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Abstract

We consider various special cases of the quadratic 0–1 knapsack problem (QKP) for which the underlying graph struc-
ture is fairly simple. For the variant with edge series–parallel graphs, we give a dynamic programming algorithm with
pseudo-polynomial time complexity, and a fully polynomial time approximation scheme. In strong contrast to this, the variant
with vertex series–parallel graphs is shown to be strongly NP-complete. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The quadratic 0–1 knapsack problem (QKP) was
introduced by Gallo et al. [7] as a generalization of
the classical knapsack problem. It is formulated as
follows:

maximize F(x) =
∑
i∈V

cixi +
∑
(i; j)∈E

cijxixj

subject to
∑
i∈V

aixi 6 b

x∈{0; 1}n;
where V ={1; 2; : : : ; n} is the set of variables and E is
the set of quadratic terms. The ai are called weight co-
eFcients, and the ci and cij are called cost coeFcients.
All coeFcients ai; ci and cij are integral. Through-
out this paper, we shall assume that b¿ 0 and that
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06 ai6 b for all i∈V . Furthermore, we shall assume
that ai + aj6 b for all (i; j)∈E. Note that we do not
make any a priori assumptions on the signs of the cost
coeFcients ci and cij. The special case of the QKP
where E=∅ is the classical knapsack problem. Hence,
QKP is an NP-hard problem. The special case of the
QKP where cij¿ 0 holds for all quadratic coeFcients
is the so-called supermodular knapsack problem.
QKP has been used to model selection problems

in telecommunications [19] as well as compiler de-
sign problems [13]. Gallo et al. [7] give a branch and
bound algorithm for QKP that is based on linear up-
per bound functions known as upper planes. For the
supermodular knapsack problem, the Lagrangian re-
laxation can be solved eFciently and yields quick and
easy upper bounds. Branch and bound algorithms that
exploit these bounds have been developed by Billion-
net et al. [3], Chaillou et al. [5], Gallo and Simeone
[8], Hammer and Rader [10], Michelon and Veilleux
[15]. Another Lagrangian relaxation that is solvable
through a number of continuous linear knapsack
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problems has recently been proposed by Caprara et
al. [4]. A few additional ways to solve the general
quadratic 0–1 knapsack problem, especially when
some of the cij are negative, are LP relaxations [2] and
semideKnite relaxations [11]. For more information
on the QKP, we refer the reader to Rader [16].
Until recently, most work on QKP has concen-

trated on the supermodular case. In addition, very lit-
tle work has dealt with exploiting the graph–theoretic
structure of QKPs. Billionnet [1] has shown that the
cardinality-constrained quadratic 0–1 knapsack prob-
lem can be solved inO(n) steps if the graphG=(V; E)
induced by the objective function is a tree. In this
paper, we will derive pseudo-polynomial time algo-
rithms for the special case of QKP where the under-
lying graph G is edge series–parallel. The class of
edge series–parallel graphs contains all trees. In con-
trast to this, QKP with an underlying vertex series–
parallel graph is strongly NP-hard and cannot have a
pseudo-polynomial time solution unless P = NP.
An approach that has not yet been examined

for QKPs are fully polynomial time approximation
schemes (FPTAS). An FPTAS is an approximation
algorithm that, for any given �¿ 0, Knds a feasible
solution with objective value within a factor of (1−�)
of the optimal objective value. The running time of
an FPTAS is polynomially bounded in the input size
and in 1=�. An FPTAS is the strongest possible poly-
nomial time approximation result that can be derived
for an NP-hard problem (unless P = NP). Ibarra and
Kim [12] and Lawler [14] gave such an FPTAS for
the classical knapsack problem. In this paper, we de-
sign an FPTAS for the special case of QKP where the
underlying graph G is edge series–parallel and where
all cost coeFcients are non-negative.
Organization of the paper. Section 2 recalls all

necessary deKnitions and facts around edge and ver-
tex series–parallel graphs as will be needed in the
rest of this paper. Section 3 describes two dynamic
programming algorithms for the QKP on edge series–
parallel graphs. The time complexity of one of these
algorithms is pseudo-polynomially bounded in the
weights, and the time complexity of the other algo-
rithm is pseudo-polynomially bounded in the costs.
Section 4 translates the second dynamic program-
ming algorithm into an FPTAS. Section 5 proves the
NP-hardness result for vertex series–parallel graphs,
and Section 6 contains the conclusion.

