
Operations Research Letters 30 (2002) 9–16

Operations
Research
Letters

www.elsevier.com/locate/dsw

An e cient algorithm for a class of constraint
satisfaction problems

Gerhard J. Woegingera;b;∗;1

aDepartment of Mathematics, University of Twente, P.O. Box 217,
7500 AE Enschede, Netherlands

bInstitut f'ur Mathematik, Technische Universit'at Graz, Steyrergasse 30,
A-8010 Graz, Austria

Received 24 July 2001; received in revised form 29 September 2001; accepted 31 October 2001

Abstract

We de,ne the class of the so-called monotone constraint satisfaction problems (MON-CSP). MON-CSP forms a subclass
of the class of min-closed (respectively, max-closed) constraint satisfaction problems of Jeavons and Cooper (Arti,cial
Intelligence 79 (1995) 327). We prove that for all problems in the class MON-CSP there exists a very fast and very simple
algorithm for testing feasibility.
We then show that a number of well-known results from the literature are special cases of MON-CSP: (1) Satis,ability of

Horn formulae; (2) graph homomorphisms to directed graphs with an X -numbering; (3) monotone integer programming with
two variables per inequality; (4) project scheduling under AND=OR precedence constraints. Our results provide a uni,ed
algorithmic approach to all these problems. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Constraint satisfaction; Feasibility checking; E cient algorithm; Satis,ability; Horn formula; Graph coloring; Graph
homomorphism; Monotone integer programming; AND=OR project scheduling

1. Introduction

We consider constraint satisfaction problems (CSP)
of the following type. LetD be a domain that is totally
ordered by ‘4’, and let ‘≺’ be the underlying strict
total order. Let −∞ �∈ D and +∞ �∈ D be special el-
ements such that −∞ ≺ x ≺ +∞ holds for all x∈D.
An instance I of the considered constraint satisfaction

∗ Corresponding author. Department of Mathematics, University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands.

E-mail address: g.j.woeginger@math.utwente.nl
(G.J. Woeginger).
1 Supported by the START program Y43-MAT of the Austrian

Ministry of Science.

problem consists of

• a ,nite set X = {x1; : : : ; xn} of variables;
• a ,nite domain Di ⊆ D for every variable xi (i =
1; : : : ; n);

• a ,nite set C− of lower bound constraints of the
form “f(x1; : : : ; xn) 4 xi”, where f is some func-
tion Dn → D ∪ {−∞;+∞};

• a ,nite set C+ of upper bound constraints of the
form “xi 4 g(x1; : : : ; xn)”, where g is some function
Dn → D ∪ {−∞;+∞}.
We assume that the functions f and g in the lower

and upper bound constraints are given by a simple
oracle algorithm that can be evaluated in polynomial
time. The goal is to decide whether there exists a

0167-6377/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(01)00114 -6

10 G.J. Woeginger /Operations Research Letters 30 (2002) 9–16

feasible solution, i.e., values Lxi ∈Di for 16 i6 n,
such that all constraints f(Lx1; : : : ; Lxn) 4 Lxi in C− and
all constraints Lxi 4 g(Lx1; : : : ; Lxn) in C+ are satis,ed
simultaneously. Note that in a feasible solution, none
of the variables xi may take the values ±∞.
In general, the above de,ned constraint satisfac-

tion problem is a strongly NP-complete problem (see
e.g., Theorem 6 in Section 3). In this note we will
mainly deal with MON-CSP, a special case of CSP
that is based on the so-called monotone functions. A
function h :Dn → D ∪ {−∞;+∞} is called mono-
tone, if for any x′1; : : : ; x

′
n ∈D and any x′′1 ; : : : ; x

′′
n ∈D

with x′i 4 x′′i for 16 i6 n, we have h(x′1; : : : ; x
′
n) 4

h(x′′1 ; : : : ; x
′′
n).

