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Abstract

We consider the open shop scheduling problem with two machines. Each job consists of two operations, and it is prescribed
that the #rst (second) operation has to be executed by the #rst (second) machine. The order in which the two operations
are scheduled is not #xed, but their execution intervals cannot overlap. We are interested in the question whether, for two
given values D1 and D2, there exists a feasible schedule such that the #rst and second machine process all jobs during the
intervals [0; D1] and [0; D2], respectively.

We formulate four simple conditions on D1 and D2, which can be veri#ed in linear time. These conditions are necessary
and su:cient for the existence of a feasible schedule. The proof of su:ciency is algorithmical, and yields a feasible schedule
in linear time. Furthermore, we show that there are at most two non-dominated points (D1; D2) for which there exists a
feasible schedule.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following machine scheduling
problem: There are two machines M1 and M2 that
can process at most one job at a time. Machine Mi
(i = 1; 2) is continuously available from time zero
to time Di, where D1 and D2 are two given integers.
The machines have to process a given job set J that
consists of n jobs J1; : : : ; Jn. Each job Jj consists of
two operations, one of which has to be processed by
machine M1, which requires an uninterrupted time
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period of length aj, and the other one by M2, which
takes an uninterrupted time period of length bj. The
order in which the two operations should be executed
is not prescribed, but the operations of one job are
not allowed to overlap in their execution. In the lit-
erature such a scheduling environment is known as a
two-machine open shop, and it is encoded by the entry
O2 in the #rst #eld of the three-#eld notation scheme
of Graham et al. [3]. The open shop can be viewed
upon as a relaxation of the .ow shop environment, in
which each job #rst has to visitM1 and afterwardsM2;
this machine environment is encoded by the entry F2
in the #rst #eld.

For both the open shop and Cow shop problem,
there is only one standard optimization problem
known that can be solved to optimality in polynomial
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time: Minimizing the makespan, that is, minimizing
the time at which the last job is completed. These two
optimization problems are denoted by O2‖Cmax and
F2‖Cmax. Problem O2‖Cmax is solvable through the
algorithm by Gonzalez and Sahni [2], which runs in
O(n) time. Problem F2‖Cmax is solvable through the
famous algorithm developed by Johnson [1], which
runs in O(n log n) time. As we will heavily use the
algorithm of Gonzalez and Sahni, we will state and
recall this algorithm in Section 2. Sloppily speaking,
in O2‖Cmax one has D1 = D2 = D and one wants to
determine the minimal value D for which there is a
feasible schedule.

In this paper, we are interested in the general fea-
sibility checking problem where D1 is not necessarily
equal to D2. A schedule that meets both machine
deadlinesD1 andD2 will be called a schedule that 7ts.
This feasibility checking problem is closely related
to optimization problems, where the goal is to min-
imize some objective function f(D1; D2) and where
the values D1 and D2 are not given a priori, but have
to be determined. The makespan criterion can then
be modeled through f(D1; D2) = max{D1; D2}. This
approach has been adopted by Shakhlevich and Stru-
sevich [4]. They present eleven schedules which all
can be constructed in O(n) time, and they show that
for any regular function f(D1; D2) this set contains
at least one optimal schedule for both the preemptive
and the nonpreemptive case. As a consequence of
the results in Section 5, this set of eleven schedules
can be replaced by a much smaller set with only two
schedules.

This paper is organized as follows. In Section 2,
we repeat the algorithm by Gonzalez and Sahni. This
algorithm is a prerequisite for Section 3 in which
we formulate four conditions on D1 and D2 that are
necessary for the existence of a schedule that #ts.
These four conditions can be checked in O(n) time.
In Section 4, we will show that these conditions are
also su:cient, and that the corresponding schedules
can be computed in O(n) time. In Section 5, we ar-
gue that for each two machine open shop instance
there exist at most two non-dominated (or Pareto
optimal) points (D1; D2) for which there exists a
feasible schedule meeting D1 and D2. Moreover, we
will show how these Pareto optimal points can be
determined in O(n) time. Section 6 contains a brief
discussion.

