
Operations Research Letters 29 (2001) 231–239
www.elsevier.com/locate/dsw

List scheduling in a parallel machine environment with
precedence constraints and setup times

Johann Hurinka ; ∗, Sigrid Knustb;1

aFaculty of Mathematical Sciences, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
bFachbereich Mathematik=Informatik, Universit+at Osnabr+uck, D-49069 Osnabr+uck, Germany

Received 2 May 2000; received in revised form 1 September 2001; accepted 20 September 2001

Abstract

We present complexity results which have in-uence on the strength of list scheduling in a parallel machine environment
where additional precedence constraints and sequence-dependent setup times are given and the makespan has to be
minimized. We show that contrary to various other scheduling problems, in this environment a set of dominant schedules
cannot be calculated e1ciently with list scheduling techniques. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 90B35

Keywords: Scheduling; List scheduling; Complexity; Parallel machines; Setup times

1. Introduction

List scheduling is a widely used concept in the scheduling area. Basically, a list scheduling algorithm is a
routine which calculates for a given order of jobs (which may be given by a list) a corresponding schedule.
Mostly, such routines consider the jobs one by one in the given order and take a scheduling decision on the
base of the partial schedule given by the previously scheduled jobs. Decisions for formerly scheduled jobs
are not changed again.

On the one hand, several polynomial algorithms and approximation heuristics are based on list scheduling
algorithms. For these methods, mostly only one list of jobs is considered and the outcome of the list scheduling
algorithm for this list will be the outcome of the method. One of the most famous polynomial algorithms
of this type is Smith’s rule [9] for problem 1‖∑wjCj (all problems in this paper are denoted using the
well-known �|�|�-notation of Graham et al. [4]), which sorts the jobs according to non-increasing wj=pj

values and schedules the jobs in this order on the machine. Approximation heuristics of this type, e.g., are
given by Baker [1] and Graham [3]. They also apply the list scheduling routine to one list, but in general,
the outcome is not optimal for the considered problem (in the literature, such approaches are also called static
priority rules; see e.g. [6]).

∗ Corresponding author. Tel.: +31-534893447; fax: +31-534894858.
E-mail addresses: j.l.hurink@math.utwente.nl (J. Hurink), sigrid@mathematik.uni-osnabrueck.de (S. Knust).

1 Supported by the Deutsche Forschungsgemeinschaft, Project ‘Komplexe Maschinen-Schedulingprobleme’.

0167-6377/01/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(01)00104 -3

232 J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239

On the other hand, list schedules may form the base of branch and bound methods or local search algorithms:
if the set of all schedules achieved by applying an e1cient list scheduling algorithm to all possible sequences of
the jobs is a dominant set (i.e. the set contains at least one optimal solution), we can restrict our considerations
to these schedules and use the set of all possible job sequences as solution space. Woerlee [11] has used this
concept for developing a branch-and-bound method for problem P|rj|Lmax and Schutten and Leussink [8] did
the same for problem P|rj; sj|Lmax.

In this paper, we present some complexity results which restrict the use of list scheduling for solving a
parallel machine scheduling problem where additionally precedence constraints and sequence-dependent setup
times are given and the makespan has to be minimized. This problem is denoted by P|prec; sij|Cmax and can
be stated as follows: given are n jobs with processing times p1; : : : ; pn which have to be processed on m
parallel machines without preemption respecting a given set of precedence constraints. Furthermore, if jobs i
and j are processed consecutively on the same machine, a setup of length sij has to be done on the machine
between the two jobs. The goal is to minimize the makespan, i.e. the maximal completion time of a job. The
problem is NP-hard in the strong sense since it generalizes the single-machine problem 1|sij|Cmax (traveling
salesman problem) and the classical parallel machine problem P‖Cmax. Some other complexity results for
scheduling problems with sequence-dependent setup times can be found in Monma and Potts [5].

In the remaining of this paper, we deal with the question whether it is possible to design an e1cient list
scheduling algorithm for problem P|prec; sij|Cmax which produces a dominant set of list schedules if it is
applied to all sequences of jobs which are compatible with the given precedences (i.e. are linear extensions
of the partial order induced by the precedences). A positive answer to this question could lead to a solution
approach for the considered problem by using the set of all possible job sequences as solution space and the
developed method to generate corresponding schedules. However, in this paper we will show that a positive
answer to this question is very unlikely.

