
On Scheduling an Unbounded Batch Machine

Zhaohui Liu1, 3, Jinjiang Yuan2, 3 and T.C. Edwin Cheng3,∗

1Department of Mathematics, East China University of Science and Technology

Shanghai 200237, People’s Republic of China

2Department of Mathematics, Zhengzhou University

Zhengzhou, Henan 450052, People’s Republic of China

3Department of Management, The Hong Kong Polytechnic University

Kowloon, Hong Kong SAR, People’s Republic of China

August 27, 2002

Abstract

A batch machine is a machine that can process up to c jobs simultaneously as a batch,

and the processing time of the batch is equal to the longest processing time of the

jobs assigned to it. In this paper, we deal with the complexity of scheduling an un-

bounded batch machine, i.e., c = +∞. We prove that minimizing total tardiness is

binary NP-hard, which has been an open problem in the literature. Also, we establish

the pseudopolynomial solvability of the unbounded batch machine scheduling problem

with job release dates and any regular objective. This is distinct from the bounded

batch machine and the classical single machine scheduling problems, most of which

with different release dates are unary NP-hard. Combined with the existing results,

this paper provides a nearly complete mapping of the complexity of scheduling an

unbounded batch machine.

Keywords: Scheduling; Batch Processing; Complexity

∗Corresponding author.

1

1 Introduction

A batch machine or batch processing machine is a machine that can process several

jobs simultaneously as a batch, and the processing time of the batch is equal to the

longest processing time of the jobs assigned to it. The research on batch machine

scheduling is motivated by burn-in operations in semiconductor manufacturing (Lee et

al. [8]). Potts and Kovalyov [11] review the existing results.

The problems that we study in this paper can be formulated as the following

model. There are n independent jobs J1, J2, . . . , Jn to be scheduled on a batch ma-

chine that can process up to c jobs simultaneously, where c is called the capacity of

the batch machine. Each job Jj (1 ≤ j ≤ n) is associated with a processing time

pj and a release date rj, before which the job cannot be scheduled. The schedul-

ing objective is to minimize a regular minsum function
∑
fj =

∑n
j=1 fj(Cj) or a

regular minmax function fmax = maxn
j=1 fj(Cj), where fj is a nondecreasing func-

tion of the completion time Cj of job Jj. Among the popular regular objectives are

Cmax, Lmax,
∑
Cj,

∑
wjCj ,

∑
Uj,

∑
wjUj,

∑
Tj and

∑
wjTj. Specifically, we focus on the

total tardiness
∑
Tj =

∑n
j=1 max{0, Cj−dj}, where dj is given as the due date of job Jj

and max{0, Cj−dj} is the tardiness of job Jj under a schedule. See Lawler et al. [6] for

definitions of other objectives. As in Liu and Yu [10], the batch machine with capacity

c is denoted by B(c). In this paper, we restrict ourselves to the unbounded case, i.e.,

B(∞). Using the three-field notation, we denote the problems under consideration by

B(∞)| rj |∑ fj , B(∞)| rj |fmax , and so on.

Cheng et al. [4] prove that B(∞)| rj |Lmax is NP-hard. In addition, they establish

the polynomial solvability of a wide variety of special cases of B(∞)| rj |fmax (including

rj = 0). It is shown in Brucker et al. [2] that B(∞)||∑Uj is polynomially solvable,

B(∞)||∑wjUj and B(∞)||∑wjTj are NP-hard, and B(∞)||∑ fj is pseudopolynomi-

ally solvable. But it is open whether B(∞)||∑Tj is polynomially solvable or binary

NP-hard. Concerning B(∞)| rj |∑wjCj, Deng and Zhang [5] establish its NP-hardness

and present polynomial algorithms for several special cases.

As to the bounded case, B(c)||Cmax is solved by a simple method due to Bartholdi

(Lee and Uzsoy [7]). Brucker et al. [2] prove that B(2)||Lmax (and hence B(2)| rj |Cmax)

is unary NP-hard. Baptiste [1] presents polynomial dynamic programming algorithms

for problems B(c)| rj , pj = p |F with F ∈ {∑
wjCj,

∑
wjUj ,

∑
Tj}. Li and Lee [9]

solve B(c)| rj |∑Uj under some agreeability assumption on job processing times, release

dates and due dates. However, the complexity ofB(c)||∑Cj andB(c)||∑wjCj remains

open, but B(c)||∑Cj can be solved in O(nc(c−1)) time ([2]).

