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Abstract

We consider a &uid queue fed by sessions, arriving according to a Poisson process; a session has a heavy-tailed duration,
during which tra.c is sent at a constant rate. We scale Poisson input rate �, bu/er space B, and link rate C by n, such
that we get n�; nb, and nc, respectively. Then we let n grow large. In this regime, the over&ow probability decays
exponentially in the number of sources n; we examine the speci4c situation in which b is also large.

In Du.eld (Queueing Syst. 28 (1998) 245–266) this setting is considered. A crucial role was played by the function
v (t) := − logP(D?¿t) for large t; D? being the residual session duration. Du.eld covers the case that v(·) is regularly
varying of index strictly between 0 and 1 (e.g., Weibull); this note treats slowly varying v(·) (e.g., Pareto, Lognormal).
The proof adds insight into the way over&ow occurs. If v(·) is slowly varying then, during the trajectory to over&ow,

the input rate will exceed the link rate only slightly. Consequently, the bu/er will 4ll ‘slowly’, and the typical time to
over&ow will grow ‘faster than linearly’ in the bu/er size. This is essentially di/erent from the ‘Weibull case’, where
the input rate will signi4cantly exceed the link rate, and the time to over&ow is essentially proportional to the bu/er
size. In both cases there is a substantial number of sessions that remain in the system during the entire path to over&ow.
c© 2001 Published by Elsevier Science B.V.
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1. Introduction

This note focuses on an in4nite bu/er drained at constant rate C per unit time. Sessions arrive according
to a discrete-time Poisson process, i.e., the number of sessions arriving in the ith time slot are i.i.d. Poisson
random variables with mean �. A session remains at the resource during a random time, distributed as D;
the holding times of the individual sessions are i.i.d. During its holding time, a session generates tra.c at
a constant rate r. This model is called a queue with M=G=∞ input. We are interested in the steady-state
probability that the bu/er content exceeds level B.
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It is noted that the M=G=∞ input model naturally models the long-range dependent e/ects detected in
network tra.c [7,13,14]. By assuming the session durations D long-tailed, the in&uence of long-range depen-
dence can be assessed. Parulekar and Makowski [12], Du.eld [4], and Liu et al. [9] investigate large-bu6er
asymptotics, or, more precisely, logarithmic tail asymptotics of the queue length distribution. They 4nd upper
and lower bounds, that match in some cases. Also recent work by Likhanov and Mazumdar [8] should be
mentioned; there the authors focus on a special type of long-tailed distributions.
An interesting new direction was chosen in Du.eld [5]. He derives so-called large-aggregation asymptotics

rather than large-bu/er asymptotics. The procedure followed in [5] is as follows. (i) First input and resources
are scaled by a parameter n, i.e., capacity C ≡ nc, bu/er threshold B ≡ nb, and Poisson rate � ≡ n�. (ii)
Then under this regime, a general theorem on the over&ow probability [3] can be invoked: the decay rate of
the loss probability can be expressed as a variational problem, for general �; b, and c. (iii) For the special
case of large b, the variational problem requires asymptotics of the cumulant generating function of the tra.c
generated by an M=G=∞ input process, as derived in [11].
In this note we will follow the procedure described above. In [5] a crucial role was played by the function

v (t) := − logP(D?¿t); D? being the residual session duration. If v (t) is regularly varying with index h in
[0; 1) the durations could be thought of as long tailed. Ref. [5] covers the case of h∈ (0; 1), but the solution
of the important case of h=0 (with for instance Pareto and Lognormal durations) is not complete. We will
exactly point out what part is lacking, and how to solve that.
The solution found for h=0 has important consequences for the intuition on the way the queue builds up.

For large b, the duration of the busy period preceding over&ow will typically grow faster than proportional in
b. The input rate during such a trajectory will be only slightly larger than the link rate. Essentially, over&ow
is caused by a number of sessions that remain in the system during the entire busy period. This is a crucial
di/erence with exponential-like duration distributions; there sessions present at the beginning of the busy
period will typically have left at over&ow. These e/ects are due to the fact that for durations with h=0 it is
relatively ‘low-cost’ to be extremely long. Also for h∈ (0; 1) over&ow is due to a number of sessions staying
in the system during the entire path to over&ow, but the time to over&ow is essentially linear in b and the
input rate is substantially larger than the link rate.
Section 2 gives preliminaries, relying on [5,11]. In Section 3, the proof for h=0 is given. Section 4 gives

a re4nement for the case D? is distributed Pareto. Section 5 gives the intuition behind the results.

