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Abstract

We consider the discrete version of the well-known time-cost tradeo" problem for project networks, which has been
extensively studied in the project management literature. We prove a strong in-approximability result with respect to
polynomial time bicriteria approximation algorithms for this problem. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The discrete time-cost tradeo" problem is a
well-known problem from the project management
literature; see e.g. De et al. [3] and Robinson [5]. The
instances of this problem are the so-called projects
that consist of a @nite set A= {A1; : : : ; An} of activi-
ties together with a partial order ≺ on A. Every ac-
tivity Aj may be executed according to a(j) di"erent
alternatives, where the ith alternative (16 i6 a(j))
takes d(j; i) time and costs an amount c(j; i) of
money. Without loss of generality we assume that all
values d(j; i) and c(j; i) are non-negative integers.
The activities inA have to be executed in accordance
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with the precedence constraints; if Ai ≺ Aj then activ-
ity Aj may not be started before activity Ai has been
completed. All activities are available for processing
at time zero.
A realization r̃=(r1; : : : ; rn) of such a project is

an assignment of alternatives rj with 16 rj6 a(j)
to activities Aj. The cost c(̃r) of realization r̃ equals∑n

j=1 c(j; rj), i.e., the total amount of money spent
on r̃. The duration d(̃r) of realization r̃ is the @nish
time of the earliest start schedule which gives duration
d(j; rj) to activity Aj and which starts each activity at
the earliest possible point in time while obeying the
precedence constraints. In other words, the duration
equals the length of the longest chain in the partial
order where the length of a chain is the sum of the
durations of the activities in the chain.
Ideally, we would like to minimize both duration

and cost of a given project. Unfortunately, there is a
tradeo" between duration and cost: Short realizations
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are usually expensive, and cheap realizations usually
take a long time. By @xing either cost or duration, we
get two related optimization problems with the objec-
tive to minimize the other parameter: In the Budget
Problem, we are given a non-negative budget C and
the goal is to @nd a shortest realization r̃ that satis@es
c(̃r)6C. In the Deadline Problem, we are given a
@xed non-negative deadline D and the goal is to @nd a
cheapest realization r̃ that satis@es d(̃r)6D. Without
loss of generality we may assume in these two prob-
lems that C6

∑
j; i c(j; i) and D6

∑
j; i d(j; i); con-

sequently, the size of C and D is bounded by the input
size of the project.

De�nition 1. Let �¿ 1 and �¿ 1 be two real num-
bers. A polynomial time (�; �)-approximation algo-
rithm for the discrete time-cost tradeo" problem takes
as input a project together with two non-negative in-
tegers C and D. If the project has a realization with
cost at most C and duration at most D, then the output
must be a realization with cost at most �C and dura-
tion at most �D. If the project has no such realization,
then the output can be any realization. The running
time of the (�; �)-approximation algorithm is polyno-
mially bounded in the size of the project.

The concept of a polynomial time (�; �)-approxi-
mation algorithm captures all kinds of approx-
imability de@nitions around the discrete time-cost
tradeo" problem: By combining a polynomial time
(1; �)-approximation algorithm with bisection search,
we get a polynomial time approximation algorithm for
the Budget Problem that produces realizations whose
duration is at most � above the optimal duration; this
corresponds to a ‘classical’ performance guarantee of
�. Moreover, any polynomial time approximation al-
gorithm with performance guarantee � for the Budget
Problem is a polynomial time (1; �)-approximation
algorithm for the discrete time-cost tradeo" problem.
Similarly, a polynomial time (�; 1)-approximation
algorithm for the discrete time-cost tradeo" problem
corresponds to a polynomial time approximation algo-
rithm with performance guarantee � for the Deadline
Problem.
De et al. [4] prove that deciding whether a given

project possesses a realization with duration at most
2 and with cost bounded by C (where C is part of
the input) is a strongly NP-hard problem. Hence,

the Budget Problem and the Deadline Problem both
are strongly NP-hard problems. Moreover, unless
P=NP the Budget Problem does not have a polyno-
mial time approximation algorithm with performance
guarantee strictly better than 3