This paper is organized as follows. In Section 2, we prove the binary NP-hardness of

B(∞)||∑Tj . This answers the open question posed in [2] and Brucker and Knust [3].

2

In Section 3, we show the pseudopolynomial solvability of the problems B(∞)| rj |∑ fj

and B(∞)| rj |fmax. Finally, In Section 4, we present a summary of the complexity

status of various unbounded batch machine scheduling problems.

2 NP-hardness of total tardiness problem

In this section, we establish the binary NP-hardness of the problem B(∞)||∑Tj by a

reduction from the binary NP-complete PARTITION problem.

PARTITION Given t positive integers a1, a2, . . . , at with
∑t

i=1 ai = 2B, decide if

there exists a partition of the index set I = {1, 2, . . . , t} into two disjoint subsets I1

and I2 such that
∑

i∈I1 ai =
∑

i∈I2 ai = B.

Given an instance P of PARTITION, we first define 3t+ 1 integers:

Mt =
t∑

i=1

(t− i)ai + 8B

Mk = 2
t∑

i=k+1

Mi +
t∑

i=1

(t− i)ai + 8B (k = t− 1, t− 2, . . . , 1)

L1 = 7
t∑

i=1

Mi +
t∑

i=1

(t− i)ai + 4B

Lk = 2
k−1∑
i=1

Li + 7
t∑

i=1

Mi +
t∑

i=1

(t− i)ai + 4B (k = 2, 3, . . . , 2t+ 1) .

Obviously, the integers are such that

2B
Mt
Mt−1
 · · ·
 M1
 L1
 L2
 · · ·
 L2t+1 .

Now we define an instance Q of B(∞)||∑Tj as follows.

Q consists of 10t + 3 jobs that are classified into 2t + 1 types. Each type 2k − 1

(1 ≤ k ≤ t) contains five jobs: J1
2k−1, J

2
2k−1, J

3
2k−1 and two additional copies of J1

2k−1.

Their processing times and due dates are given by

p12k−1 = L2k−1

p22k−1 = L2k−1 +Mk

p32k−1 = L2k−1 + 2Mk

d1
2k−1 = 2

2k−2∑
i=1

Li + 5
k−1∑
i=1

Mi + L2k−1 +Mk + 2B

d2
2k−1 = 2

2k−1∑
i=1

Li + 5
k−1∑
i=1

Mi

d3
2k−1 = 2

2k−1∑
i=1

Li + 5
t∑

i=1

Mi + 2B .

3

Each type 2k (1 ≤ k ≤ t) also contains five jobs: J1
2k, J

2
2k, J

3
2k and two additional copies

of J1
2k. Their processing times and due dates are given by

p12k = L2k

p22k = L2k +Mk + ak

p32k = L2k + 2Mk

d1
2k = 2

2k−1∑
i=1

Li + 5
k−1∑
i=1

Mi + L2k + 3Mk + 2B

d2
2k = 2

2k∑
i=1

Li + 5
k−1∑
i=1

Mi + 3Mk − (t− k + 1)ak

d3
2k = 2

2k∑
i=1

Li + 5
t∑

i=1

Mi + 2B .

Type 2t+ 1 contains three copies of job J1
2t+1 with

p12t+1 = L2t+1

d1
2t+1 = L2t+1 + 2

2t∑
i=1

Li + 5
t∑

i=1

Mi +B .

Set the threshold value

T ∗ = 2
t∑

i=1

Mi +
t∑

i=1

(t− i)ai +B .

We are asked to answer whether there exists a schedule σ for instance Q such that

T (σ) ≤ T ∗, where T (σ) denotes the total tardiness of σ.

Clearly, the construction of Q takes a polynomial time under the binary coding.

In the remainder of this section, we will show that Q has a schedule σ such that

T (σ) ≤ T ∗ if and only if the PARTITION instance P has a solution {I1, I2} such that
∑

i∈I1 ai =
∑

i∈I2 ai = B. Note that if putting the jobs in instance Q according to the

shortest processing time (SPT) rule, we obtain the sequence:

(J1
1 , J

2
1 , J

3
1 , J

1
2 , J

2
2 , J

3
2 , . . . , J

1
2t, J

2
2t, J

3
2t, J

1
2t+1) .