The paper is organized as follows. In Section 2, we review diLerent versions of common list scheduling
algorithms for parallel machine problems. In Section 3, we consider the problem P|sij|Cmax without additional
precedence constraints, but with a given job sequence �. We show that for an arbitrary number of machines,
the problem of Mnding a best schedule in which job �j does not start its execution earlier than job �i for all
i¡ j is strongly NP-hard and that the problem remains ordinary NP-hard for a Mxed number m of machines
(even for m = 2). A pseudo-polynomial algorithm for problem Pm|sij|Cmax with a given starting time order
� is presented in Section 4. Some consequences of these results for the possibilities of using list scheduling
algorithms for the considered problem are discussed in Section 5. The paper ends with some concluding
remarks.

2. List scheduling algorithms

As mentioned in the Introduction, the concept of list scheduling has been widely used in the scheduling
area. In order to apply this concept successfully, an e1cient list scheduling algorithm has to be designed
which produces a dominant set of schedules (a set of schedules is called dominant if it contains at least one
optimal schedule). In this section, we focus on diLerent versions of parallel machine problems and consider
some possibilities for list scheduling algorithms.

Given a list of all jobs, a standard list scheduling algorithm constructs a schedule for the parallel machine
problem P‖Cmax as follows: schedule the next job of the list on a machine which is available Mrst (i.e. where
the job starts its processing as early as possible). Obviously, this list scheduling algorithm is polynomial and
the set of all schedules obtained in this way is a dominant set. If in addition precedence constraints are given,
only lists which are compatible with the precedences are considered (i.e. if i → j holds, i is placed before
j in the list). It is easy to see that the described list scheduling algorithm still produces a dominant set of
schedules. If, on the other hand, sequence-dependent setup times sij are considered, Schutten [7] has shown

J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239 233

that the list scheduling algorithm also produces a dominant set for problem P|sij|Cmax if in each step the
considered job is processed on a machine where it starts its processing (not its setup) as early as possible.
However, in the case where setup times and precedence constraints are given, the result of Schutten cannot
be generalized as the following example shows.

Example. Given are 2 machines and 4 jobs with unit processing times. The setup times are given by

s = (sij)i; j=1; :::;4 =




0 10 2 10
10 0 0 1
10 10 0 10
10 10 10 0


 :

The optimal solution is achieved by scheduling jobs 1 and 3 on one machine in this order and jobs 2 and 4 on
the other machine in that order (see the above Mgure). This solution can be calculated by the list scheduling
algorithm using the sequence �=(1; 2; 4; 3) or �=(2; 1; 4; 3). All other sequences lead to schedules with larger
makespans.

If we now add a precedence constraint 3 → 4, the structure of the optimal solution remains the same (same
machine assignment and same sequences on the machines, only job 4 has to start 2 units later). However,
since the sequences �= (1; 2; 4; 3) and �= (2; 1; 4; 3) are no longer compatible with precedence constraints, a
standard list scheduling procedure will not consider these two sequences and, thus, the set of all list schedules
does not contain the optimal solution anymore (even if one would apply the list scheduling algorithm to the
two sequences, the set of list schedules is no longer dominant, since the solutions resulting from the two
sequences are infeasible).

This example shows that for problem P|prec; sij|Cmax another list scheduling algorithm has to be used in
order to obtain a dominant set of schedules. A class of schedule generation schemes which is often used for
diLerent scheduling problems works as follows: Given a permutation �, a schedule is constructed in which job
�j does not start its execution earlier than job �i for all i¡ j. Sprecher and Drexl [10] used such a procedure
in a branch and bound algorithm (generating a so-called “precedence tree”) for the resource-constrained project
scheduling problem (RCPSP). Carlier and Neron [2] showed that for multi-processor -ow-shop problems a
so-called “strict scheduling algorithm” produces a dominant set of schedules.

In the following section, we will deal with the question whether such an approach is also possible for
problem P|prec; sij|Cmax. We will show that it is NP-hard to determine a schedule with minimal makespan
where the starting times respect a given order �.