2. Gonzalez and Sahni’s algorithm

In this section we describe Gonzalez and Sahni’s
algorithm that solves O2‖Cmax. Gonzalez and Sahni
start with the following three lower bounds on the
minimum makespan:

• the total processing time
∑
aj of all jobs on M1;

• the total processing time
∑
bj of all jobs on M2;

and
• the maximum total processing time max(aj + bj)

per job.

Subsequently, they present an O(n) algorithm that
#nds a feasible schedule with a makespan that is equal
to the maximum of the three lower bounds; hence, this
makespan is minimal. Their algorithm is as follows.

Gonzalez and Sahni’s Algorithm
Step 0: Set q← argmax(aj + bj). If aq + bq

¿max{∑ aj;
∑
bj}, then schedule Jq on M1 (M2) in

the interval [0; aq] ([aq; aq + bq]) and schedule the re-
maining jobs in [aq;

∑
aj] onM1 and in [0;

∑
bj−bq]

on M2. Stop.
Step 1: De#ne A = {Jj|aj¿ bj} and B =
{Jj|aj ¡bj}. Choose any two distinct jobs Jl and Jr
such that

ar¿max
Jj∈A

bj and bl¿max
Jj∈B

aj:

Let A′ = A \ {Jl; Jr} and B′ = B \ {Jl; Jr}.
Step 2: If

∑
aj − al¿

∑
bj − br , then construct a

feasible schedule where:

• M1 #rst executes Jl, then all jobs from B′ in any
order, all jobs from A′ in any order, and #nally
Jr .

• M2 executes the jobs in the order Jr , Jl, all jobs
from B′ in any order, and #nally all jobs from A′

in random order. The execution intervals are as
follows:

– if ar6
∑
bj − br , then both machines pro-

cess the jobs contiguously (not necessarily
starting at time zero), such that on both
machines the last operation ends at time
max{∑ aj;

∑
bj};

– if ar ¿
∑
bj − br , then M1 is continu-

ously busy processing in the entire interval
[0;

∑
aj], whereas M2 is idle until time
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∑
aj − ar − br and then processes the jobs

contiguously.

Step 3: If
∑
aj − al ¡

∑
bj − br , then construct a

feasible schedule where:

• M1 starts with all jobs from B′ in any order, then
all jobs from A′ in any order, Jr , and #nally Jl;
• M2 #rst executes Jl, then all jobs from B′ in any

order, then the jobs from A′ in any order, and
#nally Jr . The execution intervals are as follows:

– if al6
∑
bj − bl, then both machines pro-

cess the jobs contiguously (not necessarily
starting at time zero), such that on both
machines the last operation ends at time
max{∑ aj;

∑
bj};

– if al ¿
∑
bj − bl, then M1 is continu-

ously busy processing in the entire interval
[0;

∑
aj], whereas M2 is idle until time∑

aj − al − bl and then processes the jobs
contiguously.

Theorem 1. Gonzalez and Sahni’s algorithm 7nds a
feasible schedule with makespan equal to the maxi-
mum of the three given lower bounds.

3. The four necessary conditions

In this section we consider the problem of determin-
ing for two given values D1 and D2 whether there ex-
ists a feasible schedule such thatM1 (M2) can process
all tasks in the interval [0; D1] ([0; D2]). We present
necessary and su:cient conditions for D1 and D2. We
present an algorithm that constructs in O(n) time a
feasible schedule that meets D1 and D2 given that D1

and D2 obey the conditions.
The case D1 = D2 boils down to the problem of

minimizing the makespan, which is solved through
Gonzalez and Sahni’s algorithm presented in the pre-
vious section. We proceed with the case that D1 	=
D2. Since the role of the machines is interchangeable
(there is no prescribed ordering in the execution of the
operations), we assume without loss of generality that
D1¡D2. Gonzalez and Sahni’s lower bounds imme-
diately lead to three necessary Conditions 1–3 on D1

and D2: We #nd that D1 and D2 must satisfy
n∑
j=1

aj6D1: (1)

n∑
j=1

bj6D2: (2)

max
16j6n

(aj + bj)6D2: (3)