Theorem 1 (Monotone constraint satisfaction prob-
lems, MON-CSP). For an instance of the above
de>ned class of constraint satisfaction problems;
we denote n= |X | and m= |C−|+ |C+|. Furthermore;
we denote by d=

∑n
i=1 |Di| the total size of all vari-

able domains; and by T (n; m) the time needed for
checking whether a given assignment for the n vari-
ables in X satis>es all m constraints. The following
two special cases—that are called monotone con-
straint satisfaction problems—can be solved within
time O(dT (n; m)); i.e.; within time polynomially
bounded in d and T (n; m).

(P1) All functions f in the lower bound constraints
in C− are monotone.
The set C+ of upper bound constraints is empty.

(P2) All functions g in the upper bound constraints
in C+ are monotone.
The set C− of lower bound constraints is empty.

Theorem 1 will be proved in Section 2. The un-
derlying algorithm is quite simple, and the underlying
ideas apparently have been used many times before
in the literature. The main contribution of this note
is to identify this polynomially solvable special case
MON-CSP and this algorithm, to point out its wide
applicability, and to illustrate that it is at the heart
of many algorithmic results in discrete applied math-
ematics, mathematical programming, and theoretical
computer science.
Now let us discuss the relationship between

MON-CSP and other classes of constraint satisfaction
problems from the literature. Whereas our special

case MON-CSP only allows lower and upper bound
constraints on the variables, the constraint satisfaction
problems considered by Jeavons and Cooper [8] allow
arbitrary constraints on subsets of the variables in X .
Every such constraint is speci,ed by explicitly listing
the mutually consistent values for the variables in the
corresponding subset. A constraint satisfaction prob-
lem is called min-closed, if with any two feasible so-
lutions x′1; : : : ; x

′
n and x′′1 ; : : : ; x

′′
n also the element-wise

minimum min{x′1; x′′1 }; : : : ;min{x′n; x′′n} is a feasible
solution. Max-closed problems are de,ned analo-
gously. Jeavons and Cooper [8] show that min-closed
and max-closed constraint satisfaction problems can
be solved in polynomial time; here polynomial means
polynomial in the size of the listings of all mutually
consistent values for all constraints. See [7,6] for
several related results.

Example 2. Consider a constraint satisfaction prob-
lem with variables {x1; x2; x3; x4; x5} that all have the
same domain D = {0; 1} with 0 ≺ 1. There are two
constraints x1 + x2 + x36 1 and x3 + x4 + x56 2. In
our oracle representation; these constraints are speci-
,ed by writing down these two inequalities. Checking
whether a given solution is feasible can be done by
plugging in the corresponding values into the inequal-
ities. In the representation of Jeavons and Cooper [8];
these constraints are speci,ed by explicitly listing the
allowed values

(0; 0; 0); (1; 0; 0); (0; 1; 0); (0; 0; 1)

for the triple (x1; x2; x3); and the allowed values

(0; 0; 0); (1; 0; 0); (0; 1; 0); (0; 0; 1); (1; 1; 0);

(1; 0; 1); (0; 1; 1)

for the triple (x3; x4; x5). Checking whether a given
solution is feasible can be done by comparing it against
the listed triples.
The following facts are easily veri,ed: This instance

is a min-closed constraint satisfaction problem. The
constraints cannot be rewritten as monotone lower or
monotone upper bound constraints, and hence this in-
stance does not belong to the class MON-CSP.

In Lemma 5 we will show that MON-CSP of type
(P1) forms a special case of the min-closed constraint
satisfaction problems, and thatMON-CSP of type (P2)

G.J. Woeginger /Operations Research Letters 30 (2002) 9–16 11

Fig. 1. The algorithm that solves MON-CSP of type (P1).

forms a special case of the max-closed constraint sat-
isfaction problems. Still, our main result in Theorem 1
is completely independent of the results in Jeavons and
Cooper [8]. What we prove is a polynomial time result
for the case where the constraints are represented in
a short and compact way via an oracle function; this
yields a small input size. What they prove is a poly-
nomial time result for the case where the constraints
are given as lists of feasible tuples; this may yield an
exponentially larger input size. Also the algorithmic
approaches are quite diRerent: The approach in [8] is
based on pair-wise consistency, and hence repeatedly
intersects pairs of constraints. Our approach looks at
the constraints one by one, and keeps cutting down
the domains of single variables.
Organization of the note: In Section 2 we prove