3. NP-hardness results

In this section, we will consider the parallel machine problem P|sij|Cmax with sequence-dependent setup
times sij, no precedence relations, and a given job list �. We are interested in a schedule with minimal
makespan where job �j does not start its execution earlier than job �i for all i¡ j.

Theorem 1. For problem P|sij|Cmax it is NP-hard in the strong sense to determine a schedule with minimal
makespan where the starting times respect a given order �.

Proof. To prove the NP-hardness; we will reduce the strongly NP-hard problem 3-PARTITION (3-PART) to
the decision version of the given problem.

3-PART: Given are 3r positive number a1; : : : ; a3r with
∑3r

i=1 =rb and b=4¡ai ¡b=2 for i=1; : : : ; 3r. Does
there exist a partition I1; : : : ; Ir of the index set {1; : : : ; 3r} such that |Ij|=3 and

∑
i∈Ij ai = b for j=1; : : : ; r?

234 J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239

Given an arbitrary instance of 3-PART, an instance of problem P|sij|Cmax with a given starting time order
� is constructed as follows:

Let c := (m + 1)b + 1, let the number of machines be given by m := r, and let the number of jobs be
n := 3r2. For simplicity of notation, we denote the 3r2 jobs by pairs (i; j) with i = 1; : : : ; 3r and j = 1; : : : ; r.
The processing times of the jobs (1; j) for j = 1; : : : ; r are given by

p(1; j) :=

{
a1 if j = 1;

0 otherwise

and the processing times of the remaining jobs (i; j) for i = 2; : : : ; 3r and j = 1; : : : ; r are deMned as

p(i; j) :=

{
c − b+ ai if j = 1;

c − jb if j¿ 2:

The setup times between two jobs (i; j); (k; l) are given by

s(i; j); (k; l) :=




lb if k = i + 1;

c + b+ 1 if k = 1;
(l+ 1)b+ 1 otherwise:

We ask for a schedule in which the starting times respect the lexicographic order

� := ((1; 1); : : : ; (1; m); (2; 1); : : : ; (2; m); (3; 1); : : : ; (3r; m))

with a makespan Cmax6y := (3r − 1)c + b. We show that 3-PART has a feasible solution if and only if a
schedule respecting � with Cmax6y exists.

To do this, we Mrst calculate the sum of the processing time of a job and the setup time preceding this
job. Assume that two jobs (i; j) and (k; l) are scheduled consecutively on the same machine. Then we have

s(i; j); (k; l) + p(k; l) =




c + ak if k = i + 1 and l= 1;

c if k = i + 1 and l¿ 2;

c + b+ 1 + ak if k �= i + 1 and l= 1;

c + b+ 1 otherwise:

(3.1)

Now assume that I1; : : : ; Ir is a feasible solution of 3-PART. We construct a corresponding schedule for the
jobs (i; j) with i = 1; : : : ; 3r and j = 1; : : : ; r of the instance of P|sij|Cmax as follows: If i∈ Ij, schedule job
(i; 1) on the ith position on machine Mj and schedule the jobs (i; 2); : : : ; (i; m) on the ith position of the other
machines Mk; k �= j, in an arbitrary way.

The construction of such a schedule is illustrated by an example in Fig. 1, where we have r =m= 3 and
assume that I1 = {1; 4; 6}; I2 = {2; 5; 8}; I3 = {3; 7; 9} is a solution of 3-PART.

Let us consider an arbitrary machine Mk and denote by (i1; j1); : : : ; (i3r ; j3r) the job sequence on Mk in
the resulting schedule. We assume that all jobs are processed consecutively and that no idle times on the
machines occur due to the order �. Later on we will show that this assumption is valid since job �j does not
start before job �i for all i¡ j, i.e. the starting time order � is respected in the schedule.

Based on the assignment, we have iq=q for q=1; : : : ; 3r and, thus, for the completion time CM
k of machine

Mk we get

CM
k =p(1; j1) +

3r∑
q=2

(s(q−1; jq−1);(q; jq) + p(q; jq))

= (3r − 1)c +
∑

{q|jq=1}
aiq = (3r − 1)c +

∑
i∈Ik

ai

due to the second case in (3.1). Since I1; : : : ; Ir forms a feasible partition, this value is equal to (3r−1)c+b=y
and the resulting schedule satisMes Cmax = maxmk=1{CM

k }6y.