Unfortunately, Conditions 1–3 are not su:cient for
the existence of a feasible schedule. Consider the fol-
lowing two-job example where both jobs have pro-
cessing time 1 on machine M1 and processing time 2
on M2. The combination D1 = 2 and D2 = 4 satis#es
all conditions, but there is no feasible schedule that
#ts. It is easily checked that, either (D1; D2)¿ (3; 4)
or (D1; D2)¿ (2; 5) is required for a #tting feasible
schedule. This example leads to the following lower
bound on D2 for a given value D1. De#ne S as the
subset of J that contains all jobs Jj with aj+bj ¿D1.
In any feasible schedule, these jobs must be executed
by M1 #rst and then by M2. Ignoring the jobs that are
not in S, we obtain a two-machine Cow shop problem,
which can be solved through Johnson’s algorithm in
O(n log n) time. Since the jobs in S constitute a special
instance, we can solve it in O(n) time, however. The
specialty of the instance lies in the fact that we can
complete each job on M1 at time

∑
aj6D1, whereas

the #rst job in any feasible schedule is completed after
time D1 onM2 by de#nition of S. Hence, we only care
about selecting the right job to be processed #rst, after
which we can process the remaining jobs in any order
on M1 and M2 without any idle time. If we start with
some job J0, then we #nd a schedule with makespan
equal to a0 +

∑
j∈S bj; hence, we must select the job

Jj in S with minimum aj to be processed #rst. This
gives us the following Condition 4 on D2:

D2¿ min
Jj∈S(D1)

aj +
∑

Jj∈S(D1)

bj ≡ F∗(D1): (4)

We have added the argument S(D1) to show the depen-
dence between S and D1. If S(D1)=∅, then F∗(D1)=
0. In our example above, we have for D1 = 2 that
S(2)= {J1; J2} and we #nd F∗(2)=5. If D1 =3, then
S(3) = ∅ and hence F∗(3) = 0.

4. The proof of su ciency

In this section we will show that Conditions 1–4 not
only are necessary but su:cient as well. We present an
algorithm that constructs a schedule in which M1 and
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M2 are #nished at timesD1 andD2 if the conditions are
satis#ed. The basis is formed by adapting the schedule
determined by Gonzalez and Sahni’s algorithm.

Suppose that we are given values D1 and D2 that
satisfy Conditions 1–4. Without loss of generality, we
assume that we cannot decrease D1 or D2 without vio-
lating at least one of these conditions. We will design
an algorithm that constructs a feasible schedule meet-
ing D1 and D2. The algorithm breaks up the instance
set in a set of categories, and for each category we
describe how a feasible algorithm can be found.

We start with instances in which there exists a job
Jq with aq+bq¿max{∑ aj;

∑
bj}. This corresponds

to Step 0 in Gonzalez and Sahni’s algorithm, and the
cure is the same: we process job Jq in [0; aq] on M1

and in [aq; aq+bq] onM2, after which we schedule the
remaining jobs in the remaining gaps. The feasibility
of this schedule follows immediately from Conditions
1–3.

We proceed as described in Gonzalez and Sahni’s
algorithm and #nd the jobs Jl and Jr . Suppose that∑
aj−al¿

∑
bj−br , which leads us to Step 2 of their

algorithm. We increase ar by D2−D1 (we denote the
adjusted aj-values by Naj) and construct the schedule as
described by the algorithm. In both cases M1 and M2

#nish processing at time max{∑ Naj;
∑
bj}6D2 and

Jr is processed last onM1. If we replace the processing
time Nar by ar , then we have a feasible schedule meeting
D1 and D2.