Suppose that Q has a schedule σ = (B1,B2, . . . ,Bm) such that T (σ) ≤ T ∗, where

each Bi is a batch. Let p(Bi) denote the processing time of batch Bi. It is reasonable

to require that the processing time of each job in Bi+1 is larger than p(Bi); otherwise,

shifting the jobs in Bi+1 with processing times no larger than p(Bi) to Bi does not

increase T (σ). Then, σ has the properties:

(i) the jobs in each Bi come from a contiguous segment of the SPT sequence, and

all Bi s are arranged in order of increasing p(Bi);

4

(ii) for each k (1 ≤ k ≤ 2t+ 1), all J1
k s are processed in a batch.

Lemma 1 will give more explanations about the structure of σ.

Lemma 1 σ has the following further properties:

(iii) each batch contains only jobs of one type;

(iv) for each k (1 ≤ k ≤ t), the jobs of types 2k−1 and 2k are divided into four batches:

{J1
2k−1, J

2
2k−1}, {J3

2k−1}, {J1
2k}, {J2

2k, J
3
2k} (Pattern 2112) with total processing

time 2(L2k−1 +L2k)+5Mk; or {J1
2k−1}, {J2

2k−1, J
3
2k−1}, {J1

2k, J
2
2k}, {J3

2k} (Pattern

1221) with total processing time 2(L2k−1 + L2k) + 5Mk + ak.

Proof If property (iii) does not hold, there must exist some k (1 ≤ k ≤ 2t) such that

J3
k and J1

k+1 are processed in a batch. But

p1k+1 − d3
k = Lk+1 − 2

k∑
i=1

Li − 5
t∑

i=1

Mi − 2B

= 2
t∑

i=1

Mi +
t∑

i=1

(t− i)ai + 2B > T ∗,

which implies the tardiness of J3
k is larger than T ∗, a contradiction to T (σ) ≤ T ∗.

We prove property (iv) by induction. If the jobs of type 1 are processed in a batch,

then the total tardiness of three J1
1 s is equal to

3(p31 − d1
1) = 3(M1 − 2B) = 2M1 + 2

t∑
i=2

Mi +
t∑

i=1

(t− i)ai + 2B > T ∗.

On the other hand, if J1
1 , J

2
1 and J3

1 are processed in three batches, then the tardiness

of J3
1 is

3∑
j=1

pj
1 − d3

1 > L1 − 5
t∑

i=1

Mi − 2B > T ∗.

Thus, J1
1 , J

2
1 and J3

1 must be processed in two batches: {J1
1 , J

2
1}, {J3

1}; or {J1
1},

{J2
1 , J

3
1}. Further, noticing that the two batches of type 1 require at least 2L1 + 2M1

units of processing time, we can similarly prove that the jobs of type 2 are processed

in two batches: {J1
2 , J

2
2}, {J3

2}; or {J1
2}, {J2

2 , J
3
2}.

If batches {J1
1 , J

2
1} and {J1

2 , J
2
2} both exist, then the total tardiness of three J1

2 s is

3(p21 + p31 + p22 − d1
2) > 3(M1 − 2B) > T ∗.

If both {J2
1 , J

3
1} and {J2

2 , J
3
2} exist, the total tardiness of J2

1 and J2
2 is

2(p11 + p31) + p12 + p32 − d2
1 − d2

2 > 3M1 > T
∗.

5

So the four batches of types 1 and 2 must be: {J1
1 , J

2
1}, {J3

1}, {J1
2}, {J2

2 , J
3
2}; or {J1

1},

{J2
1 , J

3
1}, {J1

2 , J
2
2}, {J3

2}.

Suppose that the conclusion in property (iv) is true for each i = 1, 2, . . . , k−1. Then,

the start time of the first batch of types 2i − 1 and 2i is not less than 2
∑2i−2

j=1 Lj +

5
∑i−1

j=1Mj . If the four batches of types 2i − 1 and 2i are of Pattern 2112, then the

tardiness of J2
2i is at least 2Mi; if they are of Pattern 1221, then the tardiness of J2

2i−1

is at least 2Mi. Therefore, the jobs of types 1, 2, . . . , 2k − 2 have total tardiness of

at least 2
∑k−1

i=1 Mi, which implies the jobs of types 2k − 1, 2k, . . . , 2t + 1 have total

tardiness of at most 2
∑t

i=kMi +
∑t

i=1(t − i)ai + B. Noticing that the start time of

the first batch of types 2k − 1 and 2k will not be less than 2
∑2k−2

i=1 Li + 5
∑k−1

i=1 Mi, we

can prove by an analysis similar to that for types 1 and 2 that if property (iv) does

not hold for k, the jobs of types 2k − 1 and 2k will have total tardiness larger than