Theorem 1. In Section 3, we prove some comple-
mentary negative results that draw a sharp border-
line between tractable and intractable cases of CSP.
Moreover we illustrate that in a certain oracle model,
the time complexity stated in Theorem 1 is essen-
tially best possible. Sections 4–7 contain applications
of Theorem 1 to various areas. Section 4 deals with
the satis,ability of logical formulae, and with Horn
formulae. Section 5 discusses homomorphisms to di-
rected graphs, Section 6 considers monotone integer
programming with two variables per inequality. Fi-
nally, Section 7 deals with project scheduling under
AND=OR precedence constraints. The four problems
discussed in Sections 4–7 all are shown to form spe-
cial cases of MON-CSP, and Theorem 1 provides a
uni,ed algorithmic treatment of these four problems.

2. Positive results

In this section, we will prove Theorem 1. In fact,
we will only prove the polynomial time result for
MON-CSP of type (P1). The proof for MON-CSP of

type (P2) can be done by completely symmetric argu-
ments.
Hence, let us assume that the instance I of the con-

straint satisfaction problem has C+ = ∅ and that all
functions f in the given lower bound constraints in
C− are monotone. Let D ⊆ D be ,nite. We write
min(D) for the minimum element in D with respect to
4. For x∈D, we write next(x; D) short for min(D ∩
{y∈D: x ≺ y} ∪ {+∞}); in other words, next(x; D)
is the smallest element in D ∪ {+∞} that is strictly
greater than x. If a constraint f(x1; : : : ; xn) 4 xi in C−

is not satis,ed for a certain setting of the variables,
then it is violated and xi is a violating variable. Our
algorithm is depicted in Fig. 1.

Lemma 3. The algorithm in Fig. 1 terminates after
at most d=

∑n
i=1 |Di| executions of the while-loop in

lines 3–5.

Proof. Every time the while-loop in lines 3–5 is
executed; the value of one of the variables in X
is increased. There are at most d possibilities for
increasing a variable.

Lemma 4. Assume that x∗1 ; : : : ; x
n
1 is a feasible solu-

tion for an instance I of MON-CSP of type (P1).
Then for i = 1; : : : ; n the invariant xi 4 x∗i is true
throughout the execution of the algorithm in Fig. 1.

Proof. Suppose for the sake of contradiction that the
claimed inequality does not hold throughout the exe-
cution. Consider the ,rst moment t in time when xk �
x∗k holds for some index k. This moment t cannot oc-
cur during the execution of the for-loop in lines 1–2;
since there xk =min(Dk) 4 x∗k holds throughout.
Hence, moment t must occur during the execution

of the while-loop in lines 3–5 when variable xk is
updated. This means that at the moment t− just before
moment t, some constraint f(x1; : : : ; xn) 4 xk in C−

12 G.J. Woeginger /Operations Research Letters 30 (2002) 9–16

was violated. At that time t−, we then had

xk ≺ f(x1; : : : ; xn): (1)

Moreover up to time t− we had xi 4 x∗i for all i =
1; : : : ; n, and hence by the monotonicity of f

f(x1; : : : ; xn) 4 f(x∗1 ; : : : ; x
n
1): (2)

Finally, since x∗1 ; : : : ; x
∗
n is a feasible solution we have

f(x∗1 ; : : : ; x
∗
n) 4 x∗k : (3)

Putting (1), (2), and (3) together, we conclude that
xk ≺ x∗k at time t

−. At time t, the value of variable xk
is increased to next(xk ; Dk) 4 x∗k . This contradiction
completes the proof.