Now suppose that
∑
aj − al ¡

∑
bj − br , which

leads us to Step 3 of Gonzalez and Sahni’s algorithm.
If al + bl6D1, then Gonzalez and Sahni’s algorithm
#nds a schedule in which M2 completes its jobs at
time

∑
bj, which is no more than D2. Moreover, M1

completes its jobs at time max{al + bl;
∑
aj}, which

is no more than D1 by assumption. Hence, we are
done, unless al + bl ¿D1. For this case, we need
Condition 4.

Let S be a subset of J that satis#es the following
conditions:

1. S contains all jobs Jj with aj + bj ¿D1;
2. Solving F2‖Cmax for S yields a makespan that is

smaller than or equal to D2.

We start with the subset S that contains only the jobs Jj
with aj+bj ¿D1; as we have just observed, Jl ∈ S. We
construct our schedule through an iterative process,

where we augment S in each iteration until we have a
feasible schedule that #ts. We use a(S) and b(S) as a
short hand notation for the total processing time of the
jobs in S on M1 and M2, respectively. We #rst check
whether a(S) + b(S)¿D2. If this is the case, then
we can #nd a feasible schedule by processing the jobs
in S in random order but starting with the one with
minimum aj-value among the jobs with aj + bj ¿D1

in the intervals [0; a(S)] and [D2 − b(S); D2] on M1

and M2, after which we put the remaining jobs in the
gaps. If this is not the case, then we check whether
there exists a job Jv with Jv 	∈ S such that bv¿ a(S).
If Jv exists, then we construct a feasible schedule in
the following way:

• M1 starts at time zero with the jobs in S followed by
all jobs not in S except for Jv; #nally Jv is executed
in the interval [D1 − av; D1];

• M2 starts at time zero with Jv, then executes the jobs
in S, and #nally the remaining jobs.

This schedule is feasible, as av + bv6D1, since Jv 	∈
S, and the #rst one of the remaining jobs starts at
time bv + b(S)¿ a(S) + b(S)¿D1 on M2. If such a
job Jv does not exist, then we construct the following,
currently infeasible schedule. On M1, we #rst process
the jobs in S and then the other jobs in arbitrary order
in the interval [0;

∑
aj]; on M2 we process the jobs in

the same order as on M1 in the interval [a(S); a(S) +∑
bj]. If a(S)+

∑
bj6D2, then we have discovered

a feasible schedule, since a(S) + b(S)¿D1, which
implies that the jobs that do not belong to S do not
overlap in their execution. If a(S) +

∑
bj ¿D2, then

we check whether there exists a job Jw that is started
before time D2 and completed after time D2. If there
is no such job Jw, then we move the part scheduled
in [D2; a(S) +

∑
bj] to the interval [0; a(S)] on M2.

Since D2¿
∑
bj, we know that this #ts, and hence

we are done, as there is no overlap.
Suppose that we face the unlucky event that Jw does

exist. We denote the set of jobs that are scheduled in
between S and Jw by E and the jobs that succeed Jw
by T . We adjust our schedule on M2 by moving Jw
and the jobs in T forward in front of the jobs in S,
such that Jw starts at time zero and is followed by the
jobs in T , whose relative order remains unchanged.
If necessary, the jobs in S and E are shifted to the
right; see Fig. 1 for a schematic illustration. Since
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Fig. 1. Augmenting S.

a(S)¿bw (otherwise Jw would have quali#ed as the
job Jv), the only jobs that may overlap are the jobs in
T . Obviously, this can only be the case if the last job in
T is completed on M2 after the #rst job in T is started
on M1, that is, bw+b(T )¿a(S)+a(E)+aw. Hence,
if the current schedule is not feasible, then we must
have that a(S) + aw ¡

∑
bj − b(S), from which we

deduce that aw+a(S)+b(S)¡D2. Since bw ¡a(S),
we #nd that the makespan of the optimum schedule
for F2‖Cmax applied to the job set {Jw}∪S is smaller
than D2. Hence, we can augment S by Jw and apply
the same analysis again. This either leads to a feasible
schedule meeting D1 and D2 or suggests a job that can
be added to S. As the number of jobs is bounded, we
will eventually #nd a feasible schedule that #ts. Using
an appropriate datastructure this can be implemented
to run in O(n) time.

