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Abstract

In the Minimum Label Spanning Tree problem, the input consists of an edge-colored undirected graph, and the goal is to
2nd a spanning tree with the minimum number of di3erent colors. We investigate the special case where every color appears
at most r times in the input graph. This special case is polynomially solvable for r = 2, and NP- and APX-complete for any
2xed r¿ 3.

We analyze local search algorithms that are allowed to switch up to k of the colors used in a feasible solution. We show
that for k = 2 any local optimum yields an (r + 1)=2-approximation of the global optimum, and that this bound is tight. For
every k¿ 3, there exist instances for which some local optima are a factor of r=2 away from the global optimum.
c© 2003 Published by Elsevier Science B.V.
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1. Introduction

In the Minimum Label Spanning Tree problem
(MINLST, for short), we are given a simple, con-
nected, undirected graph G= (V; E) without loops on
n vertices. The edges in E are colored (or labeled)
with the colors c1; c2; : : : ; cq. For i = 1; : : : ; q we de-
note by E(ci) ⊆ E the set of edges with color ci. The
goal in MINLST is to 2nd a spanning tree in G that
uses the minimum number of colors. An equivalent

∗ Corresponding author.
E-mail addresses: t.brueggemann@math.utwente.nl

(T. Br%uggemann), monnot@lamsade.dauphine.fr
(J. Monnot), g.j.woeginger@cs.utwente.nl (G.J. Woeginger).

formulation of MINLST asks to 2nd a smallest cardi-
nality subset C ⊆ {c1; c2; : : : ; cq} of the colors, such
that the subgraph induced by the edge sets E(ci) with
ci ∈C is connected and touches all vertices in V .
Motivated by certain applications in communi-

cation network design, Chang and Leu [4] intro-
duced problem MINLST in 1997 and proved that it
is NP-complete. Krumke and Wirth [9] formulated
a greedy algorithm for MINLST, and showed that its
worst case performance ratio is at most 2 ln n + 1.
Moreover, Krumke and Wirth [9] proved that no poly-
nomial time approximation algorithm for MINLST can
have a worst case performance ratio (1 − �) ln n, for
any �¿ 0. Wan et al. [16] provided a better analysis
of the greedy algorithm in [9]; they showed that its
worst case performance ratio is at most ln(n− 1)+1.
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Results of this paper: In this paper, we study the
special case MINLSTr of MINLST in which every color
occurs at most r times (r¿ 2) on the edges of G. For
r = 2, this special case is equivalent to the Graphic
Matroid Parity problem, and therefore can be solved
in polynomial time (see Observation 5.1 in Section
5). For every r¿ 3, this special case MINLSTr is
NP-complete and APX-complete; hence, for r¿ 3 this
special case does not possess a polynomial time ap-
proximation scheme unless P=NP (see Theorem 5.2
in Section 5).
In Section 2 we introduce a family of local search

algorithms that are based on the so-called k-switch
neighborhoods, where k¿ 1 is an integer. Sloppily
speaking, a k-switch replaces up to k of the colors
used in a feasible solution by other colors. Local op-
tima for the k-switch neighborhoods can be computed
in polynomial time. In Sections 3 and 4 we then dis-
cuss how well local optima for k-switch perform in
comparison to global optima: For k=2, any local op-
timum yields an (r+1)=2-approximation of the global
optimum, and this bound of (r+1)=2 is best possible.
For every k¿ 3, there exist instances for which some
local optimum is a factor of roughly r=2 away from
the global optimum. Hence, from the worst case point
of view there is almost no pro2t in moving from the
(small) 2-switch neighborhood to the (much bigger)
k-switch neighborhoods with k¿ 3.
In studying the worst case quality of local op-

tima of local search algorithms for combinatorial
problems, we follow the line of research of Finn
and Horowitz [6] (for multiprocessor scheduling),
Hurkens and Schrijver [8] (for set packing), Lu and
Ravi [11] (for maximum-leaf spanning trees),
Ausiello and Protasi [3] (for complexity aspects),
Arkin and Hassin [2] (for weighted set packing), and
Schuurman and Vredeveld [14] (for multiprocessor
scheduling). For more information on this area,
we refer the reader to the Ph.D. Thesis [15] of
Vredeveld.

2. The k-switch neighborhoods

Any spanning tree T for problem MINLST can be
represented by the set C(T ) ⊆ {c1; : : : ; cq} of colors
used in T . In this section, we prefer to work with
color sets. A color set C is feasible if and only if the

corresponding set of edges is connected and touches
all vertices in the graph.

