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1 Introduction

In his Introductory Lectures on Convex Programming Nesterov has given an
algorithm to find the analytic centre z7}, for a given v-self-concordant barrier
F with bounded domain and a given interior point of this domain. The
intended use of this algorithm is as an auxiliary phase in a primal short-step
path-following method for solving convex programming problems. For the
number of iterations in this auxiliary phase an upperbound is given in [N]
which for » much bigger than 1 is essentially

7.2V (Inv + 2 In F'(yo) " F"(23) 7 F'(yo))

where T" denotes transpose.

In this note it is shown that the term In v can be omitted. Moreover we
make the easy observation that the constant 7.2 can be replaced by 3.2. The
In v-improvement is achieved in the following way. Using certain inequalities
from [N] we obtain a lower bound for the total decrease of the penalty pa-
rameter in the last two steps of the algorithm which does not depend on v.
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Concerning the constant 7.2 it is clear from [N] how it could be improved: by
optimizing the choice of the centering parameter 5. A routine optimization
shows that 5 = 0.088 gives the constant 3.2.

2 Statement of the result

In this paper we will use notations, definitions and results from chapter 4
of [N]. We begin by recalling from [N] a scheme to approximate an analytic
centre; we use a slightly different stopping criterion. Let F' be a v-self concor-
dant barrier with bounded domain and let a point yy in this domain be given.
Choose a centering parameter [ < % — %\/5 ~ 0.4 and write v = 1}(% - p.
Then v > 0. We consider the following scheme.

0. Set t() =1

1. k-th iteration (kK > 0). Set

_ _ 04
lr41 = max (0’ b ||F'(y0)||g*,k>
Yrr1 = Ye—F"(ye) " (e F' (o) + F' (yk))

2. Stop the process if t, = 0. Set T = x;, and N = k.

Theorem 2.1. The scheme above terminates and

X+ VBIF (yo)l3;,
v(1 —+/B)

The vector T which is the result of this scheme satisfies

N < 2+ max [0,%(ﬁ+\/ﬂ)ln<

IF' @)z < 8.

Remark 2.2. If v, the parameter of the barrier, is much bigger than 1,
then it is ’optimal’ to choose [ such that v = (/) is maximal. A routine
calculation shows that this choice is 8 &~ 0.088, the unique real root of the
equation 423 — 822 + 122 — 1 = 0. Then v = 0.317 and so the upperbound
in the theorem is essentially

3.2 VvIn||F'(yo)

*
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3 Proof of the result
We write

A(t,y) = [(—=tF"(yo) + F'(y)"F" ()™ (=1 F"(90) + F'(9))]?

for all £ € R and all y € dom F. This is well-defined: dom F' is bounded,
so it contains no straight lines and so, by theorem 4.1.3. of [N] the hessian
F"(y) is non- degenerate for all y € dom F.

Step 1 Aty yx) < S for all k and A(ty1, yi) < H@B for all k with 5 > 0.
Start induction: A(to,yo) is seen to be 0.

Induction step: assume A(tg, yx) < ( for some k with ¢, > 0. Then A(tx41, yx)
is by the triangle inequality

< (te = e ) I1F (wo) II;, + Ates Y)-

This is < 11@3 as A(te, yp) < B and ty — tpy <

Applying theorem 4.1.12 of [N] we get

A(tk+1, Yk) ))2_

L — Mtes1, s

b
: .
DI

AMtet1, Yk1) < <

This is seen to be < 3 as

VB
1++B

Step 2 ||F"(yo)|l5, < ZH for all k with #; > 0.

One has #[[F"(yo) 5, = Il = teF"(y0) + F"(yx) — F' (we) Iy,
By the triangle inequality this is < A(tg, yx) + [[F'(ye)[l;, - By Ate, yx) < B
and the definition of self-concordant barriers this is < 8 + /v.

AMtkt1, ye) <

k
Step 3. #; < (1 . Bgﬁ) for all k with ., > 0.

Start induction: tq = 1.
Induction step: for all k& with ¢, > 0, we have ¢} —

It follows that

Y
o, ~ O

y
B+

b1 < (1— k.



The rest is clear.

Step 4. The algorithm terminates and the resulting vector T satisfies || F'(T)||
f.
By Corollary 4.2.1 of [N] one has
1E" (o) Iy, < (v +2vw)[|F" (30)
Therefore for each k with ¢z, > 0 one gets

y
(v +2v/V)||F"(50)

Combining this with step 3 it follows that the algorithm terminates, say after
N iterations.
We write T = yy. Then ty =0, and ||F'(Z) |2 = A(ty, yn) < 0.

Step 5. [|F'(yo)ll;,_, < (L +VB)IF (wo)lly,_,-
By definition

yn—1 — Yn—2 = —F"(yn_2) " (=tn_1F'(yo) + F'(yn—2)).

Taking the | [|yy_, norm we get [lynv—1 — yn-ollyy_, = | = tx-1F"(y0) +
F'(yn—2)ll}y_,-
This is by definition A(ty 1, yy_2); this is < % by step 1.

This proves ||ynv—1 — yn—2llyy » < 1;/\3/3-

Applying theorem 4.1.6. of [N] we get
F'(yn—1) 2 (1= llyn—1 — yn—allyy_) " F" (yn—2)-
It follows, on taking inverses, that

F'lyn—a) ™' =< (14 \/B)QF”(?JN—O_I-
Therefore

1E" (o)ll;,—, < L+ VBIE (o)l -

<
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T
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Step 6. [|F"(yo)ll;,_, < (1= vB) " IF" (yo)ll;s.-
By step 1 A(tn, yn—1) < %, so as ty = 0, we get by theorem 4.1.11 of [N]

that

A0, yn—1)
_ < !
||yN_1 xF“yNA - 1= )\(O,QN—I)’
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this is < /3. Therefore by theorem 4.1.6 of [N]
F'(x3) = (U= llyv 1 = @hellyw_) 2 F" (yn—1)-
It follows on taking inverses that
F'(yn_1)™" = (1= /B)2F"(7},).
Therefore

1E" (o), < (1= V/B) M F' (o)

*
* .
Tp

Step 7. N <2+ max [O, %(BWL V) In [
On the one hand, by step 3

(1+\/B)\|F’(yo)||:;ﬁ
Y(1-VB)

tnoo < (1— Y )N72.

B+
On the other hand, by ty_; > 0, we have
T
IE" (o)l s

Therefore by step 5 and 6 we get

(1—vB)y
A+ VAIF ),
Combining this upperbound and lowerbound for ¢y_, gives an inequality; on

taking the logarithm and on using the inequality In(1 + 7) < 7 we get the
required upperbound for V.

tnN_o >

tN_g >
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