2
∑t

i=kMi +
∑t

i=1(t− i)ai +B, which leads to a contradiction. ✷

Let I1 be the set of indices k (1 ≤ k ≤ t) such that the four batches of types 2k− 1

and 2k are of Pattern 2112. Let I2 = I \ I1, where I = {1, 2, . . . , t}. A schedule with

properties (i)-(iv) must contain 4t+ 1 batches in the following form:

(B4k−3,B4k−2,B4k−1,B4k) =




(
{J1

2k−1, J
2
2k−1}, {J3

2k−1}, {J1
2k}, {J2

2k, J
3
2k}

)
, k ∈ I1

(
{J1

2k−1}, {J2
2k−1, J

3
2k−1}, {J1

2k, J
2
2k}, {J3

2k}
)
, k ∈ I2

B4t+1 = {J1
2t+1} .

The tardiness of each job of types 1, 2, . . . , 2t in the schedule is given by Lemma 2.

Lemma 2 For each k ∈ I1, J2
2k is the only tardy job in B4k−3, B4k−2, B4k−1 and B4k,

and its tardiness is

2Mk + (t− k + 1)ak +
∑{ai| i < k , i ∈ I2} .

For each k ∈ I2, J2
2k−1 is the only tardy job in B4k−3, B4k−2, B4k−1 and B4k, and its

tardiness is

2Mk +
∑{ai| i < k , i ∈ I2} .

Proof By property (iv), the total processing time of batches B4k−3, B4k−2, B4k−1 and

B4k is 2(L2k−1 + L2k) + 5Mk if k ∈ I1, or 2(L2k−1 + L2k) + 5Mk + ak if k ∈ I2. Then

the start time of batch B4k−3 is equal to

2
2k−2∑
i=1

Li + 5
k−1∑
i=1

Mi +
∑{ai| i < k , i ∈ I2} .

6

By computation, it is easy to verify that if k ∈ I1, B4k−3, B4k−2 and B4k−1 contain no

tardy jobs; if k ∈ I2, B4k−3, B4k−1 and B4k contain no tardy jobs. For k ∈ I1, the

completion time of B4k = {J2
2k, J

3
2k} is

2
2k∑
i=1

Li + 5
k∑

i=1

Mi +
∑{ai| i < k , i ∈ I2} .

Thus, J3
2k is on-time and J2

2k has tardiness of 2Mk +(t−k+1)ak +
∑{ai| i < k , i ∈ I2}.

For k ∈ I2, the completion time of B4k−2 = {J2
2k−1, J

3
2k−1} is

2
2k−1∑
i=1

Li + 5
k−1∑
i=1

Mi + 2Mk +
∑{ai| i < k , i ∈ I2} .

Thus, J3
2k−1 is on-time and J2

2k−1 has tardiness of 2Mk +
∑{ai| i < k , i ∈ I2}. ✷

Lemma 3 Let σ be a schedule with properties (i)-(iv). Then, T (σ) ≤ T ∗ if and only

if
∑

k∈I1 ak =
∑

k∈I2 ak = B.

Proof By Lemma 2, we have

T (σ) =
t∑

k=1

(
2Mk +

∑{ai| i < k , i ∈ I2}
)

+
∑
k∈I1

(t− k + 1)ak + 3 max


0,

∑
k∈I2

ak − B

 ,

where the third term is the total tardiness of three J1
2t+1 s. Since

t∑
k=1

∑{ai| i < k , i ∈ I2} =
∑
i∈I2

(t− i)ai ,

it holds that

T (σ) = 2
t∑

k=1

Mk +
t∑

k=1

(t− k)ak +
∑
k∈I1

ak + 3 max


0,

∑
k∈I2

ak − B

 .

Then, T (σ) ≤ T ∗ if and only if
∑

k∈I1 ak ≤ B and
∑

k∈I1 ak +3
∑

k∈I2 ak ≤ 4B. Noticing

that
∑

k∈I1 ak +
∑

k∈I2 ak = 2B, we have completed the proof. ✷

We now prove the main result of this section.

Theorem 1 B(∞)||∑Tj is binary NP-hard.