2. Preliminaries

As inidicated in Introduction, we consider a bu/ered resource in discrete time. Sessions arrive according
to a discrete-time Poisson process, i.e., the number of sessions arriving in the ith time slot are i.i.d. Poisson
random variables with mean �. A session remains at the resource during a random time, distributed as D;
the holding times of the individual sessions are i.i.d. We assume that D had a 4nite mean—this makes sure
that the residual session duration time has a proper distribution

P(D?= t)=
P(D¿t)
ED :

During their holding time, a session generates tra.c at a constant rate r; like in [5] we can adapt to the case
at which the session transmits is not constant, but is averaging on a faster time scale than the long-tailed
session durations.
We are interested in the probability of the bu/er content exceeding level B, denoted by p(B; C). We rescale

the resources by the number of sources: C ≡ nc and B ≡ nb. Also, we scale the Poisson rate of arrivals:
� ≡ n�. We assume that the system is stable:

�
c
¡1; with � := �rED:
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In the scaled model we de4ne

pn(b; c) := steady-state probability that the bu/er content exceeds level nb:

De4ne also

A(t) :=




Tra.c generated by an M=G=∞ input; with Poisson arrival rate �

and sessions i:i:d: distributed as D; transmitting at rate r;

in steady state; during a time interval of length t:

The next proposition stems from Du.eld [5] and characterizes, for general bu/er size b, the decay rate of the
over&ow probability as the solution of a variational problem. The exact conditions are given in [5, Theorem 3].

Proposition 2.1 (Decay rate for general b). A variational problem to compute the decay rate is given by

I(b) := − lim
n→∞

1
n
logpn(b; c)= inf

t∈N
w(t) OJt

(
b
t
+ c
)
; (1)

for an increasing positive function w(·) and

OJt(x) := sup
�

(
�x − log Ee�A(t)w(t)=t

w(t)

)
:

The function w(·) in Proposition 2.1 is usually called a scaling function. It was introduced in [3,6] to
enable large-deviations analysis in situations where there was no exponential decay in the bu/er size. The
optimizing t, say t?b , could be considered as the typical duration of a busy period preceding over&ow [15].
For the model with M=G=∞ input, it was proposed in [11] to use w(t)= v (t), where v (t) is the extension

of −logP(D?¿t) to R+. In the sequel we use this scaling. The following lemma gives the asymptotics of
the log moment generating function under this scaling. It is due to Parulekar and Makowski [11].

Lemma 2.2 (Cumulant function). Suppose v (t)=t is monotone decreasing in the limit; and suppose there is a
mapping � :N→N satisfying (i) �(t)¡t for all t ∈N; (ii) v (t)�(t)=t→∞; and (iii) v (t)�(t)=(tv(�(t)))→ 0:
Then

lim
t→∞

log Ee�A(t)v (t)=t
v (t)

= (�rED)�= ��

if �¡r−1; the limit equals ∞ if �¿r−1:

The next de4nition de4nes a class of long-tailed distributions. We will assume that the session duration is
of this type.

De�nition 2.3 (Subexponentially varying distribution). Suppose the function v(·) is regularly varying of index
h (at in4nity), that is,

v(yt)
v (t)

→yh; t→∞

for all y¿0. If v(·) is regularly varying of index h∈ [0; 1), we say that D? has a subexponentially varying
distribution, or D? ∈V. The class of subexponentially varying distributions with h=0 is called V0.

In the last de4nition we used the concept of regular variation, see for instance Bingham et al. [2, Section 1:4].
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For standard long-tailed distributions D (like Pareto, Lognormal, and Weibull) there exists a � with the
properties mentioned in Lemma 2.2. This was veri4ed in Section 4:1 of Du.eld [5]. It is also not hard to
verify that these distributions are in V; in fact Pareto and Lognormal are in V0, whereas Weibull is in
V \V0: The exact de4nition of the distributions mentioned are given in [12]—at the moment it su.ces to
know that v (t) looks roughly like log t for Pareto sessions, like (log t)2 for Lognormal sessions, and like t 

for Weibull sessions ( ∈ (0; 1)).