Proof of Theorem 1. Now let us complete the proof
of our main theorem. We start with the analysis of
the time complexity. The for-loop in lines 1–2 takes
at most O(d) time. By Lemma 3; the while-loop in
lines 3–5 is executed at most d times. Every single
execution checks feasibility of the current solution in
T (n; m) time and then possibly updates a variable. It is
easy to preprocess the data such that afterwards every
variable update can be done in constant time. Hence;
the run time indeed is O(dT (n; m)).
Now let us turn to correctness. If the instance is

infeasible, then the while-loop in lines 3–5 will even-
tually increase one of the variables to +∞. Then the
,nal check in line 6 gives the correct answer. If the in-
stance is feasible, then by Lemma 4 the while-loop in
lines 3–5 can never increase a variable to +∞. There-
fore, the only possibility for leaving the while-loop is
to have no more violated constraints. Again, the ,nal
check in line 6 gives the correct answer.

The following lemma observes that feasible solu-
tions for MON-CSP of type (P1) are closed under
element-wise minimum taking. This implies that (un-
less the instance is infeasible) there exists a smallest
feasible solution, and it is easy to see that our algo-
rithm always ends up with this smallest feasible solu-
tion. By symmetry, feasible solutions for MON-CSP
of type (P2) are closed under element-wise maximum
taking.

Lemma 5. Let x′1; : : : ; x
′
n and x′′1 ; : : : ; x

′′
n be feasi-

ble solutions for an instance I of MON-CSP of
type (P1). Then also the element-wise minimum

min{x′1; x′′1 }; : : : ;min{x′n; x′′n} is a feasible solution for
instance I .

Proof. Consider an arbitrary constraint f(x1; : : : ; xn)
4 xi in C−. We have

f(min{x′1; x′′1 }; : : : ;min{x′n; x′′n})4f(x′1; : : : ; x
′
n)4x′i ;

where the ,rst inequality follows from the monotonic-
ity of f and the second inequality follows from the
feasibility of x′1; : : : ; x

′
n. Analogously we get

f(min{x′1; x′′1 }; : : : ;min{x′n; x′′n})4f(x′′1 ; : : : ; x
′′
n)4x′′i :

Combining these two statements yieldsf(min{x′1; x′′1 };
: : : ;min{x′n; x′′n}) 4 min{x′i ; x′′i }.

Finally, let us brieSy compare our algorithm to the
algorithm of Jeavons and Cooper [8] for min-closed
satisfaction problems. The algorithm in [8] is based
on pair-wise consistency testing (see also [13]), and
it repeatedly intersects pairs of constraints, and com-
putes and lists all mutually consistent values for these
intersected constraints. This approach clearly cannot
be applied to the case where the constraints are speci-
,ed as oracles: The listing of these mutually consistent
values would exponentially blow up the worst case
running time.
The algorithm in Fig. 1 behaves quite diRerently:

It is variable-oriented, and it keeps shrinking the do-
mains of single violating variables little by little. The
algorithm is heavily based on the asymmetry in the
constraints of MON-CSP of type (P1): Whenever a
lower bound constraint f(x1; : : : ; xn) 4 xi is violated,
the algorithm can identify xi as the guilty variable, and
it then punishes xi by shrinking its domain. The algo-
rithm in Fig. 1 does not seem to generalize to general
min-closed constraint satisfaction problems. It heavily
exploits the structure of MON-CSP, and it does not
work for completely symmetric constraints as, e.g.,
in Example 2. In other words, the algorithm exploits
properties of MON-CSP that are not available any-
more in the general min-closed CSP.

3. Negative results

In this section, we prove some negative results that
complement the positive results in Theorem 1 for
MON-CSP. The (di cult) special cases (H1), (H2),

G.J. Woeginger /Operations Research Letters 30 (2002) 9–16 13

(H3) in Theorem 6 are fairly close to the (easy) special
cases (P1) and (P2) in Theorem 1, and hence indicate
the exact borderline between tractable and intractable
cases of CSP.

Theorem 6. The following three special cases (H1)–
(H3) of the constraint satisfaction problem all are
NP-complete in the strong sense:

(H1) The set C− of lower bound constraints is
empty.