De�nition 2.1. Let k¿ 1 be an integer, and let C1

and C2 be two feasible color sets for some instance of
MINLST. Then the set C2 is in the k-switch neighbor-
hood k-SWITCH (C1) of the set C1, if and only if

|C1 − C2|6 k and |C2 − C1|6 k: (1)

In other words, we can get the color set C2 from the
color set C1 by 2rst removing up to k colors from C1,
and then adding up to k colors to it.

As usual with neighborhood structures, we may
build a local search algorithm around the k-switch
neighborhood:

Start with an arbitrary feasible color set C. As
long as there exists a feasible color set C′ in
k-SWITCH (C) with |C′|¡ |C|, replace the old
set C by the better set C′.

Eventually, the local search algorithm will terminate
in a local optimum C: For this local optimum C, any
set C′ in k-SWITCH (C) will satisfy |C′|¿ |C|. In a
slight abuse of notation, we will say that a spanning
tree is a local optimum for the k-switch neighborhood
if and only if its associated color set C(T ) is a local
optimum for the k-switch neighborhood.
The following observation shows that for every

2xed value of k, a local optimum for the k-switch
neighborhood can be determined in polynomial time.

Observation 2.2. For any k¿ 1, a local optimum
with respect to the k-switch neighborhood can be
computed in O(n3k+3) time.

Proof. Without loss of generality, we assume that the
starting point of the local search algorithm contains
at most n − 1 colors. By Eq. (1) any neighborhood
set k-SWITCH (C) contains at most O(|C|kqk) feasi-
ble sets. Since |C|6 n − 1 and since q6 |E|6 n2,
we conclude that |k-SWITCH (C)| = O(n3k). Within
O(n2) time, we can determine whether a color set in
the neighborhood is feasible and we can determine its
objective value. Hence, one replacement step in the
local search takes only O(n3k+2) time.
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Since the possible objective values are integers in
the range from 1 up to n−1, the local search terminates
after at most n− 2 replacement steps.

In the following two section, we will analyze the
quality of local optima with respect to k-switch neigh-
borhoods for k¿ 2. The case k = 1 is trivial.

Observation 2.3. Let r¿ 2 be an integer. For any
instance ofMINLSTr , a local optimum with respect to
the 1-switch neighborhood gives an r-approximation
of the global optimum. This bound is tight.

3. Local optima for the 2-switch neighborhood

In this section, we provide a complete worst case
analysis of local optima with respect to the 2-switch
neighborhood: Every local optimum yields an (r +
1)=2-approximation of the global optimum (Theorem
3.1), and this bound is best possible (Theorem 3.2).

Theorem 3.1. For any integer r¿ 2 and for any in-
stance G ofMINLSTr , the objective value of any local
optimum with respect to the 2-switch neighborhood
is at most a factor of (r + 1)=2 above the optimal
objective value.

Proof. Suppose for the sake of contradiction that the
statement is false, and consider a counterexample G=
(V; E) with the smallest number of edges. Let T ∗ =
(V; E∗) be an optimal spanning tree for G, and let
T+ = (V; E+) be a locally optimal tree with respect
to the 2-switch neighborhood. Let C∗ = C(T ∗) and
C+=C(T+) denote the corresponding color sets with

|C+|¿ r + 1
2

|C∗|: (2)

We observe that in a smallest counterexample, C∗ ∩
C+ = ∅ must hold: If there is a color i∈C∗ ∩ C+,
then we can contract all edges with this color i in G,
and get a smaller instance where the global and local
optimum both use one color less. Since this smaller
instance still satis2es the inequality (2), we would
have found a smaller counterexample. Hence, C∗ ∩
C+=∅. Moreover, a smallest counterexample satis2es
E∗ ∪ E+ = E.

Let n denote the number of vertices in G. A color
is called singleton if it shows up on exactly one edge
of G. Let ‘ denote the number of singleton colors
in C+, and let e1; : : : ; e‘ be an enumeration of the
corresponding edges in T+. Consider the ‘+1 subtrees
T+
1 ; : : : ; T+

‘+1 that result from removing the ‘ edges
e1; : : : ; e‘ from T+.

