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Abstract

We consider the maximization version of the two level uncapacitated facility location problem, in the following formu-
lation:

max
S1×S2⊆F×E

C(S1; S2)= max
S1×S2⊆F×E

∑
k∈D

max
(i; j)∈S1×S2

cijk −
∑
i∈S1

fi −
∑
j∈S2

ej;

where F; E are 0nite sets and cijk ; fi; ej¿ 0 are real numbers. Denote by C∗ the optimal value of the problem and by
CR =

∑
k∈D min(i; j)∈F×Ecijk −

∑
i∈F fi −∑

j∈E ej: We present a polynomial time algorithm based on randomized rounding
that 0nds a solution (S1; S2) such that

C(S1; S2)− CR¿ 0:47(C∗ − CR):
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1. Introduction

The two level uncapacitated facility location problem (two level MAX UFLP), in the maximization version,
can be described as follows. There are two types of potential facility locations: the hub facilities, denoted
by F and the transit facilities, denoted by E. Building (opening) the facility i∈F or j∈E has an associated
nonnegative cost fi, respectively ej: There is also a set of clients, D; who should be assigned to open pairs
of facilities from F × E: If a client k ∈D is assigned to the pair (i; j); a pro0t cijk is obtained. The problem
is to decide simultaneously which facilities from F and which from E to open (at least one from each set)
and how to assign the clients to the open facilities, such that the total pro0t is maximized.
Formally, the problem can be stated as

max
S1×S2⊆F×E

C(S1; S2)= max
S1×S2⊆F×E

∑
k∈D

max
(i; j)∈S1×S2

cijk −
∑
i∈S1

fi −
∑
j∈S2

ej: (1)
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Denote by CR =
∑

k∈D min(i; j)∈F×E cijk −
∑

i∈F fi −
∑

j∈E ej and by C∗ the optimal value of the problem.
Clearly, C∗¿C(S1; S2)¿CR; for each S1×S2 ⊆ F×E: Note that the objective function C(S1; S2) can take

both positive and negative values and so there is a diEculty in the de0nition of measure of relative deviation
for approximate solutions to (1). To overcome this, we will consider the problem with the shifted objective
function C(S1; S2) − CR, which takes only positive values (for a discussion on the idea of shifted objective
functions see Cornuejols et al. [5]).
Throughout this paper, a �-approximation algorithm for a maximization (minimization) problem with pos-

itive objective function is a polynomial time algorithm that always 0nds a feasible solution with objective
function value at least (at most) � times the optimum. The value � is called the performance guarantee of
the algorithm.
If the set E is a singleton, one obtains the one level uncapacitated facility location problem, in the maxi-

mization version (MAX UFLP). It can be easily proven that MAX UFLP is NP-hard, by reduction from the
node cover problem (see [6]). Recently, Ageev and Sviridenko [3] showed that the MAX UFLP in the shifted
form admits no polynomial time approximation scheme. Cornuejols et al. [5] proved that for MAX UFLP a
simple greedy algorithm 0nds a solution S ⊆ F such that

C(S)− CR¿
(
1− 1

e

)
(C∗ − CR):

The 1 − 1=e factor was improved to 0:828 by Ageev and Sviridenko [3]. Their algorithm has two steps:
in the 0rst one they reduce the one level uncapacitated facility location problem to a special case of the
maximum satis0ability problem for which they develop in the second step an 0:828-approximation algorithm.
The technique used is that of randomized rounding, proposed in the MAX SAT context by Goemans and
Williamson [7].
Being a generalization of the one level uncapacitated facility location problem, the two level MAX UFLP

is NP-hard as well. Only a few algorithms for the two level MAX UFLP have been developed (see Aardal
et al. [2] for a survey). The techniques which have been used are branch-and-bound, Lagrangean relaxation,
cutting planes.
More studied in the last years was the minimization version of the problem, in which one has to select

in each level the facilities to be opened and to assign every demand point to a path along open facilities
such that the total cost (the cost of opening the facilities and the assignment cost) is minimized. For this
problem, Shmoys et al. [10] developed a 3:16-approximation algorithm based on the method of 0ltering and
rounding, proposed by Lin and Vitter [8,9]. Using dependent randomized rounding, Aardal et al. improved
the performance guarantee to 3: These algorithms rely heavily on the assumption that the transportation costs
verify the triangle inequality.
In this paper, we describe a polynomial time approximation algorithm for the shifted two level MAX UFLP

problem based on the technique of independently randomized rounding. We prove that the algorithm delivers
a solution S1 × S2 ⊆ F × E such that