2. Series–parallel graphs

In this section, we provide deKnitions of edge
series–parallel (ESP) graphs and of vertex series–
parallel (VSP) graphs.
A standard way of deKning edge series–parallel

graphs is via so-called 2-terminal graphs; cf. DuFn
[6] and Takamizawa et al. [17]. A 2-terminal graph
G=(V; E) is a graph with two special vertices that are
called the left terminal and the right terminal. For two
2-terminal graphs Gi=(Vi; Ei); i=1; 2; we deKne the
following operations:

• The series composition Gs =G1 ∗G2 of G1 and G2

results from identifying the right terminal ofG1 with
the left terminal of G2. The obtained graph Gs is
regarded as a 2-terminal graph whose left terminal
is the left terminal of G1, and whose right terminal
is the right terminal of G2.

• The parallel composition Gp=G1‖G2 of G1 and G2

results from identifying both right terminals with
each other and both left terminals with each other.
The terminal vertices of Gp are these identiKed ter-
minals.

The class of ESP graphs is now deKned by the fol-
lowing three rules: (1) The graph consisting of two
terminals connected by a single edge is ESP. (2) If
G1 and G2 are ESP, then G1 ∗G2 and G1‖G2 are ESP.
(3) No other graphs than those deKned by (1) and (2)
are ESP.
An ESP graph can be decomposed into its atomic

parts according to the series and parallel operations in
linear time (see [18]). Essentially, such a decompo-
sition corresponds to a binary tree where all interior
vertices are labeled by s (series composition) or p
(parallel composition), and where all leaves corre-
spond to edges of the graph. See Fig. 1 for an illus-
tration. Note that there can be diMerent binary tree de-
compositions for a given edge series–parallel graph.
We associate with every interior vertex v of a decom-
position tree the ESP graphG(v) that is induced by the
leaves of the subtree below v. It is well-known that a
simple ESP graph G=(V; E) satisKes |E|6 2|V |− 1.
Now let us turn to vertex series–parallel graphs. It

is convenient to introduce VSP graphs via so-called
minimal vertex series–parallel digraphs (MVSP for
short). See Valdes et al. [18] for more information.
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Fig. 1. An edge series–parallel graph and its binary decomposition tree.

For two digraphs Gi = (Vi; Ei); i=1; 2; we deKne the
following operations:

• The series composition of G1 and G2 has vertex set
V1 ∪ V2 and arc set E1 ∪ E2 ∪ (T1 × S2) where T1
is the set of sinks in G1 and S2 is the set of sources
in G2.

• The parallel composition of G1 and G2 has vertex
set V1 ∪ V2 and arc set E1 ∪ E2.

The class of MVSP digraphs is deKned by the follow-
ing three rules: (1) The graph consisting of a single
vertex is MVSP. (2) If digraphs G1 and G2 are MVSP,
then their series composition and their parallel compo-
sition is also MVSP. (3) No other digraphs than those
deKned by (1) and (2) are MVSP. Finally, an undi-
rected graph is VSP if it is the underlying undirected
graph of a digraph whose transitive closure equals the
transitive closure of some MVSP.
Note that every complete bipartite graph Km;n is

VSP. In the rest of this paper, VSP graphs will only
show up in Theorem 5.1.

3. Dynamic programming algorithms

In this section we develop two dynamic program-
ming algorithms for the special case of QKP where

the underlying graph G = (V; E) is ESP. The Krst al-
gorithm is pseudo-polynomial in the weights, and the
second algorithm is pseudo-polynomial in the costs.

3.1. The Arst DP algorithm

In this subsection, we design an algorithm that is
pseudo-polynomial in the weights, and polynomial in
the costs.
Consider an instance of QKP where the underlying

graph G = (V; E) is ESP. As a Krst step, we apply
the method of Valdes et al. [18] to compute a binary
decomposition tree forG in linear time. Consider some
interior vertex v in this binary decomposition tree. We
denote by G(v) the ESP graph that is induced by the
edges in the leaves of the subtree below v. Let ‘(v)
be the left terminal and r(v) be the right terminal of
G(v). The restriction of QKP to vertices in G(v) is
denoted by QKP(v).