3. Analysis

We 4rst state the main theorem, which is Theorem 4 in Du.eld [5].

Theorem 3.1 (Decay rate for large b). Under the assumptions of Proposition 2:1; Lemma 2:2; for all D? ∈V;

lim
b→∞

I(b)
v(b)

=! if h=0; and lim
b→∞

I(b)
v(b)

= (hr)−h
(

!
1− h

)1−h

if h∈ (0; 1):

Here

! :=
c − �rED

r
=
c − �
r

:

Let t?b be the optimizing argument for t in (1). In his proof of this theorem, particularly in the lower
bound, Du.eld [5] needed that t?b essentially grows linearly in b. Lemma 3.2 states that the time to over&ow
is indeed at least linear in b, for large b. It was proven in case (iii) of [5, p. 258].

Lemma 3.2 (Time to over&ow is not sublinear in b). For all D? ∈V there exists a positive d− such that

lim inf
b→∞

t?b
b
¿d−:

Du.eld’s [5] proof of Theorem 4 (which is equivalent to our Theorem 3.1 above) used that the time to
over&ow is, in addition to Lemma 3.2, also at most linear. However, for h=0 it is not clear whether this
statement holds. This can be explained as follows.
Equivalently to t?b =b¡d+ eventually (for some 4nite d+), we can say that there cannot be a subse-

quence sb := b=t?b such that sb goes to zero. To draw this conclusion, [5] used that sb→ 0 would imply
v(b)=v(b=sb)→ 0. However, it holds for h¿0, but not for h=0. Consider the following counterexample:
v(b)= log b and sb=(log b)−1. It is easily veri4ed that v(·) is slowly varying, so h=0. However,

lim
b→∞

v(b)
v(b=sb)

= lim
b→∞

log b
log(b log b)

= 1 �=0:

In other words, for h=0 it is not clear whether there is a d+ such that

lim sup
b→∞

t?b
b
¡d+;

in fact we will explain in Section 5 that such a d+ does not exist. Therefore, for the case h=0 the proof in
Du.eld [5] has to be adapted. Below we present an alternative proof.
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Proof of Theorem 3.1. As said, we focus on h=0. The proof of the upper bound is given in [5]. We give
the lower bound. Choose an arbitrary &∈ (0; r−1). Due to Proposition 2.1

I(b) = inf
t∈N

v (t)sup
�

(
�
(
b
t
+ c
)
− log Ee�A(t)v (t)=t

v (t)

)

¿ inf
t∈N

v (t)

(
(r−1 − &)

(
b
t
+ c
)
− log Ee(r−1−&)A(t)v (t)=t

v (t)

)
:

If b is large, then t?b will be large due to Lemma 3.2; in fact t?b ¿bd− eventually. So, applying Lemma 2.2
for any '¿0 for b large enough

I(b)¿inf
t∈N

v (t)
(
(r−1 − &)

(
b
t
+ c
)
− �(r−1 − &)(1 + ')

)
: (2)

This yields

lim inf
b→∞

I(b)
v(b)

¿ lim inf
b→∞

inf
t¿bd−

(
v (t)
v(b)

)
(r−1 − &)

(
b
t
+ c − �(1 + ')

)

¿ (r−1 − &)lim inf
b→∞

(
inf

t¿bd−

(
v (t)
v(b)

)
inf

t¿bd−

(
b
t
+ c − �(1 + ')

))
:

Due to the fact that v(·) is slowly varying (and monotone increasing),

v (t)
v(b)

¿1− (

for arbitrary positive (; b large enough, and t¿bd−. Noticing that b=t¿0, and letting & ↓ 0 and ' ↓ 0, we get

lim inf
b→∞

I(b)
v(b)

¿
c − �
r

=!;

which proves the stated.

4. Re�nement

In this section, we give a re4nement of Theorem 3.1, for the case of Pareto distributed durations.

