (top), CPU time in s (bottom) and UA for the first example and several

values of the coverage probabilityC.

method

C GS SOR GMR UA

0.9 20 20 10 4.054 × 10−5

(0.104) (0.116) (0.193)

0.99 19 19 12 4.461 × 10−6

(0.103) (0.121) (0.236)

0.999 19 19 14 8.537 × 10−7

(9.66 × 10−2) (0.122) (0.281)

0.9999 20 20 14 4.929 × 10−7

(0.109) (0.133) (0.287)

point operations per iteration of both GS and SOR.

The second example, corresponding to scenario 2, is identical to the first one except that the

number of disk clusters is increased to six. The measure of interest is theMTTF, a particular case

of theMCRTF measure. The state in which all components are unfailed has initial probability equal

to 1. The number of transient states of the CTMCXU is 384 and the number of transitions among

the states ofU is 2884. The generation time ofXU was5.82 × 10−2 s. We consider the numerical

methods GS, SOR, GMR, AGS, and ASOR. We give in Table 2 the number of iterations, CPU

time in seconds andMTTF for the second example. We consider the same values for the coverage

probabilityC as we did for the first example. If the acceleration techniquedescribed in Section 1 is

not used, the GMR method requires by far the smaller CPU time.Also, its performance is almost

independent of the coverage probability. The GS and SOR methods do not perform satisfactorily, as

it was expected [15]. Notice that the largerC, the greater the number of iterations required by GS

and SOR. This is because the rate associated to the uncoveredfailures of the controllers approaches

zero and system failure becomes a rarer event. The behavior is in accordance with the theory given

in [15]. SOR performs substantially better than GS, and its performance does not degrade so sharply

asC increases. When the acceleration technique is used, the AGSmethod is the fastest. Both AGS

and ASOR appear to be insensitive to the value of the coverageparameterC. ASOR requires the

same number of iterations than AGS because the convergence is so fast that ASOR has not left the

valueω = 1. However, ASOR is slightly slower than AGS because each iteration step of SOR is

slightly more expensive than each iteration step of GS.

The system considered in the third example, corresponding to scenario 3, is exactly the same

as the system of the first example, with the only difference that failures in spare processors and

controllers are not immediately detected. These components are tested with deterministic intertest

time T approximated by aK-Erlang distribution with expected valueT andK large enough to

make the approximation error small. The measure of interestis UA, a particular case ofSSRR. It
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Table 2: Number of iterations (top) and CPU time in s (bottom)for the second example and several

values of the coverage probabilityC.

method

C GS SOR GMR AGS ASOR 4.964 × 104

0.9 804 153 8 13 13

(0.488) (0.132) (1.95 × 10−2) (8.26 × 10−3) (1.16 × 10−2)

0.99 4743 385 8 13 13 4.629 × 105

(2.88) (0.330) (2.02 × 10−2) (8.41 × 10−3) (1.16 × 10−2)

0.999 28 163 1340 8 13 13 2.763 × 106

(17.1) (1.13) (2.04 × 10−2) (8.21 × 10−3) (1.16 × 10−2)

0.9999 52 694 3905 9 13 13 5.492 × 106

(32.1) (3.18) (2.22 × 10−2) (8.24 × 10−3) (1.16 × 10−2)

Table 3: Number of required Erlang stagesK, number of states, number of transitions and CPU

generation time (s) for the third example,C = 0.99 and several values of the intertest timeT .

T 100 10 1 0.1 0.01

K 25 9 6 3 3

states 100 000 36 000 24 000 12 000 12 000

transitions 1 048 050 377 298 251 532 125 766 125,766

generation time 16.9 5.70 3.73 1.80 1.79

is clear that the greaterT is, the greater UA is. Intuitively, the fact that failed spare components

are not immediately scheduled for repair “increases” the repair time of these components and so

increases UA. We consider the following five values forT : 100, 10, 1, 0.1, and 0.01. For the sake

of conciseness, we only give results for a coverage probability C equal to0.99. The value ofK is

chosen as the minimum value which makes the relative difference between UA forK andK − 1

smaller than or equal to5× 10−4. We show in Table 3 the number of required Erlang stagesK, the

number of states and transitions of the CTMCX, and the CPU generation time in seconds for each

value ofT .

The state descriptions of the third example have a componentµ, 1 ≤ µ ≤ K used to indicate

the phase of theK-Erlang distribution. For BGS, the blocks are chosen to include all states which

only differ in the value of the state variableµ. In addition, states within each block are sorted

following increasing values ofµ (from 1 toK). With that ordering, the diagonal matricesAii of
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BGS have the form



qm,m 0 . . . 0 qn,m

qm,m+1 qm+1,m+1 0 . . . 0

qm+1,m+2 qm+2,m+2 . . . 0

. . .

0 . . . qn−2,n−1 qn−1,n−1 0

0 . . . 0 qn−1,n qn,n




.

Taking advantage of this form, we solve efficiently the linear systems (12) of BGS using Gaussian

elimination with fill-in only in the last column.

The iterative methods considered for the third example are GS, SOR, BGS and GMR. We show

in Table 4 the number of iterations, CPU time in seconds and UAfor the third example. Notice first

that asT becomes smaller UA tends to the value corresponding to instantaneous detection of failed

spare components (4.461× 10−6). The performance of the numerical methods is affected byT . For

large values ofT , the GS method performs very well, but its performance degrades quickly asT

decreases. The same type of comments can be made for the SOR algorithm. Note, however, that as

the number of iterations required by GS increases, the relative reduction in the number of iterations

achieved by SOR is greater. This indicates that the algorithm used for selecting the relaxation

parameterω is efficient. BGS is the method which requires fewer iterations. ForT = 100 it requires

significantly more CPU time than GS and SOR. This is due to the time required to sort the states as

explained before. ForT = 10, BGS is slightly slower than GS and SOR, and for lower values of

T it should be clearly considered as the method of choice. Overall, BGS seems to be the method

of choice for scenario 3. GMR performs significantly worse interms of CPU time than BGS and,

for T ≥ 0.1, than GS and SOR. However, it is clearly faster than SOR or GS for T = 0.01. It can

be observed that for GMR the number of required iterations decreases fromT = 0.1 to T = 0.01,

which is in contrast with the behavior observed for greater values ofT . We analyzed the behavior

of GMR in these two cases and found the following explanation. ForT = 0.1 the problem is less

harder than forT = 0.01 and GMR is happy with a smaller value ofk (k = 22 for T = 0.1; k = 28

for T = 0.01). This smaller value ofk makes the convergence slower in the long term.

The fourth example, corresponding to scenario 4, is identical to the second one but now failures

of spare components are detected only where they are tested.The test of spare components is

performed periodically with deterministic intertest timeT , approximated by aK-Erlang distribution

withK large enough. The measure of interest is theMTTF, a particular case ofMCRTF. The state

in which all components are unfailed has initial probability equal to 1. We consider the same values

for C andT as we did for the third example. Once again,K is chosen as the minimum value for

which the relative variation in theMTTF computed withK andK − 1 is≤ 5× 10−4. We show in

Table 5 the requiredK, the number of transient states ofXU , the number of transitions of the chain

XU within the subsetU , and the CPU generation time in seconds for several values ofT .

For this fourth example we consider the methods GS, SOR, BGS,AGS, ASOR, ABGS, and

GMR. Diagonal blocks for BGS and ABGS are chosen and the states within each block sorted as in

the previous example. We show in Table 6 the number of iterations, CPU time in seconds required
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Table 4: Number of iterations (top), CPU time (s) (bottom) and UA for the third example,C = 0.99

and several values of the intertest timeT .

method

T GS SOR BGS GMR UA

100 21 21 10 25 6.129 × 10−6

(9.42) (9.46) (15.6) (39.0)

10 31 31 11 36 4.641 × 10−6

(4.81) (4.83) (4.92) (18.8)

1 162 114 12 100 4.480 × 10−6

(15.6) (11.5) (3.15) (30.8)

0.1 1391 651 12 237 4.463 × 10−6

(64.0) (32.4) (1.43) (33.7)

0.01 12 632 2254 12 207 4.461 × 10−6

(584) (109) (1.45) (30.2)

Table 5: Number of required Erlang stagesK, number of transient states ofXU , number of tran-

sitions ofXU within U , and CPU generation time (s) for the fourth example withC = 0.99 and

several values of the intertest timeT .

T 100 10 1 0.1 0.01

K 20 7 3 3 3

states 19 200 6720 2880 2880 2880

transitions 166 540 58 289 24 981 24 981 24 981

generation time 3.75 1.27 0.528 0.528 0.541
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Table 6: Number of iterations (top), CPU time (s) (bottom) and MTTF for the fourth example,

C = 0.99 and several values of the intertest timeT (an asterisk denotes that the method was unable

to converge within 100,000 iterations).

method

T GS SOR BGS AGS ASOR ABGS GMR MTTF

100 47 267 1623 4896 21 22 12 16 3.882 × 105

(2.60 × 103) (106) (733) (1.26) (1.43) (2.93) (3.31)

10 * 10 976 5614 25 28 10 19 4.533 × 105

* (243) (179) (0.504) (0.633) (0.653) (1.27)

1 * * 5629 133 84 10 53 4.618 × 105

* * (58.2) (0.879) (0.679) (0.273) (1.15)

0.1 * * 5572 1092 490 11 87 4.628 × 105

* * (57.7) (7.11) (3.90) (0.248) (1.93)

0.01 * * 5563 9,41 2307 12 127 4.629 × 105

* * (57.9) (62.7) (17.9) (0.267) (3.45)

by each method andMTTF. GS performs badly. It is able to reach convergence within100 000

iterations only forT = 100. SOR also fails for values ofT smaller than 10, but significantly out-

performs GS. The BGS algorithm does not perform very well. Inall cases it reaches convergence

but the number of iterations and CPU time are large. AGS and ASOR perform well for large and

moderate values ofT , but they degrade sharply whenT decreases. Note that while ASOR is faster

than AGS for medium and small values ofT , it requires a few more iterations forT ≥ 10. We ana-

lyzed the behavior of ASOR in these two cases and found the following explanation. Theω tuning

algorithm changesω to 1.1 when the algorithm has almost reached convergence with ω = 1. This

is a sensible decision sincẽη(1.1) < η̃(1) but the change inω produces a “transient” perturbation

in the progress of the measure which finally results in a number of iterations slightly greater. ABGS

is the best of the seven methods in number of iterations. It isonly slightly outperformed in terms of

CPU time by AGS and ASOR forT ≥ 10. As for example 3, the reason for the behavior for these

values ofT is the time consumed in sorting the states. If a single methodwere to be chosen, ABGS

would be the reasonable choice. GMR, though being slower than ABGS, performs reasonably well

and its performance degrades less asT becomes smaller than any other method except ABGS.

The fifth example, corresponding to scenario 5, is the queuing system depicted in Fig. 3. The

system, which has been adapted from [16], consists of 3 identical servers with associated finite

queues of lengthC being fed by tasks which arrive following a Poisson process with arrival rate

θ. Service time is exponential with average valueψ−1. Servers (but not queues) are subjected to

exponentially distributed failures and repairs with ratesλ andµ, respectively. A scheduler routes

arriving tasks to servers following the join-the-shortest-queue routing algorithm. To simplify the

model, we assume that if a server breaks down, the customer being served is kept in the queue and
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scheduler S2

S1

S3

Figure 3: Example queuing system.

Table 7: Sets of model parameter values considered for the fifth example.

Set a b

C 15 15

θ 1.60 160

ψ 0.60 60

λ 1× 10−4 1× 10−4

µ 60 12

its service is resumed after the server has been repaired. The measure of interest is the probability

of a customer being rejected,ploss, which can be computed as the probability of the system being

in the states in which all queues are full and, therefore, is aparticular case of the genericSSRR

measure. We use the two sets of model parameter values given in Table 7. Since the number of

states and transitions depends only on the queue lengthC, the generated CTMC is the same for

both sets and has32 768 states and177 144 transitions. The CPU generation time was 4.26 s. In

this example we only experimented with GS, SOR and GMR. We give in Table 8 the number of

iterations, CPU time in seconds andploss. The GMR method requires the least number of iterations.

For model parameters set a, SOR works much better than GS does, reducing the number of iterations

by a factor approximately equal to 5. For these parameters SOR outperforms GMR as well in

terms of CPU time. For set b, however, the improvement of SOR compared to GS is small and

GMR outperforms SOR both in number of iterations and CPU time. Note however that GMR has

a memory consumption significantly larger than that of SOR and the latter could be preferred when

the model is very large.

In order to assess the efficiency of the proposed algorithm for tuningω in SOR, we will com-

pare the performance of the proposed SOR algorithm with dynamic tuning ofω with that of SOR

with ω set to its optimum value,ωopt. The comparison will be made for example 2 withC = 0.999

when the linear system to be solved is (4) (i.e. without the acceleration technique) and example 5

for both model parameter sets. The optimum value of the relaxation parameter was found scanning

the interval[1, 2) for example 2 and(0, 2) for example 5. We show in Figs. 4 and 5 the number

of iterations required by SOR with fixedω as a function ofω. The optimum value of the relaxation
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Table 8: Number of iterations (top), CPU time (s) (bottom) and loss probabilityploss for the fifth

example and fro model parameter sets a and b.

method

Set GS SOR GMR ploss

a 1545 308 115 6.929 × 10−4

(104) (24.9) (33.1)

b 1614 719 95 6.932 × 10−4

(109) (57.9) (27.7)

100

1000

10000

100000

1.0 1.2 1.4 1.6 1.8 2.0

ite
ra

tio
ns

ω

Figure 4: Number of iterations required by SOR with fixedω to achieve convergence solving the

linear system (4) for the second example withC = 0.999 as a function ofω.

parameter for example 2 withC = 0.999 is 1.956. SOR withω fixed at this optimum value takes

779 iterations and 0.487 s while the proposed algorithm stopped atω = 1.934 and took (see Ta-

ble 2) 1340 iterations and 1.13 s. Therefore, the proposed algorithm performs satisfactorily for this

example. Note thatη has a second minimum atω = 1.856. Hence, this example also illustrates

how the proposed algorithm can perform well even ifη has more than one local minimum in the

interval whereη is estimated. The optimum values of the relaxation parameter for example 5 are

1.610 and 1.461 for sets a and b, respectively. SOR withω fixed at those optimum values requires

96 iterations and 6.94 s for set a and 418 iterations and 29.7 sfor set b. The proposed algorithm

stopped atω = 1.600 and required (see Table 8) 308 iterations and 24.9 s for set a and stopped at

ω = 1.496 and required 719 iterations and 57.9 s for set b. Therefore, the proposed algorithm also

performs reasonably well for example 5.
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Figure 5: Number of iterations required by SOR with fixedω to achieve convergence to compute

ploss for the fifth example for model parameter sets a and b as a function of ω.

5 Conclusions

In this paper we have proposed an efficient and robust algorithm to dynamically tune the relaxation

parameterω of SOR. We also have given a sufficient condition for the Gauss-Seidel method to con-

verge for the solution of the linear system which results when the steady-state probability vector of

an irreducible CTMC has to be computed. The condition encompasses the very common situation

in which the CTMC is generated from a given start state using aset of generation rules and states

are numbered increasingly as they are generated. We have developed a variant, called GMR, of the

GMRES algorithm in which convergence is monitored based on the relative difference of the com-

puted measure between successive iterates. Also, we have given a sufficient condition on the initial

iteration vector for GMRES and GMR not to converge to the trivial solution0 when solving the

linear system which arises when the steady-state probability of an irreducible CTMC is computed.

We have analyzed and compared several iterative numerical methods in the context of CTMC de-

pendability and performability modeling. We have considered three classes of models: failure/repair

models with immediate detection of failed components, failure/repair models with deterministic pre-

ventive test of spare components approximated by Erlang distributions, and models without special

structure including failure, repair and performance transitions. Two measures have been considered:

the steady-state reward rate (SSRR) and the mean cumulative reward to failure (MCRTF). The

measureSSRR has been considered for all model classes and the measureMCRTF for the first

two classes, giving five scenarios. Experimental results have shown that the method of choice is a

splitting-based method for four scenarios and either tunedSOR or GMR for one scenario. In all five

scenarios the SOR method with the proposed algorithm to dynamically tuneω clearly outperforms

the Gauss-Seidel method when this method does not work well,and performs slightly worse than

GS in terms of CPU time when GS is so fast that no tuning onω can be done before achieving

convergence. The performance of GMR is reasonable for all scenarios. However, it takes signif-

icantly more memory than splitting-based methods. Both GMRand SOR methods do not require
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any special structure on the CTMC being solved and both should be offered in a general purpose

dependability/performability modeling tool.

Appendix A

Here we give a formal description of the algorithm to dynamically tune the relaxation parameterω

in SOR. The algorithm assumes thatη̃ has stabilized to a value< 1 for ω = 1. The algorithm has

been implemented as an automaton with seven states. The automaton keeps and updates: (1) the

left, l, and right,r, limits of the interval where the optimumω is searched for, (2) the step to the

right, δ+ω , and the step to the left,δ−ω , for ω, (3) a set of three relaxation parameters,ωl, ωm andωr,

ωl < ωm < ωr for which η̃ has stabilized to a value< 1, as well as the corresponding estimates

of η, η̃l, η̃m andη̃r, (4) the last iteration vector,xlast, for the lastω for which SOR did not diverge,

and (5) a list of values ofω, W, for which η̃ stabilized to a value< 1, sorted from smaller to larger

η̃. Initially, l = 1 to solve (4), (7) or (8) andl = 0 to solve (2),r = 2, δ+ω = δ−ω = INI DELTA,

ωm = 1, η̃m is set to the estimate ofη for ω = 1, xlast is the iteration vector which resulted from

estimatingη for ω = 1, andW = {1}. The initial state is 1.

In each state except state 7 which implements the golden section search method, the automa-

ton selects a new value for the relaxation parameter,ωnew, using the proceduresinc ome(ω, a),

anddec ome(ω, a). The procedureinc ome(ω, a) is called only ifa − ω > ǫω. The procedure

returnsω + δ+ω if ω + δ+ω < a; otherwise, it computes the minimum integer,m, for which ω+

δ+ω /FACT DELTAm < a, setsδ+ω = max{ǫω, δ+ω /FACT DELTAm} and returnsω + δ+ω . The pro-

ceduredec ome(ω, a) is called only ifω − a > ǫω. The procedure returnsω − δ−ω if ω − δ−ω > a;

otherwise, it computes the minimum integer,m, for which ω−δ−ω /FACT DELTAm > a, sets

δ−ω = max{ǫω, δ−ω /FACT DELTAm} and returnsω − δ−ω . Next, iterations are performed to find

an estimate,̃ηnew, of η for ωnew. Letx(i) be the last iteration vector resulting from these iterations.

If η̃new stabilized to a value< 1, ωnew is added toW andxlast is set tox(i). If η̃new did not stabilize,

but ωnew ≤ 1 (for ω ≤ 1 SOR is guaranteed to converge) or SOR was not found to diverge, xlast

is also set tox(i). If η as a function ofω is found to violate the assumptions on monotonicity or

existence of a single local minimum, or the room to tuneω is exhausted, or̃ηnew does not stabilize

but ωnew lies between two already explored values ofω for which η̃ stabilized to a value< 1, or,

finally, η̃new ≥ 1 beingωnew < 1, the algorithm stops tuningω and iterates until convergence or the

limit number of iterations is exhausted using the procedurefinish described below. Otherwise, the

automaton updates the 8-tuple{l, r, ωl, η̃l, ωm, η̃m, ωr, η̃r} and enters a new state. The procedure

finishsimply performs SOR iterations using the values of the relaxation parameter kept inW begin-

ning with the first value (that with smallest̃η). During these iterations the progress of‖tol(j)‖∞ is

monitored as it was done to estimateη and if SOR is found to diverge for the currentω, the relax-

ation parameter is changed into the next value kept inW and the process continues. The fact that the

values ofω for which η̃ stabilized to a value< 1 are kept makes the algorithm more reliable since

we have observed that̃η may stabilize to a value< 1 when indeed SOR diverges for thatω.
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Table 9: State 1 of the automaton.

l r

η̃m

> ǫω

ωm = 1

Description: η̃ has only stabilized to a value

η̃m < 1 for ωm = 1. There is room on the

right of ωm, i.e. r − ωm > ǫω. Compute the

new value of the relaxation parameter,ωnew,

asωnew = inc ome(ωm, r).

conditions next

η̃new ωnew − ωm ωm − l r − ωnew actions state

SNC orNS > ǫω r = ωnew 1

SNC orNS ≤ ǫω > ǫω r = ωnew, ωr = ωm, 2

η̃r = η̃m

SNC orNS ≤ ǫω ≤ ǫω finish

> η̃m > ǫω ωr = ωnew, η̃r = η̃new 4

> η̃m > ǫω ≤ ǫω ωl = ωm, η̃l = η̃m, 6

ωm = ωnew, η̃m = η̃new

> η̃m ≤ ǫω ≤ ǫω finish

≤ η̃m > ǫω ωr = ωnew, η̃r = η̃new 3

≤ η̃m > ǫω ≤ ǫω ωr = ωnew, η̃r = η̃new 5

≤ η̃m ≤ ǫω ≤ ǫω finish

We give in Tables 9–15 a graphical description of each state of the automaton, the actions

taken (updates performed on the variablesl, r, ωl, η̃l, ωm, η̃m, ωr, and η̃r, or invocation of the

procedurefinish) and, in the casefinish is not invoked, the next state chosen. For the purposes

of the description,SNC (stabilized and nonconvergent) stands forη̃new stabilized to a value≥ 1

andNS (nonstabilized) stands for̃ηnew not stabilized withinM = max{IT ETA, itgs/FACT ETA}
iterations (itgs is the number of iterations required for the stabilization of η̃ for ω = 1) or SOR was

detected to diverge forωnew. For conciseness, the updating ofxlast andW is not shown.
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Table 10: State 2 of the automaton.

l r

η̃r

≤ ǫω> ǫω

ωr = 1

Description: η̃ has only stabilized to a value

η̃r < 1 for ωr = 1. There is no room on the

right of ωr and there is room on the left, i.e.

r − ωr ≤ ǫω andωr − l > ǫω. Compute the

new value of the relaxation parameter,ωnew,

asωnew = dec ome(ωr, l).

conditions next

η̃new ωr − ωnew ωnew − l actions state

SNC finish

NS > ǫω l = ωnew 2

NS ≤ ǫω finish

≥ η̃r > ǫω ωm = ωnew, η̃m = η̃new 5

≥ η̃r ≤ ǫω finish

< η̃r > ǫω ωm = ωnew, η̃m = η̃new 4

< η̃r > ǫω ≤ ǫω ωl = ωnew, η̃l = η̃new, 6

ωm = ωr, η̃m = η̃r

< η̃r ≤ ǫω ≤ ǫω finish
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Table 11: State 3 of the automaton.

l r

η̃m

η̃r

ωrωm

> ǫω

Description: η̃ has stabilized to a value< 1

for two values ofω ≥ 1, ωm andωr, ωm <

ωr. The corresponding estimates ofη, η̃r
and η̃m, satisfyη̃r ≤ η̃m. There is room on

the right ofωr, i.e. r − ωr > ǫω. Compute

the new value of the relaxation parameter,

ωnew, asωnew = inc ome(ωr, r).

conditions next

η̃new ωnew − ωr ωr − ωm r − ωnew η̃r actions state

SNC orNS > ǫω r = ωnew 3

SNC orNS ≤ ǫω > ǫω r = ωnew 5

SNC orNS ≤ ǫω ≤ ǫω finish

> η̃r > ǫω < η̃m ωl = ωm, η̃l = η̃m, 7

ωm = ωr, η̃m = η̃r,

ωr = ωnew, η̃r = η̃new

> η̃r ≤ ǫω > ǫω < η̃m ωl = ωm, η̃l = η̃m, 7

ωm = ωr, η̃m = η̃r,

ωr = ωnew, η̃r = η̃new

> η̃r ≤ ǫω ≤ ǫω < η̃m finish

> η̃r > ǫω = η̃m 5

> η̃r ≤ ǫω = η̃m finish

≤ η̃r > ǫω ωm = ωr, η̃m = η̃r, 3

ωr = ωnew, η̃r = η̃new

≤ η̃r > ǫω ≤ ǫω ωm = ωr, η̃m = η̃r, 5

ωr = ωnew, η̃r = η̃new

≤ η̃r ≤ ǫω ≤ ǫω finish
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Table 12: State 4 of the automaton.

l r

η̃m

> ǫω

η̃r

ωm ωr

Description: η̃ has stabilized to a value< 1

for two values ofω, ωm andωr, ωm < ωr,

ωm ≤ 1. The corresponding estimates ofη,

η̃r and η̃m, satisfyη̃m < η̃r. There is room

on the left ofωm, i.e.ωm−l > ǫω. Compute

the new value of the relaxation parameter,

ωnew, asωnew = dec ome(ωm, l).

conditions next

η̃new ωm − ωnew ωr − ωm ωnew − l actions state

SNC finish

NS > ǫω l = ωnew 4

NS ≤ ǫω > ǫω l = ωnew, ωl = ωm, 6

η̃l = η̃m, ωm = ωr,

η̃m = η̃r

NS ≤ ǫω ≤ ǫω finish

> η̃m > ǫω ωl = ωnew, η̃l = η̃new 7

> η̃m ≤ ǫω > ǫω ωl = ωnew, η̃l = η̃new 7

> η̃m ≤ ǫω ≤ ǫω finish

= η̃m > ǫω ωr = ωm, η̃r = η̃m, 5

ωm = ωnew, η̃m = η̃new

= η̃m ≤ ǫω finish

< η̃m > ǫω ωr = ωm, η̃r = η̃m, 4

ωm = ωnew, η̃m = η̃new

< η̃m > ǫω ≤ ǫω ωl = ωnew, η̃l = η̃new 6

< η̃m ≤ ǫω ≤ ǫω finish
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Table 13: State 5 of the automaton.

l r

η̃m

> ǫω

η̃r

ωrωm

Description. η̃ has stabilized to a value< 1

for two values ofω, ωm andωr, ωr > ωm.

The corresponding estimates ofη, η̃m and

η̃r, satisfyη̃r ≤ η̃m. There is room between

ωm andωr, i.e. ωr − ωm > ǫω. There is

either no room on the right ofωr, i.e. r −
ωr ≤ ǫω, or η̃m = η̃r andη has been found

to increase on the right ofωr. Compute the

new value of the relaxation parameter,ωnew,

asωnew = dec ome(ωr, ωm).

conditions next

η̃new ωr − ωnew ωnew − ωm actions state

NS or > η̃m finish

≤ η̃m and ≥ η̃r > ǫω ωm = ωnew, η̃m = η̃new 5

≤ η̃m and ≥ η̃r ≤ ǫω finish

< η̃r > ǫω ωl = ωm, η̃l = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃r ≤ ǫω > ǫω ωl = ωm, η̃l = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃r ≤ ǫω ≤ ǫω finish
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Table 14: State 6 of the automaton.

l r

η̃m

> ǫω≤ ǫω

ωl ωm

η̃l

Description: η̃ has stabilized to a value< 1

for two values ofω, ωl andωm, ωl < ωm.

The corresponding estimates ofη, η̃l and

η̃m, satisfyη̃l < η̃m. There is room between

ωl andωm but there is not room on the left of

ωl, i.e.ωm−ωl > ǫω andωl− l ≤ ǫω. Com-

pute the new value of the relaxation param-

eter,ωnew, asωnew = inc ome(ωl, ωm).

conditions next

η̃new ωnew − ωl ωm − ωnew actions state

NS or > η̃m finish

≤ η̃m and > η̃l > ǫω ωm = ωnew, η̃m = η̃new 6

≤ η̃m and > η̃l ≤ ǫω finish

= η̃l > ǫω ωm = ωl, η̃m = η̃l, 5

ωr = ωnew, η̃r = η̃new

= η̃l ≤ ǫω finish

< η̃l > ǫω ωr = ωm, η̃r = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃l ≤ ǫω > ǫω ωr = ωm, η̃r = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃l ≤ ǫω ≤ ǫω finish

32



Table 15: State 7 of the automaton.

l

η̃m

η̃l
η̃r

ωl rωrωm

Description: A minimum of η has been bracketed, i.e.

η̃ has stabilized to a value< 1 for three values ofω,

ωl, ωm andωr, ωl < ωm < ωr, and the corresponding

estimates ofη, η̃l, η̃m and η̃r, satisfy η̃l > η̃m < η̃r.

There is room betweenωl andωm or betweenωm and

ωr, i.e. ωm − ωl > ǫω or ωr − ωm > ǫω. Compute the

new value of the relaxation parameter,ωnew, asωnew =

ωm + (1 − R) × (ωr − ωm) if ωr − ωm > ωm − ωl

andωnew = ωl +R× (ωm − ωl) otherwise, whereR =

(
√
5− 1)/2 is the golden section.

Case:ωr − ωm > ωm − ωl

conditions next

η̃new ωnew − ωm ωm − ωl ωr − ωnew actions state

NS or > η̃r finish

≤ η̃r and ≥ η̃m > ǫω ωr = ωnew, η̃r = η̃new 7

≤ η̃r and ≥ η̃m ≤ ǫω > ǫω ωr = ωnew, η̃r = η̃new 7

≤ η̃r and ≥ η̃m ≤ ǫω ≤ ǫω finish

< η̃m > ǫω ωl = ωm, η̃l = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃m ≤ ǫω > ǫω ωl = ωm, η̃l = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃m ≤ ǫω ≤ ǫω finish

Case:ωr − ωm ≤ ωm − ωl

conditions next

η̃new ωm − ωnew ωr − ωm ωnew − ωl actions state

NS or > η̃l finish

≤ η̃l and ≥ η̃m > ǫω ωl = ωnew, η̃l = η̃new 7

≤ η̃l and ≥ η̃m ≤ ǫω > ǫω ωl = ωnew, η̃l = η̃new 7

≤ η̃l and ≥ η̃m ≤ ǫω ≤ ǫω finish

< η̃m > ǫω ωr = ωm, η̃r = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃m ≤ ǫω > ǫω ωr = ωm, η̃r = η̃m, 7

ωm = ωnew, η̃m = η̃new

< η̃m ≤ ǫω ≤ ǫω finish
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