Proof If Q has a schedule σ such that T (σ) ≤ T ∗, then we may require or prove that

σ possesses properties (i)-(iv). It follows from Lemma 3 that the PARTITION instance

P has a solution {I1, I2}. Conversely, if the PARTITION instance P has a solution

{I1, I2}, we simply construct a schedule with properties (i)-(iv). It again follows from

Lemma 3 that the constructed schedule has total tardiness no larger than T ∗. ✷

7

3 Pseudopolynomial solvability for problems with

job release dates and regular objectives

In this section, we develop a pseudopolynomial time algorithm for the general problems

B(∞)| rj |∑ fj and B(∞)| rj |fmax. The algorithm is based on the following observa-

tion: there exists an optimal schedule in which if the longest job is started at time t,

then all the jobs released at or before t should be started at or before t and all the jobs

released after t should be started after t.

Let α and γ be the job index sequences such that rα(1) ≤ rα(2) ≤ · · · ≤ rα(n) and

pγ(1) ≤ pγ(2) ≤ · · · ≤ pγ(n), respectively. Let α(i, j) = {α(i), α(i + 1), · · · , α(j)} and

γ(i, j) = {γ(i), γ(i+1), · · · , γ(j)}. Let J(i1, i2; k) denote the subset of jobs with indices

in α(i1, i2) ∩ γ(1, k). Note that the number of such subsets is O(n3). The main idea

of our algorithm is to schedule the jobs among J(i1, i2; k1) ∪ {Jγ(k2)} (k1 < k2) into a

given interval such that Jγ(k2) is completed at the end of the interval and the objective

value of the subschedule is minimized.

To simplify the exposition, we introduce an auxiliary job Jn+1 with rn+1 = rα(n) +
∑n

j=1 pj , pn+1 = pγ(n) and fn+1(t) ≡ 0. It is easy to see that Jn+1 should be scheduled

at the end of an optimal schedule.

3.1 Problem B(∞)| rj |∑
fj

Let F (i1, i2; k1, k2; x, y) (k1 < k2) denote the minimum objective value when scheduling

the jobs among J(i1, i2; k1) ∪ {Jγ(k2)} into the interval [x, y], subject to the constraint

that Jγ(k2) is completed at time y. If J(i1, i2; k1) = ∅, then

F (i1, i2; k1, k2; x, y) =



fγ(k2)(y) , if max{rγ(k2), x} ≤ y − pγ(k2)

+∞, otherwise.

Generally, F (i1, i2; k1, k2; x, y) can be computed recursively.

(i) If γ(k1) �∈ α(i1, i2), then J(i1, i2; k1) = J(i1, i2; k1 − 1) and we have

F (i1, i2; k1, k2; x, y) = F (i1, i2; k1 − 1, k2; x, y) .

(ii) If γ(k1) ∈ α(i1, i2) and rγ(k1) > y − pγ(k2), then Jγ(k1) cannot be scheduled in

[x, y], and hence F (i1, i2; k1, k2; x, y) = +∞.

(iii) If γ(k1) ∈ α(i1, i2) and rγ(k1) ≤ y − pγ(k2), we have

F (i1, i2; k1, k2; x, y) = min



F (i1, i2; k1 − 1, k2; x, y) + fγ(k1)(y)

min
max{rγ(k1), x}≤t≤y−pγ(k1)−pγ(k2)

H(t)


 ,

8

where the first term is taken if Jγ(k1) is processed in the batch including Jγ(k2), and

H(t) = H1(t) +H2(t) in the second term is taken if Jγ(k1) is started at time t. We also

note that the first term will not be taken when k2 = n + 1, i.e., Jn+1 will occupy the

last batch alone.

H1(t) is the contribution to H(t) of jobs processed in [x, t+ pγ(k1)]. It is reasonable

to assume that none of the jobs with release dates no more than t in J(i1, i2; k1 − 1)

is scheduled after the batch including Jγ(k1) since they have processing times no more

than pγ(k1). Let i′2 (i1 ≤ i′2 ≤ i2) be the maximum index satisfying rα(i′2) ≤ t. Then,

H1(t) = F (i1, i
′
2; k1 − 1, k1; x, t+ pγ(k1)) .

H2(t) is the contribution to H(t) of jobs processed in [t+ pγ(k1), y]. It obviously holds

that

H2(t) = F (i′2 + 1, i2; k1 − 1, k2; t+ pγ(k1), y) .