J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239 235

Fig. 1. Schedule derived from a solution of 3-PART with r = m = 3.

To state that the schedule is a feasible solution for the given problem, it remains to show that the starting
times respect the order � = ((1; 1); : : : ; (1; m); (2; 1); : : : ; (2; m); (3; 1); : : : ; (3r; m)).

Let Sj
i denote the starting time of job (i; j) in the given schedule. For i = 1 we have S1

1 = 06 S2
1 =

06 · · ·6 Sm
1 = 0. Now we consider i¿ 2. Since job (i; j) is scheduled on the ith position on a machine, we

get

Sj
i ¿ (i − 2)c + sh; (i; j) = (i − 2)c + jb;

where h denotes the predecessor of job (i; j) on its machine and

Sj
i 6 (i − 2)c + sh; (i; j) + b= (i − 2)c + (j + 1)b:

Thus, we get

S1
i 6 S2

i 6 · · ·6 Sm
i :

Since, furthermore

Sm
i 6 (i − 2)c + (m+ 1)b= (i − 1)c − 1¡ (i − 1)c + b6 S1

i+1;

we can conclude that the constructed schedule respects � and, thus, is a feasible solution for the considered
parallel machine problem.

Conversely, assume that problem P|sij|Cmax has a solution respecting � with Cmax6y=(3r−1)c+b. First,
we consider a schedule on a single machine Mk . Let (i1; j1); : : : ; (iQ; jQ) be the sequence of jobs scheduled on
Mk . In three steps we will show that:

• exactly Q = 3r jobs are processed on Mk ,
• the Mrst job (i1; j1) is a job of the type (1; j), and
• all Mrst indices iq of the jobs (iq; jq) are numbered consecutively, i.e. iq = q holds for q = 1; : : : ; Q.

For the completion time CM
k of machine Mk we get

CM
k ¿p(i1 ; j1) +

Q∑
q=2

(s(iq−1 ; jq−1); (iq; jq) + p(iq; jq)):

• Due to (3.1) we have CM
k ¿p(i1 ;j1)+(Q−1)c. Thus, since the given schedule satisMes Cmax6 (3r−1)c+b,

at most 3r jobs are processed on each machine (i.e. Q6 3r). However, since the total number of jobs to

236 J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239

be scheduled on the m machines is given by 3rm, exactly 3r jobs have to be processed on each machine
(i.e. Q = 3r).

• If we now assume that for the Mrst job (i1; j1) we have i1 �=1, this induces

CM
k ¿ (3r − 1)c + p(i1 ; j1)¿ (3r − 1)c + c − mb= (3r − 1)c + b+ 1;

which is a contradiction. Since we have exactly m jobs of type (1; j), on each machine Mrst a job (1; j)
and afterwards 3r − 1 other jobs are processed (i.e. i1 = 1).

• Next, assume that the indices iq−1; iq of two consecutive jobs (iq−1; jq−1) and (iq; jq) are not numbered
consecutively, i.e. we have iq �= iq−1 + 1. Due to (3.1), this yields

CM
k ¿ (3r − 1)c + b+ 1;

which is a contradiction. Therefore, we have iq = q for q = 1; : : : ; 3r, which implies

CM
k = (3r − 1)c +

∑
{q|jq=1}

aiq :

From CM
k 6y = (3r − 1)c + b we can now conclude

∑
{q|jq=1} aiq 6 b for each machine. However, since∑3r

i=1 ai = mb and since each job (i; 1) for i = 1; : : : ; 3r is scheduled on one of the m machines, we get∑
{q|jq=1} aiq =b: Thus, if we associate with machine Mk the set Ik ={iq|jq =1}, we obtain a feasible solution

for problem 3-PART.

The above theorem shows that problem P|sij|Cmax with a given starting time order � is NP-hard in the
strong sense if the number of machines is arbitrary. The next theorem shows that for a Mxed number m of
machines (even for m= 2) the problem stays NP-hard.

Theorem 2. For problem P2|sij|Cmax it is NP-hard to determine a schedule with minimal makespan respect-
ing a given starting time order �.