C(S1; S2)− CR¿ 0:47(C∗ − CR):

2. An integer formulation of the two level MAX UFLP

In this section, we present an integer formulation of the two level MAX UFLP and give a new interpretation
of its objective function based on an idea used by Ageev and Sviridenko [3] for the reduction between MAX
UFLP and a special case of MAX SAT.
To derive an integer programming formulation of the two level MAX UFL problem, we introduce the 0−1

variables yi (i∈F) and zj (j∈E) to indicate whether i∈F; respectively, j∈E is open and the 0−1 variables
xijk (i∈F; j∈E; k ∈D) to indicate whether demand point k is served by the pair (i; j):
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We will call a pair (i; j)∈F × E open if both i and j are open. We let

c(x) =
∑

k∈D; i∈F;j∈E

cijkxijk ;

f(y) =
∑
i∈F

fiyi;

and

e(z)=
∑
j∈E

ejzj:

The two level MAX UFL problem (1) is now equivalent to

max c(x)− f(y)− e(z)

s:t:
∑

i∈F;j∈E

xijk =1 for each k ∈D; (2)

(Pint) xijk yi for each i∈F; j∈E; k ∈D; (3)

xijk zj for each i∈F; j∈E; k ∈D; (4)

xijk ∈{0; 1} for each i∈F; j∈E; k ∈D;

yi ∈{0; 1} for each i∈F;

zj ∈{0; 1} for each j∈E:

Constraints (2) ensure that each k ∈D is assigned to only one pair of facilities and constraints (3) and (4)
ensure that only open pairs are used.
We consider the LP relaxation of (Pint) with all variables taking values in [0; 1]: Denote the LP-relaxation

with (PLP): Let (x; y; z) be a feasible solution to (PLP): Let |F |=m and |E|= n:
For each k ∈D; we order the p=mn pairs (i; j) such that

ci1(k) j1(k)k¿ ci2(k) j2(k)k¿ : : : cip(k) jp(k)k :

The idea behind the new interpretation of the objective function is that k will obtain the pro0t cis(k) js(k)k −
cis+1(k) js+1(k)k , where 16 s6p− 1 only if one of the pairs (i1; j1); : : : ; (is; js) is open.
For every s∈{1; : : : ; p} de0ne the sets Isk as being the set of the s most pro0table pairs for k

Isk = {(i1(k); j1(k)); : : : ; (is(k); js(k))}:
For each set Isk let the variable tsk indicate the fraction in which k is assigned to pairs in Isk : In other

words,

tsk =
∑

(i; j)∈Isk

xijk :

Further, associate to each set a number wsk de0ned by

wsk = cis(k) js(k)k − cis+1(k) js+1(k)k for s p− 1 (5)

and

wpk =0: (6)
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Using (2), (5) and (6), the objective function value of (PLP) corresponding to (x; y; z) can be rewritten as

c(x)− f(y)− e(z) =
∑
k∈D

p∑
s=1

wsk tsk + min
(i; j)∈F×E

cijk

+
∑
i∈F

fi(1− yi) +
∑
j∈E

ej(1− zj)−
∑
i∈F

fi −
∑
j∈E

ej

=
∑
k∈D

p∑
s=1

wsk tsk +
∑
i∈F

fi(1− yi) +
∑
j∈E

ej(1− zj) + CR:

Hence,

c(x)− f(y)− e(z)− CR =
∑
k∈D

p∑
s=1

wsk tsk +
∑
i∈F

fi(1− yi) +
∑
j∈E

ej(1− zj): (7)

3. Algorithm and its analysis

Let (x̃; ỹ; z̃) be an optimal solution of the LP relaxation, and let C̃LP be its optimal value, i.e.