De�nition 3.1. For a vertex v in some Kxed binary
decomposition tree; for ‘; r ∈{0; 1}; and for an inte-
ger A with 06A6 b; we denote by f[v; ‘; r;A] the
maximum possible objective value of QKP(v) over all
feasible solutions that satisfy the conditions

• x‘(v) = ‘ and xr(v) = r; and
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• ∑
i aixi = A where the summation is done over all

the vertices i in G(v).

If there is no feasible solution of this form; then
f[v; ‘; r;A] =−∞.

We compute all these values f[v; ‘; r;A] by a dy-
namic programming approach that starts in the leaves
of the given binary decomposition tree, and then
moves upwards towards the root. If v is a leaf, then
we set

f[v; ‘; r; a‘(v)‘ + ar(v)r]

=c‘(v)‘ + cr(v)r + c‘(v); r(v)‘r

and we set f[v; ‘; r;A] =−∞ whenever A = a‘(v)‘+
ar(v)r. In the remaining cases, vertex v is an interior
vertex. If v is a p vertex with left child u and right
child w, then we set

f[v; ‘; r;A] := max{f[u; ‘; r;A′] + f[w; ‘; r;A′′]

−cl(v)‘ − cr(v)r: 06A′; 06A′′;

A′ + A′′ = A+ a‘(v)‘ + ar(v)r}:
In this formula, the value A′ measures the total weight
of the vertices in G(u), and the value A′′ measures
the total weight of the vertices in G(w). We impose
A′+A′′=A+ a‘(v)‘+ ar(v)r, since in the total weight
in G(u) plus the total weight in G(w), the weights of
vertices ‘(v) and r(v) are counted twice. The terms
c‘(v)‘ and cr(v)r are subtracted, since they contribute
to both terms f[u; ‘; r;A′] and f[w; ‘; r;A′′]. Observe
that if there is an edge between the two terminal ver-
tices ‘(v) and r(v), then it either shows up only inG(u)
or only in G(w). In either case, the term c‘(v); r(v)‘r is
counted correctly in the formula.
In case v is an s vertex with left child u and right

child w, we denote by m(v) the right terminal of G(u).
Note that m(v) simultaneously is the left terminal of
G(w). We set

f[v; ‘; r;A] := max{f[u; ‘; m;A′] + f[w;m; r;A′′]

−cm(v)m: m∈{0; 1}; 06A′; 06A′′;

A′ + A′′ + A+ am(v)m}:
In this formula, the value A′ measures the total weight
of the vertices in G(u), and the value A′′ measures
the total weight of the vertices in G(w). We impose

A′+A′′=A+am(v)m, since the total weight inG(u) plus
the total weight in G(w) counts the weight of vertex
m(v) twice. The term cm(v)m has to be subtracted, since
it contributes to f[u; ‘; m;A′] and to f[w;m; r;A′′].
In the very end, the global solution to the QKP

instance can easily be computed from the values
f[root; ‘; r;A] where root denotes the root of the
given binary decomposition tree. The optimal objec-
tive value equals

max{f[root; ‘; r;A]: ‘; r ∈{0; 1}; A6 b}:
Now let us analyze the running time of this dynamic
program. Since an ESP graph has at most 2n−1 edges,
the binary decomposition tree has at most 2n−1 leaves
and at most 2n− 2 interior vertices. Since the number
of vertices v in the decomposition tree is O(n), since
‘; r ∈{0; 1}, and since 06A6 b, there areO(nb) val-
ues f[v; ‘; r;A] that have to be computed. The com-
putation of each such value according to the above
formulas can be done in O(A) = O(b) steps. Hence,
the overall running time is O(nb2).

Theorem 3.2. The special case of QKP where the
underlying graph G= (V; E) is ESP can be solved in
pseudo-polynomial time O(nb2).