2 ; such an algorithm
could distinguish in polynomial time between realiza-
tions of duration 2 and duration 3. In other words,
unless P=NP there does not exist a polynomial
time (1; 32−�)-approximation algorithm with �¿ 0 for
the discrete time-cost tradeo" problem. Skutella [6]
derives a polynomial time (2; 2)-approximation algo-
rithm for the discrete time-cost tradeo" problem by
rounding the solutions of a linear programming relax-
ation.
Result of this note. We show that there exists a

real number �¿ 0 with the following property: Un-
less P=NP, there does not exist a polynomial
time (1 + �; 54 − �)-approximation algorithm for the
discrete time-cost tradeo" problem with �¿ 0. As
one consequence, the Deadline Problem cannot pos-
sess a polynomial time approximation scheme unless
P=NP. As another consequence, there exists some
�¿ 1 such that the discrete time-cost tradeo" problem
does not have a polynomial time (�; �)-approximation
algorithm unless P=NP.

2. The in-approximability result

The proof will be done via an approximation pre-
serving reduction from the vertex cover problem in
cubic connected graphs, VC3 for short: An instance of
VC3 consists of a connected cubic graph G=(V; E),
where cubic means that all vertices are of degree three.
The goal is to @nd a minimum cardinality vertex cover
W for G, where a vertex cover is a subset W ⊆ V
that intersects every edge in E. Alimonti and Kann [1]
proved that problem VC3 is APX-hard. This implies
that VC3 cannot have a polynomial time approxima-
tion scheme unless P=NP. In other words, there is
some small �¿ 0 such that the existence of a polyno-
mial time approximation algorithm with performance
guarantee 1 + � would imply P=NP.

For an arbitrary instance G=(V; E) of problem
VC3, we will now de@ne a corresponding project
PG for the discrete time-cost tradeo" problem. The
well-known theorem of Brooks [2] yields that every
connected cubic graph G either is three-colorable, or
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is the complete graph on four vertices. Moreover, the
proof of this theorem gives a polynomial time proce-
dure for @nding such a three-coloring in case it exists.
Without loss of generality we may assume that G has
at least @ve vertices and hence is three-colorable; let
X , Y , and Z denote the corresponding partition of V
into three color classes. The project PG is de@ned as
follows.

• For every v∈X ∪ Y ∪ Z , there is a corresponding
activity A(v) in PG. Activity A(v) may either be
executed at cost 0 and duration 2, or it may be
executed at cost 1 and duration 0. For x∈X and
y∈Y , A(x) ≺ A(y) if and only if x and y are
connected by an edge in E. For y∈Y and z ∈Z ,
A(y) ≺ A(z) if and only if y and z are connected
by an edge in E.

• For every vertex y∈Y , there are two correspond-
ing dummy activities A−(y) and A+(y). The only
way of executing A−(y) and A+(y) is at cost 0 and
duration 1. Moreover, A−(y) ≺ A(y) and A(y) ≺
A+(y).

• For every edge e∈E that connects a vertex x∈X
to a vertex z ∈Z , there is a corresponding activity
A(x; z). The only way of executing A(x; z) is at cost
0 and duration 1. Moreover, A(x) ≺ A(x; z) and
A(x; z) ≺ A(z).

This completes the description of the project PG. Note
that PG is the so-called layered ordered set: The ac-
tivities A(x) with x∈X and A−(y) for y∈Y are in
the @rst layer; these are the activities without prede-
cessors. The activities A(y) with y∈Y and A(x; z) for
x∈X , z ∈Z , [x; z]∈E are in the second layer; these
are all the direct successors of activities in the @rst
layer. Finally, the activities A(z) with z ∈Z and A+(y)
for y∈Y are in the third layer; these are all the di-
rect successors of activities in the second layer, and
moreover they are the activities without successors.