C̃LP = c(x̃)− f(ỹ)− e(z̃):

In the following we will merely use the expression of C̃LP − CR; derived from (7)

C̃LP − CR =
∑
k∈D

p∑
s=1

wsk t̃sk +
∑
i∈F

fi(1− ỹi) +
∑
j∈E

ej(1− z̃j);

where t̃sk =
∑

(i; j)∈Isk x̃ijk .

Clearly, C̃LP − CR¿C∗ − CR:
Let �∈ [0; 1]: The algorithm independently sets each yi to 1 with probability pi =(1 − �) + �ỹi and to 0

with probability 1 − pi = �(1 − ỹi): Similarly, each zj will take value 1 with probability qj =(1 − �) + �z̃j
and value 0 with probability 1− qj = �(1− z̃j): Further, for each k ∈D set xijk =1 for the pair (i; j) with the
biggest pro0t cijk among the pairs for which both yi and zj were previously set to 1.
In other words, the algorithm independently opens each facility i∈F with probability pi and each facility

j∈E with probability qj and then assigns each demand point to the most pro0table open pair. In this way
we obtain for every value of � in [0; 1] a feasible solution of the integer program.
Denote with C(�) the expected value of the algorithm. To analyze the performance of the algorithm we

compare C(�)− CR with C̃LP − CR:

Theorem 1. The expected value of the algorithm satis4es

C(�)− CR¿ �(�)(C̃LP − CR);

where

�(�)=min
{
�; 4�(1− �); 2(1− �)2 − (1− �)4;min

r¿1
(1− �)

[
1− �r

(
1− 1

r

)r]}
:

In particular; for �=0:47 we get

C(�)− CR¿ 0:47(C∗ − CR):
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Proof. For each k ∈D and s=1; : : : ; p; denote by tsk the random variable that takes value 1 if k is assigned
to a pair (i; j)∈ Isk (and 0 otherwise).
From (7) and from the linearity of the expectation it follows:

C(�)− CR =
∑
k∈D

p∑
s=1

wsk Prob(tsk =1) +
∑
i∈F

fi(1− Prob(yi =1)) +
∑
j∈E

ej(1− Prob(zj =1))

=
∑
k∈D

p∑
s=1

wsk Prob(tsk =1) + �
∑
i∈F

fi(1− ỹi) + �
∑
j∈E

ej(1− z̃j):

To calculate the probabilities that tsk take value 1 we distinguish four cases, depending on the structure of
the set Isk : The main idea is that the events of choosing the value 0 or 1 for yi’s and zj’s are independent.

Case 1: Isk = {(i; j)}. In this case we have

Prob(tsk =1) = Prob((yi =1) ∧ (zj =1))=Prob(yi =1)Prob(zj =1)

= [(1− �) + �ỹi][(1− �) + �z̃j]:

Using the inequality

a+ b¿ 2
√
ab for a; b¿ 0;

and (3) and (4) we can obtain the following lower bound:

Prob(tsk =1)¿ 4(1− �)�
√

ỹi z̃j¿ 4(1− �)�x̃ijk :

Hence,

Prob(tsk =1)¿ 4(1− �)�t̃sk :

Case 2: Isk = {(i; j1); : : : ; (i; jr)}; r¿ 2: We have

Prob(tsk =1) = Prob(yi =1)Prob((zj1 = 1) ∨ · · · ∨ (zjr =1))

= Prob(yi =1)(1− Prob((zj1 = 0) ∧ · · · ∧ (zjr =0))

= Prob(yi =1)

1−
r∏

q=1

Prob(zjq =0)



= [(1− �) + �ỹi]

1− �r
r∏

q=1

(1− z̃jq)

 :

The arithmetic=geometric mean inequality, applied to 1− z̃jq ; q=1; r gives
r∏

q=1

(1− z̃jq)

(
1−

∑r
q=1z̃jq
r

)r

:

Hence, we obtain the following lower bound for Prob(tsk =1):

Prob(tsk =1)¿ [(1− �) + �ỹi]