3.2. The second DP algorithm

In this subsection, we design an algorithm that is
pseudo-polynomial in the costs, and polynomial in the
weights.
The approach is essentially dual to the above

dynamic programming approach, with the roles of
weights and costs exchanged. Hence, we will only
brieNy sketch this second approach and leave most of
the details to the reader. Now consider an instance of
QKP where the underlying graph G = (V; E) is ESP.
We deKne

U =
∑
i∈V

|ci|+
∑
(i; j)∈E

|cij|: (1)

Note that for any feasible solution x of QKP, the ob-
jective value satisKes −U6F(x)6U . The starting
point of our algorithm is again a binary decomposi-
tion tree of G. For a vertex v in this decomposition
tree, we deKne G(v); ‘(v); r(v), and QKP(v) exactly
as above.
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De�nition 3.3. For a vertex v in some Kxed binary
decomposition tree; for ‘; r ∈{0; 1}; and for an integer
C with −U6C6U; we denote by g[v; ‘; r;C] the
smallest possible weight for QKP(v) over all feasible
solutions that satisfy the conditions

• x‘(v) = ‘ and xr(v) = r; and
• ∑

i cixi +
∑

(i; j) cijxixj =C where the summations
are done over all the vertices i in G(v); and over all
the edges (i; j) in G(v); respectively.

If there is no feasible solution of this form; then
g[v; ‘; r;C] =∞.

In the initialization phase of the dynamic program,
we compute g[v; ‘; r;C] for the leaves v of the decom-
position tree:

g[v; ‘; r; c‘(v)‘ + cr(v)r + c‘(v); r(v)‘r] = a‘(v)‘ + ar(v)r

and g[v; ‘; r;C] =∞ whenever C = c‘(v)‘ + cr(v)r +
c‘(v); r(v)‘r. If v is a p vertex with left child u and right
child w, then

g[v; ‘; r;C] := min{g[u; ‘; r;C′] + g[w; ‘; r;C′′]

−a‘(v)‘−ar(v)r:−U6C′6U; −U6C′′6U;

C′ + C′′ = C + c‘(v)‘ + cr(v)r}:
In case v is an s vertex with left child u and right child
w, we denote by m(v) the right terminal of G(u). Then

g[v; ‘; r;C] := min{g[u; ‘; m;C′] + g[w;m; r;C′′]

−am(v)m: m∈{0; 1}; −U6C′6U; −U6C′′6U;

C′ + C′′ = C + cm(v)m}:
In the end, the optimal objective value is the max-
imum C for which there exist ‘; r ∈{0; 1} with
g[root; ‘; r;C]6 b. The overall running time of this
dynamic program is O(nU 2).

Theorem 3.4. The special case of QKP where the
underlying graph G= (V; E) is ESP can be solved in
pseudo-polynomial time O(nU 2).

4. A fully polynomial time approximation scheme

In this section, we design an FPTAS for the
special case of QKP where all cost coeFcients
are non-negative and where the underlying graph

G = (V; E) is ESP. Our result crucially depends on
the non-negativity of the cost coeFcients. In fact
without this non-negativity condition, the existence
of an FPTAS would imply P =NP; see Theorem 5.2.
The FPTAS is based on the input rounding tech-

nique of Ibarra and Kim [12]. For an instance I of
QKP with an underlying ESP graph G = (V; E), we
deKne the lower bound

L=max
{
max
i∈V

ci; max
(i; j)∈E

ci + cj + cij

}
(2)

on the optimal objective value: Indeed, setting xi = 1
and xk = 0 for all k = i yields a feasible solution x
with objective value ci; recall from the introduction
that we assume 06 ai6 b for all i∈V . And setting
xi = xj = 1 and xk = 0 for all k ∈ {i; j} yields for
every edge (i; j)∈E a feasible solution with objective
value ci + cj + cij; recall from the introduction that
we assume ai + aj6 b for all (i; j)∈E. If L=0, then
all ci and all cij are 0 and the QKP is trivial to solve.
Hence, we will from now on assume that L¿ 1.
Now let � be the desired precision of approximation,

and deKne a scaling parameter K by

K =
�L
3n

:

Based on this parameter K , we deKne a rounded in-
stance I # for I with the same underlying ESP graph
G = (V; E), with the same weight coeFcients ai, the
same weight bound b, and with the rounded cost co-
eFcients

c#i = �ci=K�; c#ij = �cij=K�
for i∈V and (i; j)∈E. We compute the optimal so-
lution x# for the rounded instance I # according to
Theorem 3.4. The output xA of our approximation
algorithm for instance I is either this feasible solu-
tion x#, or a feasible solution that yields the objective
value L, whichever has the largest objective value.
This completes the description of our approximation
algorithm.