Suppose that there exists some color i, such that
the edges with color i connect more than two of these
subtrees T+

1 ; : : : ; T+
‘+1 to each other. Then one could

add color i to C+, remove an appropriate pair of sin-
gleton colors from C+, and get another feasible color
set C− with strictly better objective value. Since the
set C− is in the 2-switch neighborhood of the local
optimum C+, we arrive at a contradiction. Therefore,
every color connects at most two of these ‘ + 1 sub-
trees to each other. But this implies that also the global
optimum must spend at least ‘ colors on connecting
the corresponding ‘+1 vertex sets to each other, and
we get

|C∗|¿ ‘: (3)

Since a spanning tree has n−1 edges, and since every
color occurs at most r times, we furthermore have that

|C∗|¿ n− 1
r

: (4)

Now let us estimate the number of colors in the local
optimum T+: There are ‘ edges in T+ with the ‘
singleton colors. Every non-singleton color i in T+

occurs at least twice on the edges of G. Since C+ ∩
C∗ = ∅, the color i cannot show up in T ∗, and since
E∗ ∪ E+ = E, all edges with color i are contained in
T+. This yields that there are at most (n − 1 − ‘)=2
non-singleton colors in C+. Hence,

|C+|6 ‘ +
1
2
(n− 1− ‘)

=
1
2
(n− 1) +

1
2
‘6

r
2
|C∗|+ 1

2
|C∗|

=
r + 1
2

|C∗|: (5)

Here we used (3) and (4). The inequality (5) blatantly
contradicts our initial assumption (2). This contradic-
tion completes the proof of the theorem.

Theorem 3.2. For any integer r¿ 2, there exist an
instance G of MINLSTr and a spanning tree T for G
that is a local optimum with respect to the 2-switch
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Fig. 1. A global optimum and a local optimum for 2-switch in
the proof of Theorem 3.2.

neighborhood, such that the objective value of T is
(r + 1)=2 above the optimal objective value.

Proof. Consider the graph G with vertices v0,
x0; : : : ; xr−1, and y0; : : : ; yr−1. There is an edge from
v0 to every other vertex. Moreover, the vertices
x0; : : : ; xr−1 (in this ordering) induce a cycle and the
vertices y0; : : : ; yr−1 (in this ordering) induce a cycle.
There are r + 3 colors: For i = 1; : : : ; r − 1 the two
edges [xi−1; xi] and [yi−1; yi] have color i. The edge
[v0; x0] has color r, and the edge [v0; y0] has color
r + 1. The edge [x0; xr−1] and all edges from v0 to
x1; : : : ; xr−1 have color r + 2; the edge [y0; yr−1] and
all edges from v0 to y1; : : : ; yr−1 have color r + 3.
Then the edges with colors r + 2 and r + 3 form

a spanning tree with 2 colors. The edges with colors
1; 2; : : : ; r + 1 form a spanning tree with r + 1 colors
that is a local optimum with respect to the 2-switch
neighborhood. See Fig. 1 for an illustration.

4. Local optima for the k-switch neighborhood

In this section we will show that from the worst
case point of view, it will not help a lot if we move
from the 2-switch neighborhood to the bigger k-switch
neighborhoods with k¿ 3: There always will be in-
stances for which a local optimum for a k-switch
neighborhood is a factor of r=2 away from the global
optimum.

Lemma 4.1. For any k¿ 2 and for any r¿ 3, there
exist arbitrarily large undirected, simple graphs H =
(VH ; EH ) that satisfy the following three properties:

• H is r-regular (i.e., every vertex in H has degree
exactly r),

• H has girth at least k (i.e., the shortest cycle in H
has length at least k),

• H contains a perfect matchingM.

Proof. By applying a result of Erdős and Sachs
[5], Hurkens and Schrijver [8] construct bipartite
r-regular graphs of girth at least k. It is well-known
that every regular bipartite has a perfect matching.
By taking many disjoint copies of the graph in [8],
we get arbitrarily large graphs with the desired three
properties.

Now consider a graph H = (VH ; EH ) as de-
scribed in Lemma 4.1. Denote |VH | = 2h, and let
w1; w2; : : : ; w2h be an enumeration of the vertices in
VH such that for i = 1; : : : ; h the vertices wi and wh+i

form an edge in the perfect matching M. From H
we will construct an instance graph G = (VG; EG)
for MINLSTr . The vertex set VG consists of 2rh + 2
vertices. There are two special vertices u1 and u2,
and for i = 1; : : : ; 2h there is a group Gi of r vertices
vi; j with 16 j6 r. The edges in G are de2ned as
follows.

• There is an edge between the two special vertices
u1 and u2.

• The special vertex u1 is connected to all vertices vi; j
with 16 i6 2h and 16 j6 r.

• The special vertex u2 is connected to all vertices
vi;1 with 16 i6 2h.

• Every group Gi induces a path through the vertices
vi;1; vi;2; : : : ; vi; r in exactly this ordering.
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The edge colors are de2ned as follows.