[
1− �r

(
1−

∑r
q=1z̃jq
r

)r]
:
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The function f : [0; 1] → R de0ned by

f(x)= 1− a
(
1− x

r

)r
; where a∈ [0; 1];

is concave. Observing that any x∈ [0; 1] can be written as a convex combination between 0 and 1; the
concavity of f implies

f(x)=f(1 ∗ x + 0 ∗ (1− x))¿ x ∗ f(1) + (1− x) ∗ f(0):
From

f(0) = 1− a¿ 0;

f(1) = 1− a
(
1− 1

r

)r

;

it follows that

f(x)¿
[
1− a

(
1− 1

r

)r]
x:

Substituting in this inequality a= �r; x=
∑r

q=1 z̃jq and taking into account that by (4) we have
∑r

q=1 z̃jq ¿ t̃sk ;
we obtain

1− �r
(
1−

∑r
q=1z̃jq
r

)r

¿
[
1− �r

(
1− 1

r

)r] r∑
q=1

z̃jq ¿
[
1− �r

(
1− 1

r

)r]
t̃sk :

Thus, for this case the lower bound for the probability of tsk being 1 is

Prob(tsk =1)¿ [(1− �) + �ỹi]
[
1− �r

(
1− 1

r

)r]
t̃sk¿ (1− �)

[
1− �r

(
1− 1

r

)r]
t̃sk :

Case 3: Il = {(i1; j); : : : ; (ir ; j)}; r¿ 2. In a similar way as in the previous case it can be proven that

Prob(tsk =1)¿ (1− �)
[
1− �r

(
1− 1

r

)r]
t̃sk :

Case 4: Isk ⊇ {(i1; j1); (i2; j2)} with i1 �= i2 and j1 �= j2: In this case, the event that the pair (i1; j1) is open
is independent of the event that the pair (i2; j2) is open and consequently,

Prob(tsk =1)¿ Prob[(yi1 = 1 ∧ zj1 = 1) ∨ (yi2 = 1 ∧ zj2 = 1)]

= Prob(yi1 = 1 ∧ zj1 = 1) + Prob(yi2 = 1 ∧ zj2 = 1)

−Prob(yi1 = 1 ∧ zj1 = 1) Prob(yi2 = 1 ∧ zj2 = 1)

= pi1qj1 + pi2qj2 − pi1qj1pi2qj2

¿ 2
√
pi1qj1pi2qj2 − pi1qj1pi2qj2 :

By the de0nition of pi and qj; pi¿ 1− � and qj¿ 1− � for each i and j: Hence,

pi1qj1pi2qj2 ¿ (1− �)4:

The function f : R+ → R+ de0ned by f(x)= 2
√
x − x is increasing on [0; 1]; which together with the

inequality above implies that

Prob(tsk =1)¿ 2
√
(1− �)4 − (1− �)4¿ [2(1− �)2 − (1− �)4]t̃sk :
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From cases 1–4 it follows that for each �∈ [0; 1];

C(�)¿ �(�)C̃LP:

Using the fact that (1 − 1=r)r e−1; for every r¿ 1; we obtain that 0:47 is the maximum value of �(�) for
�∈ [0; 1] and is attained for �=0:47: Hence, the expected value of the algorithm is at least 0:47C̃LP; which
is at least 0:47 the optimum.

Remark. The randomized algorithm presented above can be derandomized using the method of conditional
expectations [4]. The result is a deterministic algorithm which 0nds in polynomial time a solution (S1; S2)
such that

C(S1; S2)− CR¿ 0:47(C∗ − CR):

4. Discussion

We have presented a 0:47-approximation algorithm for the two level MAX UFLP in the shifted form. For
the analysis of our algorithm the assumption that there are only two levels of facilities was essential. A
natural question is whether the algorithm generalizes to the case when the facilities are located on k levels,
with k¿ 2: In this case one should open facilities in each level and assign each demand point to a path along
open facilities such that the total pro0t is maximized. The problem that occurs is that even if we open the
facilities independently, the events corresponding to paths being opened become dependent. As a consequence,
for k ¿ 2 the analysis of the algorithm is much more diEcult.
It remains an open question whether there exists an approximation algorithm with a performance guarantee

independent of the number of levels, as is the case with the minimization version of the same problem (see
[1,10]).
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