Lemma 2. If the graph G=(V; E) has a vertex cover
W of cardinality k; then there exists a realization of
the project PG with cost k and duration at most 4.

Proof. Consider the realization r̃ that executes all ac-
tivities A(v) with v∈W at cost 1 and duration 0,
and that executes all remaining activities at cost 0.

The duration of r̃ is determined by a chain of three
activities that crosses all three layers. There are only
@ve possible forms for such a chain:

(i) A(x) ≺ A(x; z) ≺ A(z). Since [x; z]∈E, the ver-
tex cover W contains at least one of x and z, say
x. Then in r̃ activity A(x) has duration 0, A(x; z)
has duration 1, and A(z) has duration at most 2.

(ii) A(x) ≺ A(y) ≺ A(z). Since [x; y]∈E, at least
one of x and y is in W . Then the duration of the
corresponding activity is 0 whereas the durations
of the other two activities are at most 2.

(iii) A(x) ≺ A(y) ≺ A+(y). This can be handled
similarly as case (ii).

(iv) A−(y) ≺ A(y) ≺ A(z). This can be handled
symmetrically to case (iii).

(iv) A−(y) ≺ A(y) ≺ A+(y). The durations of
A−(y) and A+(y) are 1, the duration of A(y) is
at most 2.

Hence, indeed d(̃r)6 4 and c(̃r)= k hold as desired.

Lemma 3. If the project PG has a realization r̃ of
cost k and duration at most 4; then there exists a
vertex cover of cardinality k for G=(V; E).

Proof. Consider the setW ⊆ V that contains all v∈V
for which realization r̃ executes A(v) at duration 0 and
at cost 1. Clearly, W has cardinality k. We claim that
W is a vertex cover. There are only three possibili-
ties for edges in E: (i) An edge [x; y] must be inter-
sected byW , since otherwise the chain A(x) ≺ A(y) ≺
A+(y) makes d(̃r)¿ 5. (ii) Similarly, an edge [y; z]
must be intersected by W , since otherwise the chain
A−(y) ≺ A(y) ≺ A(z) makes d(̃r)¿ 5. (iii) An edge
[x; z] must be intersected by W , since otherwise the
chain A(x) ≺ A(x; z) ≺ A(z) makes d(̃r)¿ 5.

Lemma 4. Let !¿ 0 and �¿ 0 be two real num-
bers. If there exists a polynomial time (1 +
!; 54 − �)-approximation algorithm for the discrete
time-cost tradeoB problem; then there exists a poly-
nomial time approximation algorithm with perfor-
mance guarantee 1 + ! for the vertex cover problem
in cubic connected graphs.
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Proof. Consider an arbitrary instance G=(V; E) of
VC3. Compute the project PG in polynomial time,
as we described above. For every C =0; 1; : : : ; |V |,
apply the polynomial time (1+!; 54−�)-approximation
algorithm to project PG with cost bound C and with
duration bound D=4. Let C∗ denote the smallest cost
value, for which the algorithm outputs a realization
r̃∗ of cost at most (1 + !)C∗ and of duration at most
( 54 − �) 4.
First observe that the optimal vertex cover forG has

cardinality at least C∗: Otherwise, by Lemma 2 the
project PG had a realization with cost at most C∗ − 1
and duration at most 4, which contradicts the de@nition
of C∗. Next observe that d(̃r∗) is an integer that is
less or equal to ( 54 − �) · 4¡ 5, and hence d(̃r∗)6 4.
Therefore, we may use Lemma 3 to get a vertex cover
W for G of cardinality at most (1 + !)C∗.

Alimonti and Kann [1] proved that there exists an
�¿ 0 such that there is no polynomial time approx-
imation algorithm with performance guarantee 1 + �
for VC3 unless P=NP. Combining this result with
the statement of Lemma 4 yields our main result.

Theorem 5. There exists an �¿ 0 such that for
all �¿ 0; the existence of a polynomial time
(1 + �; 54 − �)-approximation algorithm for the
discrete time-cost tradeoB problem would imply
P=NP.
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