(C1) The edge [u1; u2] has color c∗.
(C2) For i=1; : : : ; 2h every edge between the special

vertex u1 and the group Gi has color c(i). We
say that color c(i) corresponds to the vertex wi

in H .
(C3) For i = 1; : : : ; h the two edges [u2; vi;1] and

[u2; vh+i;1] have color Pc(i). We say that color
Pc(i) corresponds to the edge [wi; wh+i] in M.

(C4) For every edge [wa; wb]∈EH − M, there is a
corresponding color c(a; b). This color c(a; b)
shows up exactly once on the path induced by
group Ga and exactly once on the path induced
by group Gb. Since wa is incident to r−1 edges
in EH −M, this yields exactly r − 1 colors for
the r − 1 edges in the path induced by Ga. The
exact assignment of colors c(a; b) to edges in
Ga is irrelevant for our arguments; an arbitrary
assignment will work.
We say that color c(a; b) corresponds to the

edge [wa; wb] in EH −M.

Note that the color c∗ in (C1) occurs once, that every
color c(i) in (C2) occurs exactly r times, and that
every color Pc(j) in (C3) and every color c(a; b) in
(C4) occurs exactly twice. Hence, we have indeed
constructed an instance of MINLSTr .

Lemma 4.2. The optimal objective value of instance
G is at most 2h+ 1.

Proof. The edge [u1; u2] of color c∗ in (C1) together
with the edges with colors c(i) with 16 i6 2h in
(C2) form a spanning tree for G.

Lemma 4.3. There exists a spanning tree T for G:

(a) that has objective value rh+ 1, and
(b) that is a local optimum with respect to the

k-switch neighborhood.

Proof. We let T consist of all color classes in (C1),
(C3), and (C4). This yields a spanning tree with rh+1
colors that satis2es property (a). It remains to prove
that T also satis2es the property in (b). Suppose for
the sake of contradiction that there is an improving
k-switch for T . This k-switch removes x6 k colors
from T , and it adds y6 x − 1 colors to T . We make

two observations:

• If the switch removes the color Pc(i) (that corre-
sponds to the edge [wi; wh+i] in H), then it must
simultaneously add the two colors c(i) and c(h+ i)
(that correspond to the vertices wi and wh+i in H).
Otherwise, one of the groups Gi and Gh+i will be
separated from the rest of the graph.

• If the switch removes the color c(a; b) (that cor-
responds to the edge [wa; wb] in EH ) then it must
simultaneously add the two colors c(a) and c(b)
(that correspond to the vertices wa and wb in H).
Otherwise, some vertices in group Ga or Gb will be
isolated from the rest of the graph.

To summarize, whenever the switch removes a color
in (C3) or (C4) that corresponds to an edge in H , then
it must simultaneously add the two colors in (C2) that
correspond to the vertices of this edge in H .
Let Y ⊂ VH denote the vertices in H that corre-

spond to the |Y |6 k − 1 colors from (C2) that the
switch adds to T . Then the switch can remove the sin-
gle color c∗, and it can remove the colors in (C3) and
(C4) that correspond to edges induced by vertices in
Y . Since H has girth k, the subgraph of H induced
by Y is cycle-free. Hence it is a forest, and induces
at most |Y | − 1 edges in H . But this means that the
k-switch adds |Y | colors, while it removes at most |Y |
colors; hence, it is not an improving k-switch. This
contradiction completes the proof.

Theorem 4.4. For any integer k¿ 2, for any integer
r¿ 2, and for any real �¿ 0, there exist an instance
G of MINLSTr and a spanning tree T for G that is
a local optimum with respect to the k-switch neigh-
borhood, such that the objective value of T is at least
r=2 + � above the optimal objective value.

Proof. Lemmas 4.2 and 4.3 yield a ratio (rh+1)=(2h+
1) between the objective values of the local and of the
global optimum. As h tends to in2nity, this ratio tends
to r=2.

5. Complexity and in-approximability

In this section, we 2rst explain why problem
MINLST2 is easy, and then prove that problem
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MINLST3 is diQcult. MINLST3 is APX-complete,
which implies that it does not have a polynomial time
approximation scheme unless P = NP.

Observation 5.1. For r=2, the problem MINLSTr is
polynomially solvable.

Proof. The problem MINLST2 is essentially equiva-
lent to the Graphic Matroid Parity problem; see for
instance Lova(sz and Plummer [10] and Gabow and
Stallman [7]: In the Graphic Matroid Parity problem,
we are given a graph G′ = (V ′; E′) and a partition of
the edge set E′ into disjoint pairs of edges {f;f′}. The
goal is to 2nd a forest F with the maximum number
of edges, such that f∈F holds if and only if f′ ∈F
for all pairs {f;f′} in the partition.
In problem MINLST2, the edge pairs {f;f′} are the

pairs of edges with the same color. The goal is to use
as many colors twice as possible, and then to connect
the resulting forest to a tree by adding color classes of
cardinality one.