Lemma 4.1. Let x∗ be the optimal solution for in-
stance I ; and let xA be the solution found by our ap-
proximation algorithm. If F(x) denotes the objective
value of solution x for the original instance I ; then

F(xA)¿ (1− �)F(x∗): (3)
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Proof. Denote by F#(x) the objective value of solu-
tion x for the rounded instance I #. Since ci¿Kc#i and
cij¿Kc#ij ;

F(x#)¿KF#(x#): (4)

Since x# is the optimal solution for the rounded in-
stance I #;

F#(x#)¿F#(x∗): (5)

Since Kc#i ¿ ci−K and Kc#ij¿ cij−K; and since there
are at most 3n terms in the objective function;

KF#(x∗)¿F(x∗)− 3nK: (6)

Putting (4)–(6) together yields

F(x#)¿F(x∗)− 3nK = F(x∗)− �L: (7)

The approximation xA found by our approximation
algorithm satisKes F(xA)¿F(x#) and F(xA)¿L. By
combining these bounds with (7) we get

F(xA)¿F(x∗)− �F(xA);

which Knally implies (3).

Lemma 4.2. The running time of the approximation
algorithm is polynomial in n and 1=�.

Proof. By Theorem 3.4; the optimal solution x# for
instance I # can be computed in O(nU 2) time; where
the value U is deKned as in Eq. (1) as

U =
∑
i∈V

|c#i |+
∑
(i; j)∈E

|c#ij|

=
∑
i∈V

�ci=K�+
∑
(i; j)∈E

�cij=K�

6
1
K


∑

i∈V

ci +
∑
(i; j)∈E

cij




6
1
K
(|V |+ |E|)L6 3nL

K
=
9n2

�
:

Here we have Krst used the deKnition of c#i and c
#
ij ; then

the fact that in an ESP graph |E|6 2|V |−1; and Knally
the deKnition of K . We conclude that the running time
O(nU 2) is O(n5=�2) and hence polynomially bounded
in n and 1=�.

Lemmas 4.1 and 4.2 together show that our approx-
imation algorithm indeed is an FPTAS.

Theorem 4.3. The special case of QKP where all
cost coeCcients are non-negative and where the un-
derlying graph G = (V; E) is ESP possesses a fully
polynomial time approximation scheme.

It is instructive to check where we have actually
exploited the non-negativity of the cost coeFcients: It
can be veriKed that all our arguments go through as
long as the value L deKned in (2) is strictly positive.
Moreover, the case L = 0 is trivial to solve, and the
case of negative L cannot occur for non-negative cost
coeFcients. For arbitrary cost coeFcients, however,
even the case L=0 is in-approximable unless P=NP;
see Theorem 5.2.

5. Negative results

In this section, we prove two negative results on the
complexity and the approximability of special cases of
the QKP: the QKP with vertex series–parallel graphs
is strongly NP-hard, and the QKP with negative cost
coeFcients is in-approximable in a very strong way
unless P = NP.

Theorem 5.1. The special case of QKP where the
underlying graph G=(V; E) is vertex series–parallel
is NP-hard in the strong sense.

