
Operations Research Letters 29 (2001) 241–245
www.elsevier.com/locate/dsw

A very di!cult scheduling problem with
communication delays

Han Hoogeveena ;1, Gerhard J. Woegingerb;c; ∗;2
aDepartment of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands
bDepartment of Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

cInstitut f,ur Mathematik, Technische Universit,at Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 24 July 2001; received in revised form 1 August 2001; accepted 17 August 2001

Abstract

A set of unit-time tasks has to be processed on an unrestricted number of processors subject to precedence constraints and
unit-time communication delays such that the makespan is minimized. What is the smallest number m∗ such that increasing
the number of processors beyond m∗ cannot decrease the makespan any more? We prove that answering this problem is
complete for the complexity class FPNP[log n]. Hence, the problem is at least as di!cult as all the problems in NP and at
least as di!cult as all the problems in coNP, and unless some complexity classes collapse, it is even more di!cult than
all these problems. This answers a question raised by Ivan Rival. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Parallel computation; Computational complexity; Scheduling; Makespan; Precedence constraints;
Communication delays

1. Introduction

We consider the following type of scheduling prob-
lem with communication delays. There are n tasks that
have to be executed by identical parallel processors.
Each processor is available from time zero onwards
and can execute at most one task at a time. The number
of processors is not the bottleneck of the system and
is considered to be unrestricted (‘use as many proces-

∗ Corresponding author.
E-mail addresses: slam@cs.uu.nl (H. Hoogeveen),

g.j.woeginger@math.utwente.nl (G.J. Woeginger).
1 Supported by EC Contract IST-1999-14186 (Project

alcom-FT).
2 Supported by the START program Y43-MAT of the Austrian

Ministry of Science.

sors as you like’). Each task Jj (j=1; : : : ; n) has a unit
processing time and produces information that may
be required by one or more of the other tasks. These
data dependencies deHne a partial order, the so-called
precedence relation, on the task set. It is represented
by an acyclic directed graph G with vertices J1; : : : ; Jn
and an arc Jj → Jk whenever Jk needs data from Jj.
For each arc Jj → Jk , we require that Jk cannot be
started before Jj has been completed and the informa-
tion produced by Jj has been transferred from its pro-
cessor to the processor of Jk . Transferring these data
from one processor to another one takes one time unit,
which is called a communication delay; there is no de-
lay if Jj and Jk are executed on the same processor. It
is assumed that the transmission of information does
not interfere with the availability of the processors.

0167-6377/01/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(01)00103 -1

242 H. Hoogeveen, G.J. Woeginger /Operations Research Letters 29 (2001) 241–245

A schedule is an allocation of each task to a time
slot of unit length on a processor such that processor
availability constraints, precedence constraints, and
communication delays are satisHed. Given a sched-
ule, we let Cj denote the completion time of task Jj
(j=1; : : : ; n). The primary goal in this scheduling
problem is to minimize the length or the makespan
of a schedule, that is the maximum task comple-
tion time max16j6n Cj. In the notation of Veltman,
Lageweg, and Lenstra [9], this problem is denoted by
P∞|prec; c=1; pj =1|Cmax.
Some history of this scheduling problem: Papadi-

mitriou and Yannakakis [5] were among the Hrst to
address this special scheduling problem. They study
a model with general processing times and com-
munication delays that allows for task duplication.
Hoogeveen, Lenstra, and Veltman [2] proved that it
is NP-complete to decide whether there exists a
schedule with makespan at most 6, whereas deciding
the existence of a schedule with makespan at most
5 can be done in polynomial time. Chenier et al. [1]
gave a polynomial time algorithm for the special case
where the precedence constraints form a tree, and
MKohring and SchKaLter [3] derived a polynomial time
algorithm for the case of series-parallel precedence
constraints. Many other results and references may
be found in the Ph.D. Theses of Picouleau [7] and
Veltman [8].
Our result: A schedule that yields the minimum

makespan is called an optimum schedule. Clearly, in
any optimum schedule the n tasks use at most n pro-
cessors. Ivan Rival suggested to investigate the prob-
lem of computing the smallest number m∗ of pro-
cessors that allows an optimum schedule (cf. the last
paragraph in [1]). By modifying the techniques of
Hoogeveen et al. [2], it is easy to show that Rival’s
problem is NP-hard, but it is by no means clear why
the problem should be contained in the complexity
classNP. In fact, we will prove that a stronger result
holds: Rival’s problem is contained in the complex-
ity class FPNP[log n], and it is complete for this class.
This provides an exact classiHcation of this problem
from a computational complexity point of view. It
also demonstrates that Rival’s problem is very di!-
cult: Unless several classes in the polynomial hierar-
chy collapse (which is considered to be very unlikely),
the problem is more di!cult than any NP-complete
and any coNP-complete problem.