Theorem 5.2. For r¿ 3 the problem MINLSTr is
APX-complete even if the input graph G is restricted
to be bipartite and of maximum degree 3.

Proof. The proof will be done via an approxima-
tion preserving L-reduction (cf. Papadimitriou and
Yannakakis [13]) from the vertex cover problem in
3-regular connected graphs, VC3 for short: An in-
stance of VC3 consists of a connected 3-regular graph
H = (VH ; EH ), and the goal is to 2nd a minimum
cardinality vertex cover W for H , that is, a subset
W ⊆ VH that intersects every edge in EH . Alimonti
and Kann [1] proved that problem VC3 is APX-hard.
This implies that there is some small �¿ 0 such that
the existence of a polynomial time approximation
algorithm with performance guarantee 1 + � would
imply P = NP.
We consider an arbitrary instance H = (VH ; EH )

of problem VC3, with |VH | = 2h and |EH | = 3h. We
construct a corresponding instance G = (VG; EG) of
problem MINLST3 from it: For every vertex v∈VH ,
there is a corresponding color c(v). For every edge
e = [u; v]∈EH , there are two corresponding colors
c(e; u) and c(e; v).G results fromH by replacing every
edge e = [u; v]∈EH by a copy of the gadget Z(u; v)
depicted in Fig. 2. This gadget Z(u; v) has six new

Fig. 2. The gadget Z(u; v) as used in the proof of Theorem 5.2.

vertices a1; a2; a3 and b1; b2; b3. The edges and their
colors are de2ned as follows:

• The edges [u; a1], [a1; b1], [b1; b2] are of color
c(e; u).

• The edges [b2; b3], [b3; a3], [a3; v] are of color
c(e; v).

• The edge [a1; a2] has color c(u).
• The edge [a2; a3] has color c(v).

This completes the description of the graph G. Note
that the colors c(e; u) and c(e; v) only show up within
the gadget Z(u; v), and there they are used three times.
Any color c(v) shows up once in the three gadgets
that correspond to the three edges incident to v in
H . Hence, we have indeed constructed an instance of
MINLST3. Moreover, the graph G clearly is bipartite
and of maximum degree 3.
Since every vertex in H is incident to exactly three

edges, the optimal vertex coverW ∗ forH must contain
at least |EH |=3= h vertices. Since there are altogether
|VH |+ 2|EH |= 8h colors in G, the optimal spanning
tree T ∗ for G uses at most 8h colors. Therefore,

|C(T ∗)|6 8 |W ∗|: (6)

Since in every gadget Z(u; v) the vertex b1 (respec-
tively, the vertex b3) is only adjacent to edges of
color c(e; u) (respectively, to edges of color c(e; v)),
all these colors c(e; u) and c(e; v) must be used in
any spanning tree of G. Moreover, in order to con-
nect the vertex a2 to the rest of the tree, any span-
ning tree must use at least one of the two colors c(u)
and c(v). Based on these observations, it is easy to
translate a spanning tree T for G into a correspond-
ing vertex cover WT for H : WT consists of the ver-
tices v∈VH for which the color c(v) shows up in the
tree T . Consequently, |WT | = |C(T )| − 6h. By sim-
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ilar reasoning, we get that the optimal spanning tree
T ∗ of G and the optimal vertex cover W ∗ of H sat-
isfy |W ∗| = |C(T ∗)| − 6h. This implies that for any
spanning tree T , |WT | − |W ∗| = |C(T )| − |C(T ∗)|.
Combining this fact with (6) yields

|WT | − |W ∗|6 |C(T )| − |C(T ∗)| · 8 |W ∗|
|C(T ∗)| : (7)

Now, if |C(T )|6 (1 + �) |C(T ∗)| holds, then the in-
equality (7) yields |WT |6 (1 + 8�) |W ∗|. Hence, the
existence of a polynomial time approximation scheme
for problem MINLST3 would imply the existence of
a polynomial time approximation scheme for prob-
lemVC3. This establishes APX-hardness ofMINLST3.
Since MINLST3 clearly is contained in APX, the proof
of the theorem is complete.

Mohar [12] has shown that the vertex cover problem
is NP-complete for planar 3-regular graphs. With this,
the reduction in Theorem 5.2 yields that MINLST3 is
NP-complete even in planar, bipartite graphs of max-
imum degree 3. The approximability of MINLST and
MINLSTr in planar graphs remain open.
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