Proof. The NP-hardness can be proven by reducing the NP-hard problem PARTITION to the decision version
of problem P2|sij|Cmax in a similar way as presented in Theorem 1.

Since the reduction from Theorem 2 starts from the ordinary NP-hard problem PARTITION, the theorem
only states that problem Pm|sij|Cmax is NP-hard in the ordinary sense. In the following section, we will
show that it is unlikely to expect that the problem is NP-hard in the strong sense, since a pseudo-polynomial
dynamic programming algorithm to solve the problem is presented.

In the literature, it is often assumed that setup times satisfy a triangle inequality. The setup times satisfy
the so-called weak triangle inequality if

sih + ph + shj¿ sij

for all jobs i; j; h holds. If we have even sih + shj¿ sij for all i; j; h; the strong triangle inequality holds.
Obviously, the setup times in the example in Section 2 satisfy the strong triangle inequality. For instance in

Theorem 1, the weak triangle inequality ŝ := s(ij); (k; l) +p(k; l) + s(k; l); (g;h)¿ s(i; j); (g;h) can be shown as follows:

• If g = i + 1, we have ŝ¿ s(k; l); (g;h) = (h+ 1)b+ 1¿hb= s(i; j); (g;h);
• if g = k + 1, we get ŝ¿ s(ij); (k; l) + p(k; l)¿ c¿ (m+ 1)b+ 1¿ (h+ 1)b+ 1 = s(i; j); (g;h);
• and in all other cases we obtain ŝ¿ s(k; l); (g;h) = s(i; j); (g;h):

For the instance in Theorem 2 analogously the weak triangle inequality can be shown. Note that both instances
can be modiMed in such a way that even the strong triangle inequality holds (by adding a large constant to
all setup times and adjusting the threshold value y appropriately). Thus, also in this case the problems remain
NP-hard.

J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239 237

4. A pseudo-polynomial algorithm

In this section, we will provide a pseudo-polynomial algorithm for problem Pm|sij|Cmax with a given
starting time order �. Let T6

∑n
j=1(pj +

∑n
i=1 sij) denote an upper bound for the optimal makespan, which

is pseudo-polynomially bounded with respect to the input length of the instance. The key issue of the dynamic
programming algorithm is the observation that for adding job �k to a partial schedule of the jobs �1; : : : ; �k−1

we only need to know the Mnishing times of all machines M1; : : : ; Mm and the jobs which are scheduled last
on them. Following this observation, the stages of the dynamic program can be chosen as follows:

(k; t1; : : : ; tm; l1 : : : ; lm);

where

k ∈{1; : : : ; n} denotes the number of scheduled jobs;

tj ∈{0; : : : ; T} for j = 1; : : : ; m denotes the completion time of the last job on Mj;

lj ∈{1; : : : ; n} for j = 1; : : : ; m denotes the last job on Mj:

For a stage (k; t1; : : : ; tm; l1 : : : ; lm) we will set f(k; t1; : : : ; tm; l1 : : : ; lm) := 1 if a feasible schedule of the jobs
�1; : : : ; �k exists

• which respects the order �,
• where job lj is scheduled last on machine j (lj = 0 indicates that no job is scheduled on machine j), and
• where job lj completes at time tj (if lj = 0, tj must be zero too).

Otherwise, f(k; t1; : : : ; tm; l1 : : : ; lm) will be deMned as 0. Following this deMnition, we may restrict the consid-
erations to stages (k; t1; : : : ; tm; l1 : : : ; lm) with:

• lj ∈{0; �1; : : : ; �k}, i.e. the last jobs belong to the set of scheduled jobs,
• lj �= li if lj �=0, i.e. on diLerent machines diLerent jobs are scheduled last,
• tj = 0 if lj = 0, i.e. the completion time of Mj is 0 if no job is scheduled on it,
• �k ∈{l1; : : : ; lm}, i.e. the job �k added in the stage is scheduled last on a machine,
• ti − pli 6 tj − plj if li precedes lj in �, i.e. the starting time of job li is not larger than the starting time

of job lj.

Stages fulMlling these conditions will be called feasible stages. It is straightforward to see that the number of
stages is bounded by n(T +1)mnm, which is pseudo-polynomially bounded in the input length of the instance.