Organization of the paper: Section 2 provides all
relevant information on computational complexity
theory as needed for this paper. It deHnes the class
FPNP[log n] and explains its relations to other com-
plexity classes. Section 3 gives the complexity proof
for Rival’s problem.

2. Preliminaries on computational complexity

This section gives some deHnitions and results from
computational complexity theory as needed in the rest
of the paper. We expect the reader to be familiar with
the basic concepts of complexity theory. For more
precise information, the reader is referred to Papadi-
mitriou’s book [4].
A decision problem, that is, a problem to which the

answer is either ‘Yes’ or ‘No’, lies in the complexity
classNP if and only if its Yes-instances have certi?-
cates of polynomial size that can be veriHed in poly-
nomial time. For example, the Yes-instances of the de-
cision problem ‘Given a set of tasks with precedence
constraints and a number d, is it true that the mini-
mum makespan for this instance is at most d’ have the
corresponding optimum schedules as certiHcate: One
only needs to check that the schedule obeys the prece-
dence constraints and communication delays, that ev-
ery processor processes at most one task at a time, and
that the makespan is indeed at most d. This clearly
can be done in polynomial time and puts the problem
into NP. Symmetrically, a decision problem is said
to lie in the complexity class coNP if and only if its
No-instances have certiHcates that can be veriHed in
polynomial time.
Researchers in theoretical computer science have

introduced a hierarchy of complexity classes, the
so-called polynomial hierarchy. It consists of an inH-
nite number of increasingly di!cult classes, starting
at the ‘easiest’ classes NP and coNP and extend-
ing up to PSPACE, the class of problems that can be
solved within polynomial space. Near the bottom of
the polynomial hierarchy sits FPNP[log n], a complex-
ity class that was Hrst studied by Papadimitriou and
Zachos [6]. A problem is in FPNP[log n] if its instances
x are decided by a polynomial time Turing machine,
which is allowed O(log |x|) calls to an NP oracle
(here |x| denotes the length of the encoding of instance
x). Intuitively speaking, a problem in FPNP[log n] has

H. Hoogeveen, G.J. Woeginger /Operations Research Letters 29 (2001) 241–245 243

to be solved by a polynomial time algorithm that is
allowed to make O(log |x|) calls to a subroutine that
is able to solve any problem in NP; the algorithm is
not charged for the time needed by the subroutine.
A problem X is hard for a complexity class C, if

all problems in C are polynomial time reducible to
X . Problem X is complete for C, if X lies in C and
also is hard for C. Intuitively speaking, the complete
problems for C are the most di!cult problems in C.
There are several ‘natural’ problems that are com-

plete for the class FPNP[log n], e.g. Clique Size (Given
a graph, determine the size of its largest clique) or
Bin Packing Number (Given a set of items of size
at most one, determine the minimum number of
unit-size bins into which these items can be packed).
The general belief is that the decision versions of
FPNP[log n]-complete problems are neither in NP
nor in coNP; otherwise part of the polynomial hi-
erarchy would collapse, which is considered to be a
very unlikely event. In Section 3, we will prove that
Rival’s scheduling problem is FPNP[log n]-complete.
FPNP[log n]-hardness will be proved by a polynomial
time reduction from the Max 3-Sat Size problem,
which is known to be FPNP[log n]-complete [4, Chap-
ter 17.1].
Max 3-Sat Size: Given a set of clauses with exactly

three literals per clause, Hnd the maximum number of
clauses that can be satisHed simultaneously by a truth
assignment.

3. The complexity of the scheduling problem

In this section, we take a closer look at Rival’s prob-
lem as described in the introduction. For a set of tasks
with precedence relation G and for a nonnegative in-
teger m, let Opt(G;m) denote the minimum makespan
achievable by a schedule that obeys all precedence
constraints, communication delays, processor avail-
ability constraints, while using only m processors. For
the sake of completeness, we deHne Opt(G; 0)=+∞.
Note that Opt(G;m) is a non-increasing function in m.
Rival’s problem may now be reformulated as follows.

Given a set of n tasks with precedence re-
lation G, compute the number m∗ for which
Opt(G;m∗)=Opt(G; n) and Opt(G;m∗ − 1)¿
Opt(G; n).

Lemma 3.1. Rival’s scheduling problem is contained
in FPNP[log n].

Proof. First we observe that the problem ‘Given a set
of tasks with precedence relationG and numbersm and
d, is it true that Opt(G;m)6d’ is in NP, since the
corresponding schedule may be used as certiHcate for
the Yes-instances. We will devise a polynomial time
algorithm that solves Rival’s problem while asking at
most 2�log2 n� such questions; this clearly proves the
lemma.
In the Hrst phase, the algorithm computes the opti-

mum makespan d∗ =Opt(G; n) for the instance. Since
16d∗6 n holds, this is easily done by binary search
over the range [1; : : : ; n] while making at most �log2 n�
calls to the NP-solving subprogram. In the second
phase, the algorithm performs another binary search
over the number of processors. This time, the goal is
to Hnd the smallest m∗ for which Opt(G;m∗)6d∗

holds.

In the remainder of the paper, we give an
FPNP[log n]-hardness reduction for Rival’s problem.
This reduction is based on similar ideas as used by
Picouleau [7] and by Hoogeveen et al. [2]. We start
from an instance for Max 3-Sat Size. Let this instance
have U = {x1; : : : ; xu} as its set of u logical vari-
ables, which appear in this instance, either negated
or unnegated, and let C = {c1; : : : ; cv} be the set of v
clauses over U in this instance, where every clause
consists of exactly three literals.
From this Max 3-Sat Size instance, we will con-

struct in polynomial time a set of n=5u + 10v + 9
precedence constrained tasks. The optimum makespan
of the constructed scheduling instance will be nine.
The tasks are divided into three groups: Structure
tasks, variable tasks and clause tasks.
First there are u + 3v + 9 structure tasks: Nine of

them are the tasks s1; s2; : : : ; s9 where si has to precede
si+1 for 16 i6 8. The remaining u + 3v structure
tasks are called dummy tasks; they all precede task
s3. Observe that in any schedule with makespan nine,
the chain of tasks s1; : : : ; s9 is continuously processed
on a single processor such that task si occupies time
slot i, 16 i6 9. The dummy tasks block time slot 1
of u+ 3v other processors.
For every variable xi, there are four variable tasks

called ai, xi, xi and bi. The structure task s4 precedes

244 H. Hoogeveen, G.J. Woeginger /Operations Research Letters 29 (2001) 241–245

Fig. 1. The nine structure tasks s1; : : : ; s9, seven tasks corresponding to clause cj , and four tasks corresponding to variable xi . Time
proceeds horizontally. Tasks on the same horizontal line are scheduled on the same machine.

ai, ai precedes the two tasks xi and xi, and these two
tasks precede bi. We say that task xi corresponds to
the unnegated literal xi and that xi corresponds to the
negated literal. In any schedule with makespan nine,
task ai has to be processed during time slot 6, one of
xi and xi is processed during time slot 7 and the other
one during time slot 8, and task bi is processed during
time slot 9.
For every clause cj, there are seven clause tasks ckj

(k =1; : : : ; 7). Task c1j precedes c
2
j , c

3
j , and c

4
j . Task c

2
j

precedes the tasks c5j and c
6
j , task c

3
j precedes the tasks

c5j and c
7
j , and task c

4
j precedes the tasks c

6
j and c

6
j . Fi-

nally, the task corresponding to the Hrst (respectively,
second and third) literal in clause cj is a successor of
the task c5j (respectively, c

6
j , and c

7
j).

There are no other precedence relation between the
tasks. This completes the description of the scheduling
instance. For an illustration see Fig. 1. This Hgure
corresponds to an instance in which xi is the second
literal contained in the clause cj.

Claim 3.2. The optimum makespan of the con-
structed scheduling instance is nine.

Proof. Consider the following schedule with
makespan 9. All clause tasks c1j are processed during
time slot 1, all tasks c2j , c

3
j , and c

4
j during time slot

3, and all tasks c5j , c
6
j , and c

7
j during time slot 5. All

variable tasks ai are scheduled during time slot 6, xi

during time slot 7, xi during time slot 8, and bi during
time slot 9. The structure tasks are scheduled in the
obvious way.

Proposition 3.3. There exists an optimum schedule
in which task c1j is processed during time slot 2 if
and only if at least one of the tasks corresponding to
a literal in clause cj is processed during time slot 8.
Moreover; there exists an optimum schedule in which
each such task c1j is processed during time slot 2.

Proof. We start with the ‘only if’ part. Let xi be the
Hrst literal in cj and suppose that the task xi is pro-
cessed during time slot 7. As time slot 6 on the same
machine is blocked by the task ai, the predecessor c5j
of xi is processed during time slot 5 at the latest. Sim-
ilarly, the tasks c6j and c7j are processed during time
slot 5 as the latest. Hence, the tasks c2j , c

3
j , and c

4
j are

processed during time slot 3 at the latest, which im-
plies that task c1j is processed during time slot 1.
The ‘if ’-part follows immediately from Fig. 1. The

‘Moreover’ part follows from the observation that we
have an inHnite number of processors, as none of the
tasks c5j , c

6
j , and c

7
j needs to be executed immediately

before its successor on the same machine.

Claim 3.4. If there exists a truth assignment that
satis?es v∗ of the clauses of the Max 3-Sat Size
instance; then there exists an optimum schedule that
uses only u+ 4v− v∗ + 1 processors.

H. Hoogeveen, G.J. Woeginger /Operations Research Letters 29 (2001) 241–245 245

Proof. Consider this truth assignment. If variable xi
is True, then schedule task xi during time slot 7 and
task xi during time slot 8. If variable xi is False, then
schedule task xi during time slot 7 and task xi during
time slot 8. Proposition 3.3 implies that there exists an
optimum schedule such that for every satisHed clause
cj its clause task c1j is processed during time slot 2.
For executing all clause tasks, we need 3v proces-

sors, which can also be used to process some of the
variable tasks: we need no more than u+3v processors
to execute all clause and variable tasks. Hence, the
number of used processors is determined by the num-
ber of tasks that are processed in time slot 1, which are
the u+ 3v dummy task, task s1, and the tasks c1k cor-
responding to clauses ck not satisHed by the truth as-
signment. Hence, we need no more than u+4v−v∗+1
processors.

Claim 3.5. If there exists a schedule with makespan
nine that uses u+ 4v− v∗ + 1 processors; then there
exists a truth assignment that satis?es v∗ of the
clauses.

Proof. Consider the truth setting where xi is True if
and only if its corresponding task is processed during
time slot 8. Since the u + 3v dummy tasks and task
s1 are processed during time slot 1, at most v− v∗ of
the clause tasks c1j can be scheduled during time slot 1
and at least v∗ of them must be scheduled during time
slot 2. Hence, Proposition 3.3 implies that at least v∗

clauses are satisHed.

Theorem 3.6. Rival’s scheduling problem is
FPNP[log n]-complete.

Proof. By Lemma 3.1, the problem is contained in
FPNP[log n]. Let v∗ denote the maximum number of
clauses that can be satisHed simultaneously by a truth

assignment for the Max 3-Sat Size instance, and
let m∗ denote the solution to the constructed
instance of Rival’s problem. By Claims 3:2, 3:4, and
3:5, the equality v∗ + m∗ = u + 4v + 1 holds for the
constructed instance. Thus, one can easily compute
v∗ from m∗.

Acknowledgements

We would like to thank Frits C.R. Spieksma for
helpful discussions.

References

[1] Ch. Chenier, J. Urrutia, N. Zaguia, Scheduling tasks with
communication delays on parallel processors, Order 12 (1995)
213–220.

[2] J.A. Hoogeveen, J.K. Lenstra, B. Veltman, Three, four, Hve,
six, or the complexity of scheduling with communication
delays, Oper. Res. Lett. 16 (1994) 129–137.

[3] R.H. MKohring, M.W. SchKaLter, Scheduling series-parallel
orders subject to 0=1 communication delays, Parallel Comput.
25 (1999) 23–40.

[4] C.H. Papadimitriou, Computational Complexity, Addison-
Wesley, New York, 1994.

[5] C.H. Papadimitriou, M. Yannakakis, Towards an
architecture-independent analysis of parallel algorithms, SIAM
J. Comput. 19 (1990) 322–328.

[6] C.H. Papadimitriou, S.K. Zachos, Two remarks on the
complexity of counting, Proceedings of the Sixth GI
Conference of Theoretical Computer Science, Lecture Notes
in Computer Science, Vol. 145, Springer, Berlin, 1983, pp.
269–276.

[7] C. Picouleau, Etude de problSemes les systSemes distribuTes,
Ph.D. Thesis, Univ. Pierre et Marie Curie, Paris, France, 1992.

[8] B. Veltman, Multiprocessor scheduling with communication
delays, Ph.D. Thesis, CWI, Amsterdam, The Netherlands,
1993.

[9] B. Veltman, B.J. Lageweg, J.K. Lenstra, Multiprocessor
scheduling with communication delays, Parallel Comput. 16
(1990) 173–182.