(H2) The set C+ of upper bound constraints is
empty.

(H3) All functions f in the lower bound constraints
in C− and all functions g in the upper bound
constraints in C+ are monotone.

Proof. The proof is done by slightly modifying
corresponding arguments from [8]. All reductions
are from the NP-complete ONE-IN-THREE-3SAT
problem [2]: Given a set of Boolean variables
X = {x1; : : : ; xn} and a set C of clauses over X such
that every clause consists of exactly three; unnegated
variables. Does there exist a truth assignment of
X such that each clause in C has exactly one true
literal?
Proof for (H1): We use the domain D =

{TRUE;FALSE} with FALSE 4 TRUE. For every
variable xi ∈X we set Di=D. For every clause c∈C,
we introduce a function gc :Dn → D ∪ {−∞;+∞}
such that gc(x1; : : : ; xn) = TRUE if under the truth
assignment (x1; : : : ; xn) the clause c contains exactly
one true literal, and gc(x1; : : : ; xn) = −∞ otherwise.
For every clause c∈C, the set C+ contains the upper
bound constraint x1 4 gc(x1; : : : ; xn). The set C− is
empty. It can be veri,ed that this constraint satisfac-
tion instance has a feasible solution if and only if the
ONE-IN-THREE-3SAT instance has answer YES.
Proof of (H2): This can be done symmetrically to

the above proof of (H1).
Proof of (H3): We use the domain D={0; 1} with

0 4 1. We set Di =D for every xi ∈X . There is one
special variable x0 with D0={1}. For every clause c=
(xi∨xj∨xk) in C, the set C+ contains the upper bound
constraint x0 4 xi + xj + xk , and the set C− contains
the lower bound constraint xi+xj+xk 4 x0. Note that
all involved functions are monotone. It can be veri,ed
that this constraint satisfaction instance has a feasible

solution if and only if the ONE-IN-THREE-3SAT in-
stance has answer YES.

The stated time complexity in Theorem 1 depends
linearly on the total size d=

∑n
i=1 |Di| of all variable

domains. Since all involved functions are monotone,
one might hope to get a speed-up to O(logd) or to
O(n logd) by applying some kind of binary search.
However, the following example illustrates that such a
speed-up can only be possible if the constraints carry
a strong additional structure and are easy to handle.

Example 7. Consider a constraint satisfaction prob-
lem with domain D= {1; : : : ; d} and with the natural
ordering 4 on the integers; we set +∞= d+ 1. Let
X = {x1}; let D1 =D; and let there be a single mono-
tone constraint f(x1) 4 x1 where the function f is
given as an oracle.
Assume that the function f is either of the form

f+∞(x)=x+1 for all x∈D, or of the following form
fe with e∈D: fe(x)=x+1 for x �= e and fe(e)=e. In
the case f=f+∞ the instance is infeasible, whereas in
the case f=fe the instance is feasible. It is impossible
to distinguish between these two cases without (in the
worst case) evaluating the function f at all d points
in D. All these cases are in MON-CSP.

4. Application: Horn formulae

Propositional Horn formulae form an interesting
special case of the SATISFIABILITY problem: Let
X={x1; : : : ; xn} be a set of Boolean variables. A clause
over X is a Horn clause, if it contains at most one
positive literal. That is, all its literals except possibly
for one are negations of variables, like

(@x1 ∨@x2 ∨@x3); (@x4 ∨ x5); (x6);

(@x7); (x8 ∨@x9 ∨@x10 ∨@x11):

The HORN-SAT problem consists in deciding for a
given set C of Horn clauses, whether there exists a
truth assignment of X that satis,es all clauses in C. It
is well-known that HORN-SAT is polynomially solv-
able; see e.g. [1] or Chapter 4:2 in the book of Pa-
padimitriou [11].
In this section, we show that HORN-SAT can be

formulated as a MON-CSP of type (P1). We use the
domainD={TRUE;FALSE} with FALSE4 TRUE.

14 G.J. Woeginger /Operations Research Letters 30 (2002) 9–16

For every Boolean variable xi ∈X we set Di = D.
Moreover, there are two special variables yF with do-
main {FALSE}, and yT with domain {TRUE}. For
every clause c∈C, we will introduce one correspond-
ing constraint in C−.

• If c consists of a single positive literal xi, then we
introduce the lower bound constraint yT 4 xi on xi.

• If c only consists of negative literals, say
@xj1 ; : : : ;@xjk , then we introduce the lower bound
constraint xj1 ∧ · · · ∧ xjk 4 yF on yF .

• If c consists of the positive literal xi and the negative
literals@xj1 ; : : : ;@xjk , then we introduce the lower
bound constraint xj1 ∧ · · · ∧ xjk 4 xi on xi.

In any feasible solution for the constraint satisfaction
problem, yF = FALSE and yT = TRUE: Moreover,
it is easily veri,ed that a constraint is satis,ed if and
only if the corresponding clause is satis,ed. All the
functions in the lower bounds are monotone functions,
and C+ is empty. The total size d of all variable do-
mains is O(n), and the time T (n; m) needed for check-
ing whether a given truth assignment satis,es all con-
straints is O(nm). With this, Theorem 1 implies poly-
nomial time solvability of HORN-SAT.
In fact, applying our algorithm from Section 2 to

HORN-SAT yields exactly the same algorithm as de-
scribed in Chapter 4.2 of [11] for HORN-SAT.

5. Application: graph homomorphisms

A homomorphism of a directed graph G to a di-
rected graphH is a mapping f :V (G)→ V (H) which
preserves the arcs, i.e., such that (x; y)∈E(G) im-
plies (f(x); f(y))∈E(H). For a ,xed directed graph
H , the H -coloring problem is the decision problem
in which we are given an arbitrary directed graph G
and are to decide whether or not there is a homo-
morphism from G to H . The name is due to the fact
that for undirected graphs the Kn-coloring problem
simply asks whether or not G is n-colorable. It was
shown by Hell and NeUsetUril [4] that for undirected
graphs H -coloring is polynomial when H is bipartite
and NP-complete otherwise. The H -coloring problem
for directed graphs has received much recent atten-
tion, but the boundary between easy and hard cases is
still not understood.

Fig. 2. The X -numbering of a graph H together with a geometric
visualization.

Gutjahr et al. [3] proved that for directed graphs
H with a so-called X -numbering (read: ‘X under-
bar numbering’), H -coloring is polynomial. An
X -numbering of H is a numbering 1; : : : ; |V (H)|
of its vertices with the following property: When-
ever (a; b) and (c; d) are arcs in E(H), then also
(min{a; c};min{b; d}) is an arc in E(H). See Fig. 2
for an example of an X -numbering. A very instruc-
tive way of looking at X -numberings is to interpret
the arcs (x; y) as geometric points with coordinates
x and y in the Euclidean plane. In the standard
domination ordering of two-dimensional vectors,
(x1; y1)6 (x2; y2) holds if and only if x16 x2 and
y16y2. With respect to this partial order, the point
(min{a; c};min{b; d}) is the greatest common lower
bound for the two points (a; b) and (c; d). It can be
veri,ed that in an X -numbering, for any a; b with
16 a; b6 |V (H)| the set
E(a; b) := {(i; j)∈E(H): i¿ a and j¿ b}
is either empty or has a unique smallest element with
respect to the domination partial order. If the set
E(a; b) is non-empty, then we denote by x(a; b) the
x-coordinate and by y(a; b) the y-coordinate of its
smallest element. And if the set E(a; b) is empty, then
we set x(a; b) = +∞ and y(a; b) = +∞. We observe
that x(a; b) and y(a; b) both are monotone functions
on {1; : : : ; |V (H)|}.
Now we will show that for a graph H with an

X -numbering, the H -coloring problem can be formu-
lated as a MON-CSP of type (P1). We use the domain
D = {1; : : : ; |V (H)|} with the natural ordering of the
integers. For every vertex v∈V (G), there is a corre-
sponding variable v with domain Dv = D. For every
arc (u; v)∈E(G), we introduce the two lower bound
constraints u¿ x(u; v) and v¿y(u; v). By the above

G.J. Woeginger /Operations Research Letters 30 (2002) 9–16 15

observation, all functions in the lower bounds are
monotone. Moreover, the set C+ is empty. The to-
tal size of all variable domains is |V (G)| · |V (H)| =
O(|V (G)|), and the time needed for checking whether
a given coloring satis,es all constraints is O(|E(G)|).

Lemma 8. Let (u; v) be an arc in E(G). If the vari-
ables u and v satisfy the constraints u¿ x(u; v) and
v¿y(u; v); then u= x(u; v) and v= y(u; v) holds.

As a consequence of this lemma, the variables u
and v satisfy the two constraints if and only if the arc
(u; v) is legally colored. With this, Theorem 1 implies
a polynomial time algorithm for H -coloring. In fact
the algorithm resulting from Section 2 is structurally
diRerent and slightly simpler than the algorithm in [3].

6. Application: monotone integer programming

Integer programming and many of its special cases
are NP-complete problems. Two of its most restricted
special cases are: IP2, integer programming with two
variables per inequality. And MON-IP2, integer pro-
gramming with two variables per inequality where ev-
ery inequality is monotone, i.e., of the form

c6 axi − bxj; (4)

where the coe cients a and b both are non-negative.
Moreover, for every variable xi there are prespeci,ed
lower and upper bounds

‘i6 xi6 ui: (5)

Lagarias [9] has proved that deciding feasibility of
MON-IP2 systems over the integers is NP-complete.
Hochbaum and Naor [5] observe that IP2 polynomi-
ally reduces to MON-IP2. Moreover, [5] presents a
pseudo-polynomial time algorithm for MON-IP2 with
time complexity O(md); here m is the number of con-
straints of type (4), and d =

∑
i (ui − ‘i) is the total

size of all variable domains.
Interestingly, MON-IP2 can be formulated both,

as a MON-CSP of type (P1) and as a MON-CSP
of type (P2). As domain D we use the integers Z
with the natural ordering. For every variable xi we set
Di = {z ∈Z | ‘i6 z6 ui} according to (5). To get a
formulation of type (P1), we put for every inequality
(4) the lower bound constraint xi¿ (bxj + c)=a on xi

into C−. And to get a formulation of type (P2), we
put the upper bound constraint xj6 (axi − c)=b on xj
into C+. The resulting two MON-CSP formulations
clearly are equivalent to the inequality systems in (4)
and (5). All the functions in the lower (respectively,
upper) bounds are monotone functions, and the set
C+ (respectively, the set C−) is empty. The total size
of all variable domains is d, and the time T (n; m)
needed for checking whether a given vector satis,es
all inequalities is O(m).
With this, Theorem 1 implies the pseudo-polynomial

time solvability of MON-IP2 in O(md) time. In fact,
the algorithm resulting from our proof in Section 2
is exactly the same algorithm as described in [5] for
MON-IP2.

7. Application: AND=OR project scheduling

In AND=OR project scheduling, an instance con-
sist of a set P = {1; : : : ; n} of projects with dura-
tions p1; : : : ; pn together with a set of precedence con-
straints. Every precedence constraint c is speci,ed by
a time lag dc, and by a pair (Q; i) where Q ⊆ P is
a subset of the projects and where i∈P \ Q is some
,xed project. If c is an AND precedence constraint,
then project i can only be started dc time units after
all of the projects in Q have been completed. If we de-
note by Si the starting time of project i, then an AND
precedence constraint c may be formulated as

Si¿max
q∈Q

{Sq + pq + dc}: (6)

And in case c is an OR precedence constraint, then
project i can only be started dc time units after one of
the projects in Q has been completed. This translates
into

Si¿min
q∈Q

{Sq + pq + dc}: (7)

The problem is to decide whether all projects can
be implemented so that the AND=OR precedence
constraints all are obeyed. The potentially cyclic
structure of the OR precedence constraints makes this
problem very di cult. Moehring et al. [10] present a
pseudo-polynomial time algorithm for this problem,
and they also give polynomial time algorithms for
some special cases. It is an outstanding open question
whether this project scheduling problem can be solved

16 G.J. Woeginger /Operations Research Letters 30 (2002) 9–16

in polynomial time. The problem is known to be poly-
nomial time equivalent to certain problems for mean
payoR games [14] and to feasibility problems for dy-
namic min–max systems [12], but the computational
complexity of all these problems is not understood.

Lemma 9. Let)=
∑

dc denote the sum of the time
lags over all precedence constraints. If there exists a
feasible solution to the AND=OR project scheduling
problem; then there exists a feasible solution in which
all projects start between time 0 and time).

We now show that the AND=OR project scheduling
problem can be formulated as a MON-CSP of type
(P1). We use the domain D={0; : : : ;)} with the nat-
ural ordering of the integers (where) is de,ned as
in Lemma 9). For every project i∈P, there is one
variable Si with domain Di = D. The constraints are
just as speci,ed in (6) and (7). All these constraints
are lower bound constraints with monotone functions.
The set C+ is empty. The total size of all variable
domains is O(n)), and the time T (n; m) needed for
checking whether a given vector satis,es all inequal-
ities is O(mn).
With this, Theorem 1 implies the pseudo-polynomial

time solvability of AND=OR project scheduling in
O(mn2)) time.

References

[1] W.F. Dowling, J.H. Gallier, Linear time algorithms for
testing satis,ability of propositional Horn formulae, J. Logic
Programming 1 (1984) 267–284.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability: a
Guide to the Theory of NP-Completeness, Freeman, San
Francisco, 1979.

[3] W. Gutjahr, E. Welzl, G.J. Woeginger, Polynomial
graph-colorings, Discrete Appl. Math. 35 (1992) 29–45.

[4] P. Hell, J. NeUsetUril, On the complexity of H -coloring, J.
Combin. Theory (B) 48 (1990) 92–110.

[5] D.S. Hochbaum, J. Naor, Simple and fast algorithms for
linear and integer programs with two variables per inequality,
SIAM J. Comput. 23 (1994) 1179–1192.

[6] P.G. Jeavons, D. Cohen, M.C. Cooper, Constraints,
consistency, and closure, Arti,cial Intelligence 101 (1998)
251–265.

[7] P.G. Jeavons, D. Cohen, M. Gyssens, Closure properties of
constraints, J. ACM 44 (1997) 527–548.

[8] P.G. Jeavons, M.C. Cooper, Tractable constraints on ordered
domains, Arti,cial Intelligence 79 (1995) 327–339.

[9] J.C. Lagarias, The computational complexity of simultaneous
diophantine approximation problems, SIAM J. Comput. 14
(1985) 196–209.

[10] R.H. Moehring, M. Skutella, F. Stork, Scheduling with
AND=OR precedence constraints, Report No. 689=2000, TU
Berlin, Germany, 2000.

[11] C.H. Papadimitriou, Computational Complexity,
Addison-Wesley, Reading, MA, 1994.

[12] U. Schwiegelshohn, L. Thiele, Dynamic min–max problems,
Discrete Event Dynamic Systems 9 (1999) 111–134.

[13] P. van Hentenryck, Y. Deville, C.-M. Teng, A generic
arc-consistency algorithm and its specializations, Arti,cial
Intelligence 57 (1992) 291–321.

[14] U. Zwick, M. Paterson, The complexity of mean payoR games
on graphs, Theoret. Comput. Sci. 158 (1996) 343–359.

	An efficient algorithm for a class of constraintsatisfaction problems
	Introduction
	Positive results
	Negative results
	Application: Horn formulae
	Application: graph homomorphisms
	Application: monotone integer programming
	Application: AND/OR project scheduling
	References