Now, assume that for a Mxed value of k all the f-values for all feasible stages of the form (k −
1; t′1; : : : ; t

′
m; l

′
1 : : : ; l

′
m) are known. Based on these values, the f-value of a feasible stage (k; t1; : : : ; tm; l1 : : : ; lm)

can be calculated as follows:
f(k; t1; : : : ; tm; l1 : : : ; lm) = 1 if and only if job �k can be added to the partial schedule as a last job, i.e. if

a feasible stage (k − 1; t1; : : : ; tj−1; t′j; tj+1; : : : ; tm; l1 : : : ; lj−1; l′j; lj+1; : : : ; lm) exists with

• t′j6 tj − p�k − sl′j�k (sl′j�k = 0 if l′j = 0), i.e. job �k can be scheduled last on Mj, and
• f(k − 1; t1; : : : ; tj−1; t′j; tj+1; : : : ; tm; l1 : : : ; lj−1; l′j; lj+1; : : : ; lm) = 1.

Calculating this value takes an eLort of at most O(Tn).
If, initially, we deMne f(0; 0; : : : ; 0; 0; : : : ; 0) = 1, we can calculate successively the f-values of all feasible

states in O(nm+2Tm+1) and, thus, in pseudo-polynomial time. The makespan of a best schedule is then given
by the value maxmj=1{tj} of a feasible stage (n; t1; : : : ; tm; l1 : : : ; lm) with f(n; t1; : : : ; tm; l1 : : : ; lm) = 1.

238 J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239

5. Consequences for list scheduling

In Section 2, we discussed two diLerent ways of using list scheduling to deal with the subproblem resulting
after Mxing a sequence � of the jobs for problem P|prec; sij|Cmax:

• consider the jobs in the order � and schedule them such that they start processing as early as possible,
• schedule the jobs such that their starting times respect the order �.

The example in Section 2 shows that the Mrst possibility does not lead to a dominant set. The results of Sections
3 and 4 indicate that it is hard to Mnd an e1cient method for the second possibility. It seems that a negative
answer to the second possibility already would imply a negative answer to the Mrst possibility. However, this
must not be the case. As mentioned in Section 2, Schutten [7] showed that for problem P|sij|Cmax the set of
list schedules calculated with the Mrst possibility is a dominant set, whereas our results from Section 3 state
that the problem of Mnding a best schedule respecting a given starting time order is NP-hard. The reason for
this is that the list scheduling algorithm using a sequence � does not necessarily result in a schedule where
the starting times respect �.

Example. Given are 2 machines and 4 jobs with unit processing times. The setup times are given by

s = (sij)i; j=1; :::;4 =




0 10 1 10
10 0 0 2
10 10 0 10
10 10 10 0




The optimal solution is achieved by scheduling jobs 1 and 3 on one machine in this order and jobs 2 and 4 on
the other machine in that order (see the above Mgure). This solution can be calculated by the list scheduling
algorithm using the sequence � = (1; 2; 4; 3) or � = (2; 1; 4; 3). However; for both sequences in the resulting
schedule the starting times of job 3 and 4 do not respect the order (4; 3).

It still remains open whether another type of list scheduling algorithm is able to produce a dominant set in
an e1cient way. However, a closer look at the proof of Theorem 1 indicates that this is very unlikely:
In the proof of Theorem 1 no precedences are used and, thus, a list scheduling algorithm may consider

all possible sequences of the jobs and calculate for each of these sequences a corresponding schedule (which
does not have to respect the given sequence of the jobs). In the following, we show that by the introduction
of precedences an instance may be constructed which still may be used for the proof of Theorem 1, but
which allows only one relevant sequence to be considered by a list scheduling algorithm.
The instance of the scheduling problem corresponding to an arbitrary instance of 3-PART in the proof

of Theorem 1 has to be changed as follows:
Replace each job (i; j) by two jobs (i; j) s and (i; j)p which are linked by a precedence constraint (i; j) s →

(i; j)p and which have processing times p(i; j) s := 0 and p(i; j)p :=p(i; j). The s-job represents the starting point
of the original job and the p-job represents the real processing of the original job. This construction is
necessary, to enable us to translate a starting time sequence into precedences (note that precedences are
@nish–start relations between jobs and the sequence � in Theorem 1 corresponds to start–start relations
between jobs).
The original setup times between two jobs (i; j) and (k; l) are transfered to the jobs (i; j)p and (k; l)s.

Furthermore, we de@ne additional setup times which guarantee that the s-job and the p-job corresponding
to the same original job are always scheduled directly after each other on the same machine. This is done
by setting

s(i; j) s ; (k; l)p :=

{
0 if (i; j) = (k; l);

∞ otherwise:

J. Hurink, S. Knust / Operations Research Letters 29 (2001) 231–239 239

This forces that job (i; j)p has to be scheduled immediately after job (i; j) s on the same machine in each
schedule of @nite length. Since the setup time between these two jobs is 0; each feasible schedule of the new
instance with @nite length is also a feasible schedule of the instance used in the proof of Theorem 1 and
vice versa.
If we now introduce precedence constraints

(1; 1)s → · · · → (1; m)s → (2; 1)s → · · · → (2; m)s → (3; 1)s → · · · → (3r; m)s

each feasible schedule with @nite length will respect the sequence � given in the proof of Theorem 1. However,
in the new instance only the decisions for the jobs (i; j) s are relevant (the p-jobs have to be processed
immediately behind the corresponding s-job on the same machine). Since the precedence constraints allow
just one sequence for these s-jobs, only one relevant sequence is available for list scheduling and, thus, if
list scheduling would result in a dominant set, the application of the algorithm to only one sequence would
solve an NP-hard problem.

6. Conclusions

The considered parallel machine problem P|prec; sij|Cmax is a combination of a partitioning and a sequencing
problem. Thus, a possible optimization algorithm for it may be based on a two-stage approach where Mrst
decisions for one of the subproblems are Mxed and afterwards the remaining part of the problem is treated. This
raises the question whether Mxing decisions for the partition part or the sequencing part leads to easy solvable
remaining subproblems. Obviously, Mxing the partition part leads to an NP-hard subproblem generalizing the
traveling salesman problem. In this paper, we focused on the opposite approach where the sequencing part is
Mxed Mrst.

The presented results show that it is unlikely that an e1cient list scheduling algorithm exists which leads
to a dominant set of schedules. As a consequence, larger instances of the parallel machine problem with
precedence constraints and sequence-dependent setup times cannot be solved by considering only the decisions
for one of its two parts as solution space and solving the corresponding remaining subproblem afterwards. For
alternative methods, one either has to develop solution approaches which consider both parts of the solutions
simultaneously or one has to relax the goal of solving the resulting subproblems to optimality.

References

[1] K.R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
[2] J. Carlier, E. Neron, An exact method for solving the multi-processor -ow-shop, RAIRO-Rech. Oper. 34 (2000) 1–25.
[3] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (1969) 416–429.
[4] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and

scheduling: a survey, Ann. Disc. Math. 5 (1979) 287–326.
[5] C.L. Monma, C.N. Potts, On the complexity of scheduling with batch setup times, Oper. Res. 37 (1989) 798–804.
[6] M. Pinedo, X. Chao, Operations scheduling with applications in manufacturing and services, Irwin=McGraw-Hill, Boston, 1999.
[7] J.M.J. Schutten, List scheduling revisited, Oper. Res. Lett. 18 (1996) 167–170.
[8] J.M.J. Schutten, R.A.M. Leussink, Parallel machine scheduling with release dates, due dates and family setup times, Internat. J.

Prod. Econom. 46 (1996) 119–125.
[9] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart. 3 (1956) 59–66.

[10] A. Sprecher, A. Drexl, Solving multi-mode resource-constrained project scheduling problems by a simple, general and powerful
sequencing algorithm, European J. Oper. Res. 107 (1998) 431–450.

[11] A.P. Woerlee, Decision support systems for production scheduling, Ph.D. Thesis, Erasmus University, Rotterdam, 1991.

	List scheduling in a parallel machine environment with precedence constraints and setup times
	Introduction
	List scheduling algorithms
	NP-hardness results
	A pseudo-polynomial algorithm
	Consequences for list scheduling
	Conclusions
	References