By computing F (1, n;n, n + 1; rα(1), rn+1 + pn+1) recursively, we can obtain the

optimal objective value. An optimal schedule can be found by backtracking.

Now we analyse the complexity of the recursion. The size of the domain of function

F (i1, i2; k1, k2; x, y) is O(n4P 2), where P = rα(n) +
∑n

i=1 pi. To obtain the vaule of

each F (i1, i2; k1, k2; x, y), we need at most O(P) time (see cases (i)-(iii)). Thus, the

complexity of the recursion is at most O(n4P 3), which is pseudopolynomial.

3.2 Problem B(∞)| rj |fmax

For the problem B(∞)| rj |fmax, our analysis is similar to that for the problem

B(∞)| rj |∑ fj except that in case (iii),

F (i1, i2; k1, k2; x, y) = min




max
{
F (i1, i2; k1 − 1, k2; x, y), fγ(k1)(y)

}

min
max{rγ(k1), x}≤t≤y−pγ(k1)−pγ(k2)

H(t)


 ,

where H(t) = max{H1(t), H2(t)}.

4 Complexity status of unbounded batch machine

problems

In this paper, we have addressed the complexity of scheduling an unbounded batch

machine. Our results show that all problems with regular objectives are pseudopoly-

nomially solvable even if the jobs have different release dates. This is distinct from the

bounded batch machine and the classical single machine scheduling problems, most of

which with different release dates are unary NP-hard.

9

Finally, we present a summary of the complexity status of various unbounded batch

machine scheduling problems. Following Brucker and Knust [3], we use the terminol-

ogy: maximal polynomially solvable, maximal pseudopolynomially solvable and mini-

mal NP-hard.

• maximal polynomially solvable:

B(∞)||∑Uj (Brucker et al. [2])

B(∞)| rj |fmax with a fixed number of rj or pj (Cheng et al. [4])

B(∞)| rj |∑wjCj with a fixed number of rj or pj (Deng and Zhang [5])

• maximal pseudopolynomially solvable:

B(∞)| rj |fmax (this paper)

B(∞)| rj |∑ fj (this paper)

• minimal NP-hard:

B(∞)||∑Tj (this paper)

B(∞)||∑wjUj (Brucker et al. [2])

B(∞)| rj |Lmax (Cheng et al. [4])

B(∞)| rj |∑wjCj (Deng and Zhang [5])

• Open:

B(∞)| rj |∑Cj

Acknowledgment

This research is supported in part by The Hong Kong Polytechnic University under

grant number G-YW59. The first author is also supported by the National Natural

Science Foundation of China under grant number 10101007.

10

References

[1] P. Baptiste, Batching identical jobs, Mathematical Methods of Operations Re-

search 52 (2000) 355–367.

[2] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn,

S.L. van de Velde, Scheduling a batching machine, Journal of Scheduling 1 (1998)

31–54.

[3] P. Brucker, S. Knust, Complexity results for scheduling problems,

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

[4] T.C.E. Cheng, Z. Liu, W. Yu, Scheduling jobs with release dates and deadlines on

a batch processing machine, IIE Transactions 33 (2001) 685–690.

[5] X. Deng, Y. Zhang, Minimizing mean response time in batch processing system,

Lecture Notes in Computer Science 1627 (1999) 231–240.

[6] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and

scheduling: algorithms and complexity, in Graves, S.C., Rinnooy Kan, A.H.G. and

Zipkin, P.H. (eds.), Handbooks in Operations Research and Management Science,

Volume 4, Logistics of Production and Inventory, North Holland, Amsterdam,

1993, 445–522.

[7] C.-Y. Lee, R. Uzsoy, Minimizing makespan on a single batch processing machine

with dynamic job arrivals, International Journal of Production Research 37 (1999)

219–236.

[8] C.-Y. Lee, R. Uzsoy, L.A. Martin-Vega, Efficient algorithms for scheduling semi-

conductor burn-in operations, Operations Research 40 (1992) 764–775.

[9] C.-L. Li, C.-Y. Lee, Scheduling with agreeable release times and due dates on a

batch processing machine, European Journal of Operational Research 96 (1997)

564–569.

[10] Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete

Applied Mathematics 105 (2000) 129–136.

[11] C.N. Potts, M.Y. Kovalyov, Scheduling with batching: a review, European Journal

of Operational Research 120 (2000) 228–249.

11