Theorem 4.1. For Pareto(,) on-times; i.e.; P(D?¿t)=Kt−,+1;

I(b)− v
(
b log b
c − �

)(
c − �
r

)(
1 +

1
log b

)
→ 0

for b→∞: Equivalently;

I(b)− (,− 1)
(
c − �
r

)
(log b+ log log b)

→ − (,− 1)
(
c − �
r

)
(log(c − �)− 1)−

(
c − �
r

)
logK:

Proof. Our proof consists of a lower bound and an upper bound. Starting point of both is the variational
problem (1). The lower bound is derived by ‘guessing’ the � and performing the optimization over t—in
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the upper bound the value of t is ‘guessed’, and given this t the supremum over � is computed. Notice that
for the Pareto distribution Lemma 2.2 applies (with �(n) := 
n=(1 + log(1 + log n))�, see [5]).
Lower bound. Start with bound (2), and plug in v (t)=− logK + (,− 1)log t. The in4mum over t ∈N is

of course larger than the in4mum over t¿0. Di/erentiation to t gives the 4rst order condition:

f(t) := (,− 1)
(
b
t
+ c − �(1 + ')

)
+ (logK − (,− 1)log t)

b
t
=0: (3)

We now show that the optimizing t, i.e., t?b , looks like b log b=(c − �). To conclude this, 4rst plug

t= t+b := (1 + ')
b log b
c − �

into (3), '¿0: It is not hard to show that

f(t+b )= (,− 1)c'+ g'(b);

with a function g'(b)→ 0 as b→∞: Hence f(t+b ) is positive for large b. Also, with t= t−b := (1− ')(b log b)=
(c − �),

f
(
t−b
)
=− (,− 1)c'+ h'(b);

with h'(b)→ 0 for b→∞. This implies that f(t−b ) is negative for large b. In other words: between t−b and
t+b the 4rst derivative shifts from negative to positive. Hence, the minimum is achieved somewhere between
these epochs:

t?b =(1 + '?)
b log b
c − �

; with '? ∈ [− '; ']:

We arrive at

I(b)¿
(
r−1 − &

)
v
(
b log b
c − �

(1 + '?)
)((

c − �
(1 + '?)log b

+ c
)
− �(1 + ')

)
:

Now let & ↓ 0 and ' ↓ 0.
Upper bound. De4ne

ft(�) :=
log Ee�A(t)v (t)=t

v (t)
:

Make the following observations:

• It is straightforward that f′
t (0)= � for all t. Also it is well known that ft(·) is a convex function. Therefore

ft(�)¿�� for positive �: Let on the interval �∈ [0; r−1 + &] the function ht(�) be de4ned as ��:
• The probability that k sessions are present at time 0 has a Poisson distribution with mean �=0: Therefore

Ee�A(t)v (t)=t¿
∞∑
k=0

(
�
0

)k e−�=0

k!
P(D?¿t)ke�rv (t)k ;

yielding

ft(�)¿
�
0
e(�r−1)v (t) − 1

v (t)
:

This expression goes to ∞ for all �¿r−1 as t→∞; and is exponentially increasing in �: This means that
for arbitrary 1¿0 and t large enough ft(�) will be larger than �(1+ c), with �¿r−1 + &. De4ne for these
� the function ht(�) as �(1+ c):



M. Mandjes /Operations Research Letters 28 (2001) 233–242 239

De4ne

tb :=
⌈
b log b
c − �

⌉
:

Clearly,

I(b)6v (tb)sup
�

(
�
(
b
tb

+ c
)
− ftb(�)

)
6v (tb)sup

�

(
�
(
b
tb

+ c
)
− htb(�)

)
:

Now take b large, such that b=tb¡1: Then the supremum will be attained for �= r−1 + &, leading to

I(b)6v (tb)(r−1 + &)
(
b
tb

+ c
)
− �(r−1 + &):

Notice that

v (tb)− v
(
b log b
c − �

)
→ 0 and v (tb)

b
tb

− v
(
b log b
c − �

)
c − �
log b

→ 0

as b→∞: The upper bound follows by letting & ↓ 0.

Remark (On − o/ input). Consider n sources feeding into a bu/er that is emptied at rate nc. The sources
have peak rate r and mean rate �: Let I(b) be the decay rate of the probability of the bu/er exceeding level
nb. Then for Pareto(,) on-times, i.e., P(A?¿t)=Kt−,+1, it was proven by Mandjes and Borst [10] that

I(b)
v(b)

→ c − �
r − �

as b→∞:

This can be re4ned, similarly to the above as

I(b)− v
(
b log b
c − �

)(
c − �
r − �

)(
1 +

1
log b

)
→ 0

for b→∞. Equivalently,

I(b)− (,− 1)
(
c − �
r − �

)
(log b+ log log b)

→ − (,− 1)
(
c − �
r − �

)
(log(c − �)− 1)−

(
c − �
r − �

)
logK:

This result was used in [16], where we studied the queueing behavior of systems with heterogeneous on–o/
input with regularly varying on-times.