Proof. The proof is done by a reduction from BAL-
ANCED COMPLETE BIPARTITE SUBGRAPH
(BCBS; for short); this is problem [GT24] in Garey
and Johnson [9]. An instance of BCBS consists of
a bipartite graph H = (V1 ∪ V2; EH ) together with a
positive integer k. The question is whether there exist
subsets W1 ⊆ V1 and W2 ⊆ V2 with |W1| = |W2| = k
that span a complete bipartite subgraph of H . BCBS
is NP-complete.
We construct the following instance of QKP. With-

out loss of generality let V1 ∪ V2 = {1; : : : ; n}. For
i = 1; : : : ; n we set ci = 0 and ai = 1. Moreover, we
set b = 2k and E = V1 × V2. For (i; j)∈E, we set
cij = 2 if (i; j)∈EH and cij = 1 if (i; j) ∈ EH . Note
that for the constructed QKP instance the underlying
graph is a complete bipartite graph, and hence a ver-
tex series–parallel graph. Note furthermore that all the
cost and weight coeFcients are polynomially bounded
in the input; hence, this reduction will indeed establish
strong NP-hardness. We claim that the BCBS instance
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has answer YES, if and only if this QKP instance has
a feasible solution with objective value at least 2k2.
Proof of (if): Let x be a feasible solution for QKP

with objective value at least 2k2. DeKne W1 ⊆ V1 and
W2 ⊆ V2 to contain the vertices i with xi = 1. By the
weight constraint, |W1|+ |W2|6 b=2k. Let ‘ denote
the number of edges (i; j)∈W1 × W2 that are not in
EH . Then the objective value for x is

2k2 = 2|W1| |W2| − ‘6 2|W1|(2k − |W1|)− ‘
6 2k2 − ‘:

This yields ‘ = 0 and |W1|= |W2|= k.
Proof of (only if): LetW1 andW2 be a certiKcate for

BCBS. Then setting xi = 1 if and only if i∈W1 ∪W2

yields a feasible solution x for QKP with objective
value at least 2k2. The proof is complete.

Theorem 5.2. Unless P = NP; the special case of
QKP where the underlying graph G=(V; E) is a tree
and where the cost coeCcients ci and cij may be neg-
ative does not have any polynomial time approxima-
tion algorithm with Anite worst case guarantee.

Proof. The proof is done by a reduction from the
NP-complete SUBSET SUM problem; this is problem
[SP13] in Garey and Johnson [9]. An instance consists
of positive integers q1; : : : ; qn and Q. The question is
whether there exists a subset I ⊆ {1; : : : ; n} such that∑

i∈I qi = Q.
We construct the following instance of QKP: the

underlying graph is a star with n leaves. There is a
central vertex 0, and there are n edges (0; i) to the
other vertices i=1; : : : ; n. The central vertex 0 has cost
c0=−Q+1, and all other vertices i (i=1; : : : ; n) have
cost ci =0. The cost of the edge (0; i) equals c0i = qi.
Moreover, b=Q and the weight coeFcients are a0=0
and ai = qi (i = 1; : : : ; n).
Consider a feasible solution x for this QKP instance.

If x0 = 0, then F(x)= 0. If x0 = 1, then F(x)=−Q+
1+q(x) where q(x)=

∑
i qixi. Because of the weight

constraint q(x)6 b = Q, and hence F(x) = 1 if and
only if the SUBSET SUM instance has answer YES.
To summarize, this QKP instance has optimal objec-
tive value 1 if the SUBSET SUM instance has answer
YES, and otherwise its optimal objective value is 0.
Any polynomial time approximation algorithmwith K-
nite worst case guarantee could be used to distinguish
between the objective values 0 and 1 in polynomial

time. This would imply a polynomial time solution for
SUBSET SUM.

6. Conclusion

In this paper, we have derived two pseudo-polynomial
time algorithms for the special case of the quadratic
0–1 knapsack problem where the underlying graph is
edge series–parallel. One of these algorithms could
be turned into a fully polynomial time approximation
scheme for the case where additionally all the cost
coeFcients are non-negative. It does not help a lot,
however, if the underlying graph is vertex series–
parallel: We proved that this special case of the QKP
is strongly NP-complete.
The time complexity of our Krst pseudo-polynomial

time algorithm is O(nb2). For paths and for cycles,
it is quite easy to get algorithms with a better time
complexity O(nb). So the question arises, whether
there exists an O(nb) time algorithm for general edge
series–parallel graphs.
Another contribution of this paper is that, unlike

previous work, the structure of the graph G naturally
deKned by the objective function plays a major role
in the solution of the problem. It is hoped that, in
future work, the structure of this graph can be further
exploited to derive algorithms for QKP.
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