Theorem 2. There exists a feasible schedule for the
two machine open shop problem in which machines
M1 and M2 are 7nished at times D1 and D2 if and
only if D1 and D2 satisfy Conditions 1–4.

5. Finding the non-dominated points (D1; D2)

Our example in Section 3 shows that there can be
two points (D1; D2) that lead to a feasible schedule,
which are incomparable to each other. In this section
we show that there are at most two such points and
that they can be determined in O(n) time. The prop-
erties of these D1 and D2 values depends on which
of the lower bounds (1)–(4) is tight. We partition
the instances in the following way, where as before
q= argmax16j6n{aj + bj}:
• aq + bq¿max{∑ aj;

∑
bj};

• aq + bq6min{∑ aj;
∑
bj};

• max{∑ aj;
∑
bj}¿aq + bq ¿min{∑ aj;

∑
bj}.

In the #rst subcase, we have that max{D1; D2}=aq+
bq. Due to the lower bounds (1) and (2), we arrive
at the points (

∑
aj; aq + bq) and (aq + bq;

∑
bj). A

#tting schedule is easily derived in both cases. In the
#rst case, we execute Jq in the intervals [0; aq] and
[aq; aq + bq] on M1 and M2 and subsequently put the
remaining operations in the gaps. A feasible schedule
for (aq + bq;

∑
bj) is derived in a similar fashion.

The second subcase is even easier: the point
(
∑
aj;

∑
bj) is clearly as small as possible in both

components, and it is easily checked that in this case
it satis#es Conditions 1–4. Hence, there is only one
point of interest now.

In the third subcase, we assume without loss of
generality that

∑
bj ¿aq+bq ¿

∑
aj. We #rst check

whether (
∑
aj;

∑
bj) satis#es Conditions 1–4. If this

is the case, then this is the only non-dominated point.
Otherwise, we must have that∑

bj ¡ min
Jj∈S(

∑
aj)
aj +

∑
Jj∈S(

∑
aj)

bj ≡ F∗
(∑

aj
)
:

Hence, we #nd that the #rst non-dominated point is
(
∑
aj; F∗(

∑
aj)). To be able to arrive in another

non-dominated point, we must increase the D1-value
such that the set S(D1) becomes smaller. The smallest
D1-value for which S(D1) changes is

min
Jj∈S(

∑
aj)

(aj + bj) ≡ Q:

But if D1 is put equal to Q, then we can #nd a fea-
sible schedule in which M2 has #nished all jobs at
time

∑
bj in the following way: If J0 is the job that

leads to Q, then execute J0 in the intervals [0; b0] and
[b0; a0+b0] onM2 andM1, and put the remaining jobs
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into the gaps. Since the minimum D2-value has been
determined, there is no need to increase the D1-value
any further, which implies that (

∑
aj; F∗(

∑
aj)) and

(Q;
∑
bj) are the only non-dominated points for the

third subcase if F∗(
∑
aj)¿

∑
bj.

Theorem 3. For any instance of the two machine
open shop problem, there exist at most two Pareto
optimal points (D1; D2) for which there exists a fea-
sible schedule meeting D1 and D2.

6. Conclusions

We have shown that there are at most two
non-dominated points (D1; D2) for the open shop
problem with two machines, and that these points
can be determined in O(n) time together with the
schedule that realizes these values.

An interesting question occurs when we look at
the number of such non-dominated points in case of
m¿ 3 machines. It is easy to construct instances with
m! non-dominated points: There is only one job with
unit processing time operations on each machine;
each permutation of 1; : : : ; m corresponding to the
order in which the operations are executed leads to a
non-dominated point. We conjecture that this bound

is tight. Observe, however, that since the problem
O3‖Cmax is already NP-hard in the ordinary sense,
there is not much hope to compute all non-dominated
points in polynomial time.
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