5. Interpretation

This section treats the intuition behind the analysis for h=0:

Time to over;ow is superlinear. As shown above, for h=0, it was not clear whether there is a d+ such
that tb=b¡d+ eventually. Du.eld [5] showed in case (ii) in the proof of the lower bound of Theorem 4 of
[5] that there exists such a d+ for h∈ (0; 1). This touches on a crucial distinction between the cases h=0
and h∈ (0; 1).

• Let us 4rst consider b=t?b for b large and h=0. In the proof of Theorem 3.1 we saw that t?b is such that
if we choose b=t?b =0 the lower bound is attained. This suggests that t?b is superlinear in b. On the other
hand, t?b is such that v (t?b )=v(b)→ 1 as b→∞. This means that t?b = bf(b) for some ‘subpolynomial’
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function f(·) (i.e., f(b)¡b' for all '¿0 and b large enough). One could think of t?b ∼ b log b (cf. the
proof of Theorem 4.1).

• Now in the case h∈ (0; 1); t?b will be essentially linear in b, as derived in [5]. In other words: the time to
over&ow will be proportional to the bu/er size.

Heuristic. Due to the long tail, for D? ∈V it is ‘low-cost’ to have over&ow due to sessions that remain
in the system during the entire path to over&ow. As the bu/er is large, in addition to these sessions, tra.c
is generated at a rate �rED: This gives rise to the following heuristic:

p(B; C) ≈ max
K∈N

P
(
D?¿

B
Kr + �rED − C

)K
;

where the optimizing K can be interpreted as the most likely number of sessions that stay in the system
during the complete trajectory to over&ow. The above heuristic can be considered as a variant of the reduced
load equivalence proven in [1].
The justi4cation of this heuristic is the following. Put K ≡ nk, and use the scaling � ≡ n�; B ≡ nb, and

C ≡ nc. Then, following the heuristic, with � := �rED,
1
n
logpn(b; c)≈− min

k:kr+�¿c
kv
(

b
kr + �− c

)

≈− min
k:kr+�¿c

k(kr + �− c)−hv(b): (4)

The minimum is attained for

k?=
c − �

r(1− h)
: (5)

Inserting this k? into (4) indeed leads to the decay rate of Theorem 3.1.

• Interestingly, for h=0 we get from (5) that the input rate is roughly equal to c:

k?r + �=
c − �
r

r + �= c:

This is in agreement with the superlinear time to over&ow. During the path to over&ow, the input rate only
slightly exceeds link rate c. One could think for instance of t?b ∼ b log b, such that the input rate is in the
order of c + (log b)−1:

• If h¿0 the input rate is strictly larger than c, leading to a time to over&ow that is essentially linear in b:

t?b ∼ 1
c − �

1− h
h

b:

Notice that for h ↑ 1 the time to over&ow will be extremely short.

Summarizing, if h∈ (0; 1) long sessions are so ‘low-cost’ that the most likely path to over&ow is such that
some sessions remain in the system during the entire busy period preceding over&ow. If h=0 long sessions
have even ‘lower cost’: some sessions remain in the system during the entire path to over&ow, but at the
same time the net input rate is only slightly positive (which requires extremely long sessions to cause
over&ow).

Path to over;ow. In Fig. 1 we show the decay rate as a function of the bu/er size, i.e., I(b). It re&ects
the crucial di/erences caused by the shape of the session duration distribution. For Pareto sessions and b
large, I(b) looks like log b, for Weibull sessions like b , and for exponential sessions it is proportional to b.
Lognormal sessions would lead to an I(b) curve that is similar to (log b)2. Fig. 2 depicts the most likely time
to over&ow. We see the superlinear behavior for Pareto sessions.



M. Mandjes /Operations Research Letters 28 (2001) 233–242 241

Fig. 1. Loss curve (decay rate I(b) as function of b).

Fig. 2. Time to over&ow (t?b